UseR! 2008 Tutorial — Robust Statistics with R "Exercises and Demos"

Martin Maechler

ETH Zurich
Switzerland
maechler@R-project.org
UseR! 2008, Dortmund
Aug. 11, 2008

Outline

Basics

Linear Models — Robustly

Generalized Linear Models: GLM

Multivariate: Location \& Scatter

Preliminary

- Robust Statistics using R: only recently blossoming.
- On CRAN (http://CRAN.R-project.org/), with its more than 1400 R packages, CRAN Task Views provide focus on 19 different subject areas, one of which "Robust Methods".
http://CRAN.R-project.org/web/views/Robust.html.
- This tutorial: Just small parts of robustbase and robust
- Part 1 -
$4 \square>4$ 可 >4 三

Basics: Sensitivity-Curve

The sensitivity curve is the "empirical influence function", i.e., $\mathrm{SC}_{n}(\ldots) \xrightarrow{n \rightarrow \infty} \operatorname{IF}(\ldots)$
$\mathrm{SC}\left(x ; x_{1}, \ldots, x_{n-1} ; T_{n}\right):=\frac{T_{n}\left(x_{1}, \ldots, x_{n-1}, x\right)-T_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)}{1 / n}$
$=n \cdot\left(T_{n}\left(x_{1}, \ldots, x_{n-1}, x\right)-T_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right)$

Task: Compute and plot the SC() for a few location estimators (i.e., the arithmetic mean and robust versions of it).

Cushny Data

As example, we use a historical small example data set from Student (1908):
> data(cushny, package="robustbase")
> plot(jitter(cushny), rep $(0,10)$, pch=23, cex=2, bg="light blue" $+\quad$ main = "'cushny' data ($\mathrm{n}=10$)", ylab="", yaxt = "n")
'cushny' data ($\mathrm{n}=10$)

\diamond	$\diamond \diamond \infty>$	\diamond	\diamond	\diamond
1	1	I	-	1
0	1	2	3	4
jitter(cushny)				

and we will "vary" the 10 -th observation $\left(x_{10}=4.6\right)$, i.e., draw $\mathrm{SC}_{9}\left(x, x_{1}, \ldots, x_{9}\right)$.

SC ()

In the accompanying Rescript, we define a short function SC() to compute the sensitivity curve; it is basically
${ }_{1}$ SC <- function (x, x. dat, EST, ...)
\{
\# Arguments: x : varying data point - as vector!

\#	x.dat: the $n-1$ given $x_{-} 1 \ldots x_{-n}$	
\#	$E S T$	$:$ function $(x, \ldots)\{x:=$ "sample" $\}$
\#	\ldots	: optional further arg.s to EST()

$\mathrm{n}<-\mathrm{n}-1+1$
\# when 'x' is a vector, compute T_n(x[i],...) for each
Tn <- supply (x, function (z) EST(c(x.dat, z), ...))
$\mathrm{n} *(\mathrm{Tn}-\operatorname{EST}(x . d a t, \ldots))$

SC (., cushny[-10])

and applied to the Cushny data,
> source("R/basics-defs.R")
> x <- -1:6
$>S C(x$, cushny $[-10]$, mean)
[1] $-2.2444-1.2444-0.2444 \quad 0.7556 \quad 1.7556$
> SC(x, cushny[-10], median)
$[1]-0.5-0.5-0.5 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$
> SC(x, cushny[-10], mean, trim $=0.20$)
$[1]-0.9048-0.9048-0.57140 .7619 \quad 0.7619 \quad 0.7619 \quad 0.7619 \quad 0.7619$
we see that the SC() function is linear for the mean and bounded for the median and a trimmed mean.

plot SC (., cushny[-10])

In order to plot these, we use the utility p.SCs(),
> p.SCs(cushny[-10])
Sensitivity Curves SC(.) for location estimates

plot SC (., cushny[-10]) — 2

p.SCs(., *) uses by default the following to versions of Huber location M-estimators, both of which behave remarkably. ${ }^{1}$
\#\# hubers() is in MASS -- computing '‘proposal 2'' HubS <- function (x, ...) hubers (x, ...) \$mu HubM <- function (x, ...) huberM (x, ...) \$mu

[^0] MASS and robustbase return a list structure.

plot SC (rnorm(20)))

Further examples of SC() s for simulated data
$>$ set.seed(12)
> p.SCs(scale(rnorm(20)))
Sensitivity Curves SC(.) for location estimates

plot SC (rnorm(50)))

Further examples of SC()s for simulated data
$>$ set.seed(21)
> p.SCs(scale(rnorm(50)))
Sensitivity Curves SC(.) for location estimates

plot SC ($\operatorname{rnorm}(200)$))

Further examples of SC()s for simulated data
$>$ set.seed(1959)
> p.SCs(scale(rnorm(200)), xlim=c $(-3,4))$
Sensitivity Curves SC(.) for location estimates

plot SC ("bizarre"))

A "bizarre" example (found in about a dozen rnorm(12) trials):
> x12 <- c (-182, -141, -74, -60, -40, 37,
$+\quad 40,53,56,64,87,160)$
> p.SCs(x12)

Sensitivity Curves SC(.) for location estimates

Questions on Section 1 - "Basics" ?

- Part 2 -
\mathbb{R}

Linear Models - Robustly

l.e., doing inference about

$$
\boldsymbol{y}=\boldsymbol{X} \cdot \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \boldsymbol{X} \in \mathbb{R}^{n \times p}
$$

Covering only parts of

1. finding $\hat{\boldsymbol{\beta}}$ robustly
2. Testing $H_{0}: \beta_{j}=0$ (or general $H_{0}: \boldsymbol{A} \cdot \boldsymbol{\beta}=\mathbf{0}$) robustly
3. Variable selection (model building) robustly
4. robust (residual) diagnostics

Remember:

$$
\mathrm{IF}()=\tilde{\mathrm{IF}}(\text { resid }) \times \tilde{\mathrm{IF}}(\boldsymbol{x})
$$

and M-estimators (Huber, including $\left.L_{1}\left(:=\arg \min _{\boldsymbol{\beta}} \sum_{i}\left|y_{i}-\boldsymbol{x}_{i}{ }^{\top} \boldsymbol{\beta}\right|\right)\right)$ only bound the influence of the residuals.

Robust LM with R

R: Standard $\operatorname{lm}()$ is for classical least squares. "Robust 1 m " in three flavors:

- rlm () from MASS ${ }^{1}$
- lmrob() from robustbase
- $\operatorname{lmRob}()$ from robust (Insightful)
${ }^{1}$ MASS $=$ "Recommended" R package: always installed

Robust LM with R- Overview

"Exercise tasks":

1. Get a feeling for robust "simple" regression, $p=2$, $\boldsymbol{x}_{i}=\left(1, x_{i}\right) \in \mathbb{R}^{2}$. \longrightarrow interactive demo.
2. Main importance of robust regression is not for $p=2$, but rather $p \approx 10,20,50$ or even higher!

Robust Simple LM with R

"Simple" regression: $p=2$:

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i} .
$$

1. Artificial example (residual plots in lecture notes $\approx \mathrm{p} .37$)
2. interactive "play" and demo

Simple robust LM - 1 -

1) The artificial example from the lecture notes:
> set.seed(050808) \#\# 40 observations in two groups of $30+10$
$>\mathrm{x} 1<-\operatorname{rnorm}(30,-2,1) ; \mathrm{y} 1<-\quad .6 * x 1+\operatorname{rnorm}(30) / 5$
$>\mathrm{x} 2<-\operatorname{rnorm}(10,2,1) ; \mathrm{y} 2<-4+.8 * x 2+\operatorname{rnorm}(10) / 5$
$>x<-c(x 1, x 2) \quad ; y<-c(y 1, y 2)$
$>\operatorname{plot}(\mathrm{y} \sim \mathrm{x}, \operatorname{main}=$ paste $(\mathrm{n} \mathrm{n}=\mathrm{"}$, length(x$))$)

$$
n=40
$$

> \#\# source("ftp://stat.ethz.ch/......../regr-defs.R")
> plot(y ~ x, ann=FALSE) ; title(paste("Artifical example, $n=$
> re <- Reg.Estimators(y ~ x)
> p.line.legend (re)

Artifical example, $\mathrm{n}=\mathbf{4 0}$

There are 7 lines which are which ?

Simple robust LM - 2 -

Interactively drag a point $\left(x_{i}, y_{i}\right)$ and watch the regression lines changing, using our R script, ftp://stat.ethz.ch/U/maechler/R/robust-tutorial/regDemo.R:
> source("ftp://stat.ethz.ch/..../regDemo.R")
> regDemo(8) \#\# n = 8 or
> regDemo(20) \#\# $\mathrm{n}=20$

```
robust LM for stackloss
> mSLr <- lmrob(formula = stack.loss ~ ., data = stackloss)
> summary(mSLr)
Call:
lmrob(formula = stack.loss ~ ., data = stackloss)
Weighted Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-10.5097 & -1.4382 & -0.0913 & 1.0250 & 7.2311
\end{tabular}
```

Coefficients:

Estimate	Std. Error t	value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
-41.5246	5.2978	-7.84	$4.8 \mathrm{e}-07$	$* * *$
0.9388	0.1174	7.99	$3.7 \mathrm{e}-07$	$* * *$
0.5796	0.2630	2.20	0.042	*
-0.1129	0.0699	-1.62	0.125	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Robust residual standard error: 1.91
Convergence in 17 IRWLS iterations

Imrob(.. stackloss) - 2nd part

Robustness weights:

```
observation 21 is an outlier with |weight| = 0 ( < 0.0048);
2 weights are ~}=1\mathrm{ . The remaining 18 ones are summarized as
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    0.122 0.876 0.943 0.872 0.980
```

Algorithmic parameters:

tuning.chi	bb tuning.psi	refine.tol	rel.tol	
$1.55 \mathrm{e}+00$	$5.00 \mathrm{e}-01$	$4.69 \mathrm{e}+00$	$1.00 \mathrm{e}-07$	$1.00 \mathrm{e}-07$

[.. . .

Let us look at the robustness weights more closely:
> round (weights(mSLr), 3)
[1] $0.8120 .8730 .6750 .1220 .9360 .8840 .971 \quad 1.000 \quad 0.9490 .9970 .988$
[13] 0.7750 .9490 .8830 .9820 .9980 .9940 .9740 .9360 .000
> which(weights(mSLr) < 0.2)
[1] 421
$\xrightarrow{[1]}$ One clear and one borderline outlier

Plot robust LM for stackloss

> sfsmisc::TA.plot(mSLr) \#\# slightly nicer than plot(mSLr)
T.A. plot of: Imrob(stack.loss ~ .)
sfsmisc::TA.plot(Im.res $=\mathrm{mSLr})$

robust vs. L.S. regression

The robust package (from Insightful's S-plus version) fosters idea to compare classical and robust fits
> fm.SL <- fit.models(list(Robust = "lmRob", LS = "lm"),

```
+ stack.loss ~ ., data = stackloss)
```

> (sfm.SL <- summary (fm.SL))
Calls:
Robust: lmRob(formula = stack.loss ~ ., data = stackloss)

Residual Statistics:

Min	1Q	Median	3Q	Max	
Robust:	-8.630	-0.6713	0.3594	1.151	8.174
LS:	-7.238	-1.7117	-0.4551	2.361	5.698

Coefficients:

		Value	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
Robust	(Intercept)	-37.65246	5.00256	-7.5266	$8.289 \mathrm{e}-07$
LS	(Intercept)	-39.91967	11.89600	-3.3557	$3.750 \mathrm{e}-03$
Robust	Air.Flow	0.79769	0.07129	11.1886	$2.914 \mathrm{e}-09$
LS	Air.Flow	0.71564	0.13486	5.3066	$5.799 \mathrm{e}-05$

robust vs. L.S. regression - 2nd part

```
summary(fit.models(...)) continued
[......................................]
```

Coefficients:

		Value	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
Robust	(Intercept)	-37.65246	5.00256	-7.5266	$8.289 \mathrm{e}-07$
LS	(Intercept)	-39.91967	11.89600	-3.3557	$3.750 \mathrm{e}-03$
Robust	Air.Flow	0.79769	0.07129	11.1886	$2.914 \mathrm{e}-09$
LS	Air.Flow	0.71564	0.13486	5.3066	$5.799 \mathrm{e}-05$
Robust	Water.Temp	0.57734	0.17546	3.2905	$4.318 \mathrm{e}-03$
LS	Water.Temp	1.29529	0.36802	3.5196	$2.630 \mathrm{e}-03$
Robust	Acid.Conc.	-0.06706	0.06512	-1.0297	$3.176 \mathrm{e}-01$
LS	Acid.Conc.	-0.15212	0.15629	-0.9733	$3.440 \mathrm{e}-01$

Residual Scale Estimates:
Robust: 1.837 on 17 degrees of freedom
LS: 3.243 on 17 degrees of freedom

Multiple R-Squared:
Robust: 0.6205
LS: 0.9136

Questions on Section 2 - "Linear Models" ?

- Part 3 -

Generalized Linear Models

We will only consider

- Logistic/Binomial regression
- Poisson regression (for count data)

Task: One GLM for each situation, including tests

GLMs - Logistic Regression

Logistic: Binary response $Y=0$ or 1 : occurence of "vaso constriction" reflex (Finney, 1947)
> data(vaso)
> \#\# classical :
> v.cla <- glm(Y ~ log(Volume) + log(Rate), family=binomial, da
> \#\# robust :
> v.r <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, da
> \#\# quite different:
$>$ cbind (class $=\operatorname{coef}(\mathrm{v} . \mathrm{cla}), \quad$ robust $=\operatorname{coef}(\mathrm{v} . r))$

	class	robust
(Intercept)	-2.875	-21.37
\log (Volume)	5.179	34.82
\log (Rate)	4.562	27.87

GLMs - Logistic - 2 -

We can do inference: classical and robust > summary(v.cla)\# indication of clear effect

Call:

```
glm(formula = Y ~ log(Volume) + log(Rate), family = binomial,
    data = vaso)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-1.453	-0.611	0.100	0.618	2.278

Coefficients:

$$
\text { Estimate Std. Error } z \text { value } \operatorname{Pr}(>|z|)
$$

(Intercept) $-2.88 \quad 1.32-2.18 \quad 0.0295 *$

\log (Volume)	5.18	1.86	2.78
0.0055	**		

\log (Rate) $4.561 .842 .48 \quad 0.0131$ *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1)

GLMs - Logistic - 3 -

Robust inference: summary quite different:
> summary(v.r) \# explanatory variables don't predict at all?
Call: glmrob(formula = Y ~ log(Volume) + log(Rate), family = binomial,

Coefficients:
Estimate Std. Error z-value $\operatorname{Pr}(>|z|)$

(Intercept)	-21.4	14.1	-1.51	0.13
\log (Volume)	34.8	23.6	1.47	0.14
\log (Rate)	27.9	18.0	1.55	0.12

Robustness weights w.r * w.x:
2 observations c(4,18) are outliers with |weight| <= 0.00023 (< 0.002
36 weights are ${ }^{\sim}=1$. The remaining one are 24
0.695

Number of observations: 39
Fitted by method 'Mqle' (in 15 iterations)
(Dispersion parameter for binomial family taken to be 1)

GLMs - Logistic - 4 -

```
Robust inference: Compare with 0 model:
> anova(update(v.r, . ~ 1), v.r)
Robust Wald Test Table
Model 1: Y ~ 1
Model 2: Y ~ log(Volume) + log(Rate)
Models fitted by method 'Mqle'
    pseudoDf Test.Stat Df Pr(>chisq)
1
    38
2 36
    2.69 2
    0.26
```


Poisson GLM - Epilepsy Data

```
> data(epilepsy)
> str(epilepsy[,6:9]) ## will only use (Ysum ~ (Base, Age, Trt)
'data.frame': 59 obs. of 4 variables:
    $ Base: int 11 11 6 8 66 27 12 52 23 10 ...
    $ Age : int 31 30 25 36 22 29 31 42 37 28 ...
    $ Trt : Factor w/ 2 levels "placebo","progabide": 1 1 1 1 1 1 1 1 1 1
    $ Ysum: int 14 14 11 13 55 22 12 95 22 33 ...
```

Ysum is the number epileptic attacks of 4 different kinds. They are modeled to depend on a Base number, patient Age and a treatment Trt (drug or placebo).

Epilepsy Data PLot

> with(epilepsy, pairs(cbind(Ysum, Base, Age), col= Trt, pch= 20

GLMs - Poisson Regression

> summary (mi <- glmrob(Ysum ~ Age + Base*Trt, family=poisson, da
Call: glmrob(formula = Ysum ~ Age + Base * Trt, family = poisson, data

Coefficients:

| | Estimate | Std. Error | z-value | $\operatorname{Pr}(>\|\mathrm{z}\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 2.04495 | 0.15217 | 13.44 | $<2 \mathrm{e}-16 * * *$ |
| Age | 0.01600 | 0.00468 | 3.42 | $0.00064 * * *$ |
| Base | 0.02124 | 0.00103 | 20.64 | $<2 \mathrm{e}-16 * * *$ |
| Trtprogabide | -0.33278 | 0.08630 | -3.86 | $0.00012 * * *$ |
| Base:Trtprogabide | 0.00299 | 0.00123 | 2.44 | $0.01462 *$ |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robustness weights w.r * w.x:
27 weights are ${ }^{\sim}=1$. The remaining 32 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}0.0829 & 0.3440 & 0.5620 & 0.5380 & 0.7610 & 0.9640\end{array}$

Number of observations: 59
Fitted by method 'Mqle' (in 13 iterations)

GLMs - Poisson Regression - Tests

Is the interaction Base:Trt necessary ?
\longrightarrow Test $H_{0}: \beta_{k}=0$?
> \#\# model withOUT interaction:
> m2 <- glmrob(Ysum ~ Age + Base + Trt, family=poisson, data=epi
> anova(m2, m1, test = "Wald") \# P = . 015
Robust Wald Test Table

Model 1: Ysum ~ Age + Base + Trt
Model 2: Ysum ~ Age + Base * Trt
Models fitted by method 'Mqle'

```
    pseudoDf Test.Stat Df Pr(>chisq)
1 55
254 5.96 1 0.015 *
```

Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ', 1

GLMs - Poisson - Tests - 2 -

Is the interaction Base:Trt necessary ?
Quasi-Deviance ("QD") (Cantoni \& Ronchetti) test instead of "Wald" suggest a different story again:
> anova(m2, m1, test = "QD")
Robust Quasi-Deviance Table

```
Model 1: Ysum ~ Age + Base + Trt
Model 2: Ysum ~ Age + Base * Trt
```

> \#\# Compare:
> sapply(c("Wald", "QD", "QDapprox"),
$+\quad$ function(T) anova(m2, m1, test $=T) \$ P[2])$
Wald QD QDapprox
$0.01462 \quad 0.06598 \quad 0.01462$

Questions on Section 3 - "Generalized LM's" ?

- Part 4 -

Multivariate Location \& Scatter

Estimation "location" and "scatter" in p-dimensional, e.g., estimation of μ and Σ.
Tasks: similar to regression,

1. $p=2$ is "easy", and nice for visualization
2. For $p \geq 3$, and " p moderately large", robustness is harder to achieve and more important

$p=2$-dimensional Location \& Scatter

Using a famous kind of data, body and brain weights of different animal species:
> data(Animals, package ="MASS")
> brain <- Animals[c(1:24, 26:25, 27:28),] \# 28 x 2
> head(brain)

	body	brain
Mountain beaver	1.35	8.1
Cow	465.00	423.0
Grey wolf	36.33	119.5
Goat	27.66	115.0
Guinea pig	1.04	5.5
Dipliodocus	11700.00	50.0

> cR <- covMcd(log(brain))
> \#\# ''the outliers')
> which (outL <- cR\$mcd.wt == 0)
Dipliodocus Human Triceratops Rhesus monkey Brachiosaurus

$p=2$-dimensional Location \& Scatter

> plot(brain, log="xy")
> text(brain[outL,], rownames(brain) [outL], cex = .75, pos = 3)


```
p=2-dimensional Location & Scatter
> plot( covMcd( log(brain) ), which = "tolEllipsePlot",
    classic = TRUE)
```

Tolerance ellipse (97.5\%)

Robust vs. classical Mahalanobis Distances

This is The plot that also applies to high dim. p :
> plot(covMcd(log(brain)), which = "dd")
Distance-Distance Plot

higher-dimensional

> data(pulpfiber)
> pairs(pulpfiber, gap=.1) \#\# 2 blocks of 4 ..

higher-dimensional

> data(pulpfiber)
> pairs(pulpfiber, gap=.1) \#\# 2 blocks of 4 ..

higher-dimensional

> c1 <- cov(pulpfiber) ; cR <- covMcd(pulpfiber) \#\# how differen
$>$ symnum(cov2cor(c1))

```
X1 X2 X3 X4 Y1 Y2 Y3 Y4
```

X1 1
X2 * 1
X3 , , 1
$\mathrm{X} 4, \quad, \quad 1$
Y1 , , . 1
Y2 . , . + * 1
Y3 , , + B $\quad 1$
Y4 , , \quad B $+B 1$
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+’ 0.9 '*' 0.95 ' B ’ 1
> symnum (cov2cor (cR\$cov))

```
X1 X2 X3 X4 Y1 Y2 Y3 Y4
```

X1 1
$\mathrm{X} 2+1$
X3 , + 1
X4 + * , 1
Y1 , + , * 1

higher-dimensional

> sfsmisc::mult.fig(4, main = "plot(covMcd(pulpfiber), . \"all\
> plot(cR, type = "all") ; par (op)
plot(covMcd(pulpfiber), . "all")

Chisquare QQ-Plot

Questions on Section 4 - "Multivariate Analysis" ?

[^0]: ${ }^{1}$ We need these definitions here because the corresponding functions in

