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¢ Introduction

Robust statistics Main aims of robust procedures

From a data-analytic point of view, robust
statistical procedures will

e deals with deviations from ideal models
and their dangers for corresponding in-
ference procedures

(i) find the structure best fitting the ma-

e primary goal is the development of pro- Jority of the data;

cedures which are still reliable and rea-

sonably efficient under small deviations (ii) identify deviating points (outliers) and

from the model, i.e. when the under- substructures for further treatment:
lying distribution lies in a neighborhood

of the assumed model
(iii) in unbalanced situations : identify and

give a warning about highly influential
Robust statistics is an extension of para- data points (leverage points).

metric statistics, taking into account that
parametric models are at best only approx-
imations to reality.



In addition to the classical concept of effi-
ciency, new concepts are introduced to de-
scribe

e the local stability of a statistical proce-
dure (the influence function and derived
quantities)

e its global reliability or safety
(the breakdown point).

The ancient, vaguely defined problem of ro-
bustness has been partly formalized into math-
ematical theories which yield optimal robust
procedures and which provide illumination
and guidance for the user of statistical meth-
ods.



Robustness
¢ Sensitivity Curve

and Influence Function
its purpose is to safeguard against devi-

ations from the assumptions. Sensitivity curve

It makes unnecessary getting the stochas- e Observations zq,zo,... with underlying
tic part of the model right. distribution (model) F.

Diagnostics e Statistic 7, (function of the observa-

tions)
Its purpose is to find and identify devi- SC(z: 21, 2n_1,Th)
ations from the assumptions.
=n[Th (21, - 2n-1,2) —Tp_1(21,.--,2p—1)]
| n— o0
It helps to make the functional part of IF(z,;T,F)

the model right.



Influence function of the mean

SC(z; 21,...,2n—1,Meany)

meann(z1,...,2p-1,2) —Mmean,,_1(z1,...,2,-1)
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mean,_1(21,--+,2,-1)
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z— EpZ =1F(z, mean ,F)

= Z—

Influence function of the least squares
estimator

Regression : y; =z!B4w;, i=1,...,n

Least Squares Est :
1 n—1

Qn-1= n_1 %%T — Q, n — oo.
1

1=

SC ((x7y>1 (xlayl)a SR (xn—layn—l)a LS)

= 721 Qo1 o -e" Bu1) o
Lol ! :
1 Q! & '
e Q_la:(y - mTﬁ)

when n — oo.
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e Can find IF(z;T,F) for most est.

e (GGross-error sensitivity

maximum (over z) of ||[I[F||

WANTED
PROCEDURES
WITH
BOUNDED
INFLUENCE FUNCTION

Reward : ROBUSTNESS
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¢ Influence Function

Z1,...,2n lid ,2; ~ F
Tn(Z]_,,Zn)

T : functional on some subset of all distr.

F,, : empirical distribution
(which assigns prob. 1 to z1,...,25).

Influence Function of T at F :

T((1—e)F4eA,)-T(F)
0 -

IF(zT,F) = lim._,

Hampel (1968), (1974), J. Am. Stat. Ass.
A, . distr. which puts mass 1 at any point z.

Note : IF(zT,F) = 4T ((1 —e)F +eA2)|e=0
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e c-neighborhood P:(F) of F :
Properties
P:(F) ={G|G = (1 —¢)F +eH, H arbitrary }

e /[ describes the normalized influence on
the estimate of an infinitesimal observa-

tion at z.
d(G,F) = sup,||G(z) — F(2)||
= e-sSup,||H(z) — F(2)|| <e.
e /F is the Gateaux derivative of T' at F, For G € P-(F) :
or the integrand in the first term of the
von Mises expansion T(G) = T(F)+€/IF(Z;T’ F)dH (2)+0(e)

Bias curve: max bias over e-neighborhood

T(G) =T(F) + / [F (=T, F)d(G — F)(2) Hei T, ) = sup IT(G) = T(F)]

+ o(la-FII»

b(e;T,F) ~e (T, F)
— S——
max bias over neighborh. gr err sens
Math. treatment (e.g.) :
von Mises (1947), Ann. Math. Stat. (T, F) =sup, ||[IF(z, T, F)||
Fernholz (1983), Springer
Serfling (1980), Wiley IF describes the robustness (stability)

properties of T'(+)
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e For G = F,, (empirical distr.)

1 mn
Tn:T(F)+—ZIF(zZ~;T,F)+... .
n= e Connection to sensitivity curve

SC(Zr Rly-++y”n—1> Tn)
= | vVn(Tn —T(F)) ~as N (0,V(T, F)) = [Ta(e1se s 2ne1,2) — Tyt (21 es 20t
V(T,F) = Ep[IF(Z,T,F)-IFT(Z, T, F)] _ T{“i)FnlﬁAz)T(Fnl)
Ep[IF(Z,T,F)] =0 0

IF describes the efficiency properties of

T().
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e Connection to jackknife

T(j) — Tn—l(zla"'azj—]_)Zj—{—l)"')Zn)
1=1,2,...n

Pseudo-values :
T*] — nTn — (n — ].)T’(‘7

— T, 4+ O%ﬂﬁm—nﬂ
h ‘”f d The stability analysis by means of the in-

fluence function can be performed on any

n—1 .
B=2SC (25 215+ -5 21
n ! ’ » 7] ) . .
Zit1s---2ns Tn) statistical functional e.qg.
) Ik (as)varpTy,
T =IF (2, T, F) (as) level of a test = Pp [Ty, > kq

Jackknife estimator :
Tukey (1958), Ann. Math. Stat.

.
I
3=

n
Z T*j
=
n
~ Tn+ i+ > IF(2;T,F)
J=1
(von Mises expansion; one-step est.)
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¢ Breakdown Point

The IF shows how an estimator reacts to a
small proportion of outliers.

Note that the sample mean cannot resist
even one outlier !

Other estimators can, because their IF is
bounded.

What is the maximum amount of " pertur-
bation” they can resist?

Breakdown Point

Sample Z = (21,...,2n)
Statistic T, (Z2)

bias (m; Ty, Z) = sup ||Tn(Z") — Th(2)||
Z/

7"+ "corrupted” sample obtained by replac-
ing any m of the original n data points
by arbitrary values.

Breakdown point of T, (at Z) :

e*(Tn, Z) = min {&| bias (m; Ty, Z) = oo}

19

Examples:

Breakdown point of the

® Mmean.

S|

e o-trimmed mean: «

20



Robustness notions as
elementary calculus properties

of a function of one argument, namely its
continuity, differentiability, and vertical asymp-
tote.

The breakdown point tells us up to which
distance the " linear approximation” provided
by the influence function is likely to be of
value.

21

¢ M-estimators

Z1,...,2n iid
Huber(1964), Ann. Math. Stat.
Parametric model {Fyl0 € ©}

n
M-estimator Ty, @ > ¥(z;,Tn) =0
i=1

e /- estimators generalize MLE
(for which ¢(z,0) = score = % log fg(2))

e To any asymptotically normal estimator,
there exists an asymptotically equivalent
M-estimator.

e Properties :

IF(z4, F) = M3, F) " 14(z, T(F))

V(T — T(F)) =5 N (0, V (b, F))

V@, F) = M@, F)"1Q(, F)M(y, F)~T
M@, F) = Ep[-24(Z,T(F))]
Q. F) = Ep[(Z,T(F)) ¥(Z,T(F))]
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How do we construct (optimal) robust
estimators?

Example: location
z1,...,2n iNd. observations from a distribu-
tion with location parameter pu,

€.g. z; NN(,LL, 1).

Two estimators of u:
the mean and the median.

Both are M —estimators with score functions:

Z— L (mean)

Y(z, 1)
Y(z,n) = sign(z —pu) (median)

23

e Efficiency
Under normality the mean is the most
efficient estimator for u, while the me-
dian has efficiency 2/m = 64%.

e Robustness
Their influence function is proportional
to their score function. The mean is not
robust (unbounded IF), while the me-
dian is robust (bounded IF).

—— Best compromise between efficiency and
robustness?

At the normal model, the Huber estimator,
an M —estimator defined by the score func-
tion 1c(-), is the most efficient estimator for
p with a bounded influence function.

For ¢ = 1.345 its efficiency at the normal
model is 95%.
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Ye(r) =

Huber's function

r

c - sign(r)

rl <c

7| > c.

25

Huber’s estimator of location

Huber(1964), Ann. Math. Stat.

The Huber estimator T}, is an M —estimator
defined as the solution of the implicit eqgn.

Y te(zi—Ta) =0

1=1
Rewrite as:

Z we(r;)(z; —Tn) =0

=1

i we(r)z

:L:]_ ’U)c('f'i)

Ty =

where
r, = z; — 1 are the residuals and

we(r) = pe(r)/r

= 1 lrl <ec
c
= — lr| > c.
I
26



¢ Robust Inference

e robustness of validity
The level of the test should be stable un-
der small, arbitrary departures from the
distribution under the null hypothesis.

e robustness of efficiency
The test should still have a good power
under small, arbitrary departures from
the distribution under specified alterna-
tives.

Heritier & Ronchetti (1994), J. Am. Stat.
ASS.

27

Example: Bartlett’s test

F-test for comparing two variances
Investigate the stability of the level of this
test and its generalization to k samples
(Bartlett’'s test)

Distribution k=2 k=5 k=10

Normal 5.0 5.0 5.0
t10 11.0 17.6 25.7
ty 16.6 31.5 48.9

Actual level in % in large samples of
Bartlett’s test when the observations come
from a slightly nonnormal distribution;
from Box(1953), Biometrika

In view of its behavior this test would be
more useful as a test for normality rather
than as a test for equality of variances!
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Example:
Two sample t-test and Wilcoxon test

Generate two samples of size 10 from N (0, 1)
and N (1.5,1) respectively:

0.12
1

X

-1.7234313-1.1028391 -0.8915296 -0.5941126
-0.4669093 -0.4511696 -0.3411728 0.3126089
1.1478631 1.2476020

0.10
1

t-test

0.08
1

pvalue

0.06
1

0.04
1

y
-0.7651532 0.4464456 0.5107215 0.5611747

0.5929228 0.7118542 1.0405136 1.3153364 ! ' ' ' . ;

4 6 8 10 12 14

2.0116585 2.5419382 y(10)

Wilcoxon-test

0.02
1

t-test: p-value .011
Wilcoxon test: p-value = .018

p—value of the two sample t—test and Wilcoxon
test as the value of the largest observation

of the 2nd sample increases
Increase the largest value of the 2nd sam-

ple Y(10) = 2.5419382 by steps of size .2
and recompute the p—value of the t-test and
Wilcoxon test.
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Beyond some value of Y(10) the t—test never
rejects the null hypothesis.

In general:

e t—test: ~ robustness of validity but no
robustness of efficiency

e \Wilcoxon test: robustness of validity but
loses power in the presence of small de-
viations from normality

31

¢ Linear Models

Y1,...,Yn n independent observations of a
response variable:
= L . =1
yz—xiﬁ_l_uz, t=1,..,MNn,

B € R? is a vector of unknown parameters,
x; € RY is a vector of explanatory variables,
and E[u;] = 0, var[u;] = o2.

The least squares estimator Brg of 3 is a

M —estimator defined by the estimating equa-
tion:

Y (i—={p)-z; = 0.
=1

32



Influence function of A q:

IF(z,y; 815, F) =Q 1z -u ,

where u =y — zX8 and Q = E[zz1].

Unbounded both w.r. to y and =.

33

M —estimators for regression with
bounded IF

—— Construct new robust M —estimators by
bounding v and x through score function

¢((xay)75> — 7ﬁbC(u/U) - T Huber
Ye(u/o) - w(x) - x Mallows
= wC/HAxH(u/J) -x Hampel — Krasker

where v.(-) is the Huber function, w(:) is
a weight function for the zs, and A is a
positive definite matrix defined in the space
of the azfis.

The Hampel-Krasker estimator is the opti-
mal B— robust estimator when the IF is
measured by the Euclidean norm.
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Robust tests for regression

The three classes of tests for general para-
metric models can be defined here with the
score functions ¥ ((x,y),3) given above.

In particular, the likelihood ratio type test
for this model is the so-called 7— test; see
Ronchetti(1982).

This test is a robust alternative of the clas-
sical F'—test for regression.

35

Looking for structures in the data:
high breakdown point estimators

36



The breakdown point ¢* of M—estimators
depends on the design (the distribution of
the z’'s).

Example
e* of L;—estimator is 25% for uniform z’s.

More generally for M —estimators:

e c* is arbitrarily close to 0 for longer-
tailed designs

o c* < 1/dim(B);
Maronna(1976), Ann. Stat.

— Search for high (50%7) breakdown point
equivariant estimators

37

Is residuals

Ims residuals

T T T T
10 20 30 40

T T T T
10 20 30 40

LS and LMS residuals
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— T S
u; = y; — x; 3, 1=1,...,n

Properties
e Least Median of Squares (LMS)
Hampel(1975), Rousseeuw(1984) e An S—estimator with a smooth p—function
min med; uf is an M —estimator with score function
b Y(u/s)x and () = p/(-) redescending

(multiple solutions!).

Ex. Tukey’s biweight

—— asymptotic normality and correspond-
ing tests

e Least Trimmed Squares (LTS)
Rousseeuw(1984), JASA

h
: 2
mﬁlﬂ Z 'U,(Z),
, z=12 e LMS and LTS are S—estimators with
where ur)y < ... S ug discontinous p—functions

e S—estimators _ _ o
Rousseeuw and Yohai(1984) e High breakdown point (= 50%)

mﬁin S(ul(ﬁ)a coe 7un(5))7

where s(-) is an M —estimator of scale
with a bounded p—fct., i.e. solution of

1 & Uq
=Y (=K
n: S

1=1

e Low efficiency

Computational aspects
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To improve efficiency: MM —estimators
Yohai(1987), Ann. Stat.

(1) Compute a high breakdown point regres-
sion estimator, typically an S-estimator
and its resulting estimator of scale s based
on a loss function pg(-).

(2) Compute an M—estimator 3 satisfying
the equation

Z Y= Pyei=0,

where w(-) is a smooth redescending
score function, such as Tukey’s biweight.

41

¢ Generalized Linear Models

Y1,....,Yn n independent observations of a
response variable.

The distribution of Y; € exponential family,
ElY;] = pi, var[Y;] = V(y;) and

T .
g(ﬂz) — I, ﬂ) [ 17 ey 7,

B € RY is a vector of unknown parameters,
€ R? is a vector of explanatory variables,
g(.) is the link function.

42



e Estimation of 3

maximum likelihood or quasi-likelihood
(equivalent if g(.) is the canonical link,
e.g.

logistic regression: logit(u) = Iog(ﬁ)
Poisson regression: log(u) ).

e Inference and variable selection:

Standard asymptotic inference based on
likelihood ratio, Wald and score test
is readily available for these models.

However ...

43

Robustness

Given n observations x1,...,zn Of a set of ¢q
explanatory variables (x; € R%), and when
g(u;) is the canonical link, the maximum
likelihood estimator and the quasi-likelihood
estimator of B are the solutions of the fol-
lowing system of equations

n

ZT'#“/' —

; —

= V2
n
Y (i—pi) -z = 0, (1)
i=1

where r; = V?{l/%éz) are the Pearson residu-

_ O
als, p; =g 1(z'B), and u} = a%'

The maximum likelihood and the quasi-likelihood

estimator defined by (1) can be viewed as
an M-estimator with score function

Y(yis B) = (y; — i) - x5 (2)

44



Since ¥ (y; 3) is unbounded in z and y, the
influence function of this estimator is un-
bounded and the estimator is not robust.

Several alternatives have been proposed. One

of these alternative methods is the class
of M-estimators of Mallows's type (Cantoni
and Ronchetti 2001, JASA) defined by the
score function

Y(yi; B) = v(yi, p)w(z)p; —a(B),  (3)
where a(8) = + ;‘;11 Elv(yi, pi)lw(x;) e,
v(y;, i) = @bc(ri).m, and . is the Hu-
ber function defined by

r , rl=e

Ye(r) =
c - sign(r) Ir| > c.

When w(xz;) = 1, we obtain the so-called
Huber quasi-likelihood estimator.

45

Standard inference based on robust quasi-
deviances is available.

—— robust likelihood ratio test

is based on twice the difference between
the robust quasi-likelihoods with and with-
out restrictions

When the link function is the identity, this

test becomes the r—test defined for linear
regression.
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x1,...,xn iid
r; € RP (2, ~ N(i, X))

Classical estimators of location pu and scat-
ter >~ (MLE under normal model)

1 mn
n 2

¢ = Y- DD
=1

8l
|

¢ Elements of Multivariate Analysis
Key for multivariate analysis:

e principal components analysis

e discriminant analysis

e factor analysis

a7 48



New class of estimators; which properties?

e affine equivariance

e good robustness properties under local
perturbations (bounded IF)

e good robustness properties under global
perturbations (high breakdown point)

e good efficiency under a broad class of
underlying distributions

o nl/2 consistency, asymptotic normality

+ e computational simplicity
Influence of outliers on classical and robust Not necessarily in order of priority and
covariance estimates; from Huber(1981) possibly conflicting requirements!
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M —estimators for location and scatter

Maronna(1976), Ann. Stat.
Huber(1977)
Affine equivariance:
(t,V) solution of the implicit eqn.
location vector t(xq,...,xzn) € RP

scatter matrix V(xq1,...,zn) @ pXxp pos. def.

symm. matrix > i1 wi(dy);

t
Z?:l w1 (d;)
Then Vb € RP | B nonsingular p X p matrix:
T
t(Bxy+b,...,Ben+b) = B-t(zq1,...,zn) +b Voo =1 w2(d)(zi — (@ —t)
n
where
di = d(z;;t,V)

= [(z; — )TV (z; — )]1/2

(robust Mahalanobis distance)
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w.l.o.g. t(F) =0 and V(F) = 1.

I[F(z;t, F) o< wi(llz])z
IF(z:V,F) = —2r
1 [ElS
where Etr(l_) o< w2(||:1:||)(T - 1)

T
M= Ltr (M1 o< wa (o)) 2)2(22z - L)

—— To bound the IF choose e.g.:

w1 (d) min(1,c/d)
wo(d) = min(1,c/d?)

Breakdown point < 1/p

53

High breakdown point estimators
for location and scatter

Minimum Volume Ellipsoid (MVE)
Rousseeuw(1984), JASA

Find the ellipsoid {z|d?(z;t,V) < 1} with
minimum volume which covers at least
50% of the data — ¢,V

Minimum Covariance Determinant (MCD)
Rousseeuw(1984), JASA

t is the average of the h points for which
the determinant of the cov. matrix is
minimal and V is the corresponding cov.
matrix

S—estimators Rousseeuw & Yohai(1984)
Lopuhaa(1989)

min |V|
under the constraint

1 n
= " p(d;) = bo,
n
=1
for a bounded function p(-).
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Some common misunderstandings

Robust statistics replaces classical statis-
tics.

The normality assumption is "guaran-
teed” by the central limit theorem.

If the errors are non-normal, I change
the specification of the errors.

I use classical procedures after removing
outliers. Therefore I do not need any
robust procedures.

Robust statistics cannot be used when
the errors are asymmetric.
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¢ Messages

e [ here exist robust statistical procedures
which complement classical estimators
and tests for general parametric models.

e \Whenever you can do a likelihood anal-
ySis, you can do a robust analysis.
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