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High-dimensional data
Riboflavin production with Bacillus Subtilis
(in collaboration with DSM (Switzerland))
goal: improve riboflavin production rate of Bacillus Subtilis
using clever genetic engineering

response variables Y € R: riboflavin (log-) production rate
covariates X € RP: expressions from p = 4088 genes
sample size n= 115, p>n

Y versus 9 “reasonable” genes

gene expression data




general framework:
Zy,...,2Znii.d. or stationary
dim(Z;)) > n

for example:
Zi=(X;,Y)), Xi € RPY; € R: regression with p > n
Zi = (X, Yi), Xi e RP,Y; € {0, 1}: classification with p > n

numerous applications:
biology, imaging, economy, environmental sciences, ...



High-dimensional linear models

P .
Yi=a+> XD e, i=1,..,n
=

p>n
inshort: Y = X3 + ¢

goals:
» prediction, e.g. w.r.t. squared prediction error

» variable selection
i.e. estimating the effective variables
(having corresponding coefficient # 0)



Prediction

binary lymph node classification using gene expressions:
a high noise problem
n = 49 samples, p = 7130 gene expressions

despite that it is classification: P[Y = 1|X = x] = E[Y|X = x]
~» P(x) via linear model; can then do classification
cross-validated misclassification error (2/3 training; 1/3 test)
Lasso | LoBoosting | FPLR | Pelora | 1-NN | DLDA | SWVM

21.1% 17.7% ‘35.25% 27.8% | 43.25% | 36.12% | 36.88%

best 200 genes (Wilcoxon test)

with variable selection " : .
no additional variable selection
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despite that it is classification: P[Y = 1|X = x] = E[Y|X = x]
~» P(x) via linear model; can then do classification
cross-validated misclassification error (2/3 training; 1/3 test)

Lasso | LoBoosting | FPLR | Pelora | 1-NN | DLDA | SWVM

21.1% 17.7% ‘35.25% 27.8% | 43.25% | 36.12% | 36.88%

best 200 genes (Wilcoxon test)

with variable selection " : .
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from a practical perspective:
if you trust in cross-validation: can validate how good we are
i.e. prediction may be a black box, but we can evaluate it!



Variable selection: Motif regression

for finding HIF 1« transcription factor binding sites in DNA seq.
Mdller, Meier, PB & Ricci

= & o ¥ w» ® ©~ % o @2 ¢

Y; € R: univariate response measuring binding intensity of
HIF1« on coarse DNA segment i (from CHIP-chip experiments)
X=X, xP)y e re:

. I
X,.(” = abundance score of candidate motif j in DNA segment i
(using sequence data and computational biology algorithms,
e.g. MDSCAN)



question: relation between the binding intensity Y and the
abundance of short candidate motifs?

~» linear model is often reasonable
“motif regression” (Conlon, X.S. Liu, Lieb & J.S. Liu, 2003)
Y=X6+¢, n=287, p=195

goal: variable selection
~ find the relevant motifs among the p = 195 candidates



question: relation between the binding intensity Y and the
abundance of short candidate motifs?

~» linear model is often reasonable
“motif regression” (Conlon, X.S. Liu, Lieb & J.S. Liu, 2003)

Y=X6+¢, n=287, p=195

goal: variable selection
~ find the relevant motifs among the p = 195 candidates

from a practical perspective:

not easy to evaluate how good we are!

~» it is highly desirable to

assess uncertainty, assign relevance or significance
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High-dimensional linear model

Y=XB+¢ plarge;orp>n

we need to regularize...
and there are many proposals
» Bayesian methods for regularization
» greedy algorithms: aka forward selection or boosting
» preliminary dimension reduction
> ...

e.g. 2'650°000 entries on Google Scholar for
“high dimensional linear model” ...



Penalty-based methods

if true Biue = (0 is sparse w.r.t.

> ||8°)lo = number of non-zero coefficients
~> penalize with the || - ||o-norm:
argming(n—1 Y — X312 + \||B]lo), e.g- AIC, BIC
~» computationally infeasible if p is large (2P sub-models)

> 8% = 0 167)
~» penalize with the || - ||1-norm, i.e. Lasso:
argming(n~|Y — XB|? + Al|6[1)
~> convex optimization:
computationally feasible and very fast for large p



The Lasso (Tibshirani, 1996)

Lasso for linear models

B(A) = argming(n~'[[Y = XBIF + A [I18]l1 )
\26" ~——

=2 161

~» convex optimization problem
> Lasso does variable selection
some of the 3;(\) = 0
(because of “¢1-geometry”)
» (()\) is a shrunken LS-estimate



more about “/4-geometry”

equivalence to primal problem

Bprimat(R) = argming. 5 < gllY — XB15/n,

with a one-to-one correspondence between A and R which
depends on the data (Xi, Y1),...,(Xn, Yn)
[such an equivalence holds since

> ||Y — XB||3/n is convex in 3
» convex constraint ||3]]1 < R
see e.g. Bertsekas (1995)]



p=2

left: ¢4-“world”

residual sum of squares reaches a minimal value (for certain
constellations of the data) if its contour lines hit the ¢1-ball in its
corner

~ 1 =0



l>-“world” is different
Ridge regression,
Briase() = argmin (1Y = Xg[/n-+ A1 ).
equivalent primal equivalent solution

Bridgesprimal (R) = argming. o allY — XB|[5/n,
with a one-to-one correspondence between A and R

‘



{g-penalized estimator:

B (M) = argmin, (uv XB|3/n + Aumz),

convex optimization < 1<g<oo
variable selection; "sparse” < 0<g<1

~» Lasso (g = 1) is the “only” computationally feasible method
doing variable selection



Orthonormal design

Y=X3+¢ X'X=1
Lasso = soft-thresholding estimator
BN =sign(Z)(1Z] - M/2)+, Z = (XTY);,
~~
=OLS
ﬂj(A) = gsoft(Zj)a

[follows from more general characterization, see later]




Lasso for prediction: Xpew/3())



Lasso for prediction: Xpew/3())

Lasso for variable selection:
8(\) = {J; Bi(n) #0}
for  Sp={j;p° #0}

no significance testing involved
it's convex optimization only!

(and that can be a problem... see later)



Prediction (with the Lasso)

choose A via cross-validation (e.g. 10-fold)

from a practical perspective:
if you trust in cross-validation: can validate how good we are
(need double cross-validation if A = Agy)
i.e. prediction may be a black box, but we can evaluate it!
binary lymph node classification using gene expressions:
a high noise problem
n = 49 samples, p = 7130 gene expressions
cross-validated misclassification error (2/3 training; 1/3 test)

Lasso | LpBoosting | FPLR | Pelora | 1-NN | DLDA | SVM
211% | 17.7% | 3525% | 278% | 43.25% | 36.12% | 36.88%

best 200 genes (Wilcoxon test)

with variabl lection e ) !
th variable selectio no additional variable selection

consistency and optimality (oracle inequality) for prediction
(see later)



Variable selection (with the Lasso): Motif regression
for finding HIF1« transcription factor binding sites in DNA seq.

Y; € R: univariate response measuring binding intensity on
coarse DNA segment /i (from CHIP-chip experiments)

X,(j) = abundance score of candidate motif j in DNA segment i

p .
variable selection in linear model Y; = 6o + Y 4iX” + ¢,
=1
i=1,....n=287, p=195

~» Lasso selects 26 covariates and R? ~ 50%
i.e. 26 interesting candidate motifs



Variable selection (with the Lasso): Motif regression
for finding HIF1« transcription factor binding sites in DNA seq.

Y; € R: univariate response measuring binding intensity on
coarse DNA segment /i (from CHIP-chip experiments)

X,(j) = abundance score of candidate motif j in DNA segment i

p .
variable selection in linear model Y; = 6o + Y 4iX” + ¢,
=1
i=1,....n=287, p=195

~» Lasso selects 26 covariates and R? ~ 50%
i.e. 26 interesting candidate motifs

and hence report these findings to the biologists...
really? do we trust our selection algorithm?
how stable are the findings?



Some theory for variable selection with Lasso

an older formulation:
Theorem (Meinshausen & PB, 2004 (publ: 2006))

» sufficient and necessary neighborhood stability condition
on the design X; see also Zhao & Yu (2006)

> p = ppis growing with n

pn = O(n%) for some 0 < a < oo (high-dimensionality)

| Strue,n| = |So,n| = O(n*) for some 0 < k < 1 (sparsity)

the non-zero j;’s are outside the n—'/2-range

Y, XU)s Gaussian (not crucial)

Then: if A\ = \, ~ const.n=1/279/2 (0 < § < 1/2),

vy vV VY

P[S(A\) = So] = 1 - O(exp(~Cn'~%)) (n— o)
1 even for relatively small n

Q



Problem 1:

Neighborhood stability condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix exhibits
“strong linear dependence” (in terms of sub-matrices)

if it fails and because of necessity of the condition
= Lasso is not consistent for selecting the relevant variables



neighborhood stability condition < irrepresentable condition
(Zhao & Yu, 2006)
XX - %

active set So = {j; 5 # 0} = {1,..., 80} consists of the first 5o
variables; partition

s TS LS
Yses  Lsesg

irrep. condition : |Tgc 5. X o sign(fBy, ..., 0s) < 1
S5:50785,5 0

not easy to get insights when it holds...



Problem 2: Choice of \

for prediction oracle solution

p
Aopt = ArgMIN,E[(Y =~ Bi(A) XW)?]
=1

P[S(Aopt) = So] < 1 (n— o)  (or = 0if pp — 00 (1 — 0))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2006)



“Problem 3”: small non-zero regression coefficients
(i.e. high noise level)

we cannot reliably detect variables with small non-zero
coefficients

but (under some conditions)
we can still detect the variables with large regression effects



If neighborhood stability condition fails to hold (problem 1)

under compatibility conditions on the design X
“typically” much weaker ass. than neighborhood stability

for suitable A = A\, and with large probability

p
18 =8l =18 - BiI< < log(p)so/n
J=1 depending on X,o2
nence:  max |3 3 < |13~ s < Cv/GB{BSHT

and if mm{\ﬂ/\; B; # 0} > Cy/log(p)so/n
j
then jj#0forallje Sy, ie.S2S



with large probability

(p)
U



with large probability
S 0 Sy

8| < O(min(n, p)) =_ O(n)

if p>n

T

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal Ay

A

S( )\opt) =2 SO



with large probability
S 0 Sy

8| < O(min(n, p)) =_ O(n)

if p>n

T

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal Ay

A

S( )\opt) =2 SO

~> Lasso as an
excellent screening procedure

i.e. true active set is contained in estimated active set from
Lasso



Lasso screening is easy to use,
~——

prediction optimal tuning
computationally efficient, and statistically accurate

O(npmin(n,p))



Sso = 3, p= 1000, n = 50; 2 independent realizations
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Motif regression (p = 195, n = 287)
26 selected covariates when using Acy

original data
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L L I

coefficients
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I

o
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[ 50 100 150 200

variables

presumably: the truly relevant variables are among the 26
selected covariates



A first conclusion for Lasso

Lasso is a good screening method: with high probability

S$08

and two or multi-stage methods can be used )
~» re-estimation on much smaller model with variables from S



A first conclusion for Lasso

Lasso is a good screening method: with high probability

S$08

and two or multi-stage methods can be used )
~» re-estimation on much smaller model with variables from S

» OLS on S with e.g. BIC variable selection
» thresholding coefficients and maybe OLS re-estimation
» adaptive Lasso (Zou, 2006)



Adaptive Lasso (zou, 2006)

re-weighting the penalty function

|5j |

‘ /n/tj‘

3 = argming(||Y — XB15/n + )\Z

Binit; from Lasso in first stage (or OLSif p < n)

Zou (2006)

for orthogonal design,

if Binit = OLS:

Adaptive Lasso = NN-garrote
~> less bias than Lasso




So =3, p= 1000, n=50
same 2 independent realizations from before

Adaptive Lasso Adaptive Lasso
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Motif regression: n =287, p =195

Lasso Adaptive Lasso
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trivial property
Binitj =0= B;=0
since

|5 |

| /mt,/|

3 = argming(||Y — Xﬁl!z/”+)‘z

another motif regression (linear model): n = 2587, p = 666
Lasso 1-Step 2-Step

test set squared prediction error  0.6193 0.6230 0.6226
number of selected variables 91 42 28

~» substantially sparser model fit with
twice-iterated adaptive Lasso (three-stage procedure)



Some perspective from theory

Adaptive Lasso is consistent for variable selection under
typically weaker assumptions than irrepresentable condition

necess. and suff. for Lasso



Computation and KKT for Lasso

important characterization of the Lasso solution 8= B()\)

Lemma
Denote: G(B) = —2XT(Y — XB)/n (gradient of n=1||Y — X33

Then: a necessary and sufficient condition for Lasso solution

Gj(B) = —sign(B)A if B3; # 0,
1Gi(B)| < Xif3; = 0.

Moreover:

if Lasso solution is not unique (e.g. if p > n) and G,-(B) < Afor
some solution 3, then 3; = 0 for all Lasso solutions

i.e. the zeroes are unigue (and hence estimated variable
selection is “well-defined”)



Karush-Kuhn-Tucker (KKT) conditions

QA(B) = IY = XB[13/n+ A5l
for a minimizer 3()\) of Qx(-): A
necessary and sufficient that the subdifferential at 5(\) is zero
case |: jth component Bj()\) #0
~ ordinary first derivative at 3(\) has to be zero:

oQ\(B)
a5;

l5—a0y = —2X] (Y = XB) + Asign(8)|5_») = O
<~

Gi(B(N) = —2X] (Y — XB(X) = —Asign(B;(N)) if Bj(A) # 0



case II:if 3j(\) =0
~ the subdifferential at 5(\) has to include the zero element,
i.e.:

Gi(3(\)) + \e = 0 for some e € [-1, 1], and if 3;(\) = 0.
&

GBI < Aif B(A) = 0.



Path-following computation

goal: compute the Lasso-estimator 3(\) for many values of A
e.g. when using cross-validation and searching for optimal A

regularized solution path over all values of X is piecewise linear
computat. complexity of whole path: O(npmin(n, p))\:/ O(p)

p>n

riboflavin production example: n =71, p = 4088




Coordinatewise optimization and shooting algorithms
general idea is to compute a solution 3()giq.x) and use it as a
starting value for the computation of Q(Agrid,kq)

N— —

<)‘grid,k
Coordinatewise algorithm

5O ¢ RP an initial parameter vector. Set m = 0.

REPEAT:
Increase m by one: m «— m+1.
Forj=1,...,p:

it |Gi(BT ) < A: set g™ =0,
P () : (m-1)
otherwise: 3, = argmlnﬁjQ,\(ﬁH ),
[—j: parameter vector setting jth component to zero

ﬁi’}q_”: parameter vector which equals 3(™=1) except for jth
component equalling (;
UNTIL numerical convergence



for squared error loss: explicit up-dating formulaa

Gy(8) = —2X] (y — XB)

gm _ sign(Z)(|Z)] — A/2)+
7 = R

2

Z =X/ (Y-Xp3j), £=n"X"X

)

~» componentwise soft-thresholding

this is very fast if true problem is sparse (can do non-systematic
cycling, visiting mainly the active (non-zero) components)

riboflavin example, n=71, p=4088 0.33 secc. CPU using
glmnet-package in R (Friedman, Hastie & Tibshirani, 2008)



The Group Lasso (Yuan & Lin, 2006)

high-dimensional parameter vector is structured into g groups
or partitions (known a-priori):

G1,...,G9 C{1,...,p}, disjointand Uy Gg = {1,...,p}

corresponding coefficients: gg = {f;; j € G}



Example: categorical covariates
XM, ..., X(P) are factors (categorical variables)
each with 4 levels (e.g. “letters” from DNA)

for encoding a main effect: 3 parameters

for encoding a first-order interaction: 9 parameters

and soon ...

parameterization (e.g. sum contrasts) is structured as follows:
» intercept: no penalty

main effect of X(1): group G¢ with df =3

main effect of X(®): group G, with df = 3

>
>
> ...
» first-order interaction of X(") and X®): G, 1 with df = 9
>

often, we want sparsity on the group-level
either all parameters of an effect are zero or not



often, we want sparsity on the group-level
either all parameters of an effect are zero or not

this can be achieved with the Group-Lasso penalty

q

A af
> s(dfy) [|Bg,l2

g=1

N

II-112

typically s(dfg,) = |/ dfg, so that s(dfg, )8, |2 = O(dfy)



properties of Group-Lasso penalty
» for group-sizes |G4| = 1 ~» standard Lasso-penalty

» convex penalty ~» convex optimization for standard
likelihoods (exponential family models)

> either (Gg(\)); =0or#0foralljeg
» penalty is invariant under orthonormal transformation

e.g. invariant when requiring orthonormal parameterization
for factors



Some aspects from theory

“again”:
» optimal prediction and estimation (oracle inequality)

> group screening: 5> with high prob.

So
ne
set of active groups
most interesting case:
> Gj's are “large”
> (g;'s are “smooth”



example: high-dimensional additive model
Y => f(XW)+e
j=1

and expand fi(x) =>7_, g9 BY  (x)
— =~

(6g;)x basis fct.s
fi(-) smooth = “smoothness” of g,



Computation and KKT

criterion function

G
B Zpﬁ Xi, Y] "’)‘23 dfg)||Bgll2;

:1 —1
loss fct. g

loss function pg(.,.) convex in 3
KKT conditions:
Bg,

155,12
IVa(B)gll2 < As(dfg) if gy = O.

Vp(B)g + As(dfy) = 0if Bg, # 0 (not the 0-vector),



Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Lasso: (81, B2 = B, ..., 6 = 6(0 ---aﬁpzﬂx(no))

:
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generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
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Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Group Lasso: (B, = Bgi: B, = By s+ -+ Bg; = B -+ Baq)

.



Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Group Lasso: (8g,, g, = 85, -, 8¢, = B, B = BL))

,



for Gaussian log-likelihood (squared error loss):
blockwise up-dates are easy and closed-form solutions exist
(use KKT)

for other loss functions (e.g. logistic loss):

blockwise up-dates: no closed-form solution

~>

strategy which is fast: improve every coordinate/group
numerically, but not until numerical convergence

(by using quadratic approximation of log-likelihood function for
improving/optimization of a single block)

and further tricks... (still allowing provable numerical
convergence)



How fast?

logistic case: p = 108, n=100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)



How fast?

logistic case: p = 108, n=100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)

we can easily deal today with predictors in the Mega’s
i.e. p~ 105 — 107



DNA splice site detection: (mainly) prediction problem
DNA sequence

...ACGGC... EEE QQ Irr  ...AAC...
potential donor site

3 positions exon GC 4 positions intron

response Y € {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16'384)
data:

training: 5610 true splice sites
5610 non-splice sites
plus an unbalanced validation set

test data: 4'208 true splice sites
89717 non-splice sites



logistic regression:

log <1€(/)o(()x)> = [y + main effects + first order interactions + . ..

use the Group-Lasso which selects whole terms
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» mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

» no interaction among exons and introns (with Group Lasso
method)

» no second-order interactions (with Group Lasso method)



predictive power:
competitive with “state to the art” maximum entropy modeling
from Yeo and Burge (2004)

correlation between true and predicted class
Logistic Group Lasso 0.6593
max. entropy (Yeo and Burge) | 0.6589

our model (not necessarily the method/algorithm) is simple and
has clear interpretation



The sparsity-smoothness penalty (SSP)

(whose corresponding optimization becomes again a
Group-Lasso problem...)

for additive modeling in high dimensions

p .
Yi=> t0) +ei(i=1,...,n)
j=1
fi : R — R smooth univariate functions
p>n



in principle: basis expansion for every f(-) with basis functions
BY ... BY where m=0(n) (ore.g. m= O(n'/?))
j=1,...,p
~ represent
p p m
j=1 j=1 k=1
~» high-dimensional parametric problem

and use the Group-Lasso penalty to ensure sparsity of whole
functions



drawback:

does not exploit smoothness

(except when choosing appropriate m which is “bad” if different
f's have different complexity)

when using a large number of basis functions (large m) for
achieving a high degree of flexibility
~» need additional control for smoothness



Sparsity-Smoothness Penalty (SSP)
(Meier, van de Geer & PB, 2008)

o
A Z 1513 + A2 2(£)
R(1) = [ (1 (0)ax

where £, = (f(X?),..., ;(x¥)T )
~» SSP-penalty does variable selection (f; = 0 for some j)

and SSP-penalty is “oracle optimal”



for additive modeling:

p p
By o =argming (1Y = ST6B+ M Y0 \/I61B+ A2P(f)
j=1 j=1

assuming f; is twice differentiable

~ solution is a natural cubic spline with knots at X,.(j)
~ finite-dimensional parameterization with e.g. B-splines:

RRA RN

nxm mxi



penalty becomes:

o
M YA IIZ + 2R (f)

~
-1

= A 57 B,'TB/‘ i+ X \Q,/_/ Bj
— ——
=1 \ 5 integ. 2nd derivatives

M*o

= N BT (T +29)

1

~.
Il

~ re-parameterize (3; = [i(\2) = R;3;, RjTRj = A = Ai(A2)
(Choleski)
penalty becomes

P
MY 1Bl

depending on A,

i.e., a Group-Lasso penalty



HIF1«a motif additive regression
for finding HIF1« transcription factor binding sites on DNA
sequences

n=287,p=196

additive model with SSP has ~ 20% better prediction
performance than linear model with Lasso

bootstrap stability analysis: select the variables (functions)
which have occurred at least in 50% among all bootstrap runs
~» only 2 stable variables /candidate motifs remain

Partial Effect
06 -04 -02 00 02 04 06 08
I I I I I I I I

ﬁ/_

T LU L L R
75 85 95 105 115 125 135 145 80 90 100 110 120 130 140 150
Motit.P1.6.23 Motif.P1.6.26

Partial Effect
06 -04 -02 00 02 04 06 08
I I I I I I




right panel: variable corresponds to a true, known motif

variable/motif corresponding to left panel:

good additional support for relevance (nearness to
transcriptional start-site of important genes, ...)
ongoing validation with Ricci and Krek labs, ETH Zurich



P-values for high-dimensional regression

Motif regression
for finding HIF1« transcription factor binding sites in DNA seq.

variable selection in linear model Y = X3 + ¢,
n=287, p=195

~» Lasso selects 26 covariates and R? ~ 50%
i.e. 26 interesting candidate motifs
and hence report these findings to the biologists...
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P-values for high-dimensional regression

Motif regression
for finding HIF1« transcription factor binding sites in DNA seq.

variable selection in linear model Y = X3 + ¢,
n=287, p=195

~» Lasso selects 26 covariates and R? ~ 50%
i.e. 26 interesting candidate motifs
and hence report these findings to the biologists...

really?
do we trust our selection algorithm?
how stable are the findings?



coefficients

0.20

0.15
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0.05

0.00

estimated coefficients 3(A\cv)

original data

variables

200



stability check: subsampling with subsample size |n/2|
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aaaaaaaaaaaa

~» only 2 “stable” findings TR iee TozEo-

(# 26) - e
one variable (o): CaTGe
corresponds to true, known motif R

other variable (o): good additional support for relevance
(nearness to transcriptional start-site of important genes, ...)
ongoing biological validation with Ricci lab (ETH Zurich)

and we would like to have a P-value!



P-values (Meinshausen, Meier & PB, 2008)

for simplicity: focus on P-values for regression coefficients
HD . gi=0

p .
Y,-:(aJF)ZﬁjX,.U)Jrg,- (i=1,...,n), p>n
j=1



A first idea: sample splitting with sub-samples of sizes |n/2|

related to subsampling with sub-sample size |n/2]

» select variables on first half of the sample ~ S
» compute OLS for variables in § on second half of the

sample .
~+ P-values PY) based on Gaussian linear model

ifjeS: PU) from t-statistics

ifj¢S: PO =1 (ie.if 3V =0)
Bonferroni-corrected P-values:

PY) = min(PY) - 8], 1)

~ (conserv.) familywise error control with
PO (j=1,....p)
(Wasserman & Roeder, 2008)



this is a “P-value lottery”
motif regression example: p = 195, n = 287

adjusted P-values for same important variable
over different random sample-splits
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this is a “P-value lottery”
motif regression example: p = 195, n = 287

adjusted P-values for same important variable
over different random sample-splits

o _
5]
e
]

e
<

FREQUENCY

r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

ADJUSTED P-VALUE

in addition: bad “efficiency”
~» improve by aggregating over many sample-splits



Multi sample-split P-values and aggregation

run the sample-splitting procedure B times:

P-values: PV . ... ) pv

corr,1? corr,B

(assuming a Gaussian linear model with fixed design)

goal: ' ‘
aggregation of pY) pu)

corr,1°>** > " corr,B

to a single P-value Pgl)m
., PY

corr,B

problem: dependence among pY)

corr,17 *



define

QD) = 9 (PY. /7% b=1,...B)

corr,

emp. ~y-quantile fct.

e.g: v = 1/2, aggregation with the median
~» (conserv.) familywise error control for any fixed value of ~

what is the best v? it really matters
~» can “search” for it an correct with an additional factor



“adaptively” aggregated P-value:
Pf(i{l)al = (1 —log(vmin)) - _inf _QY(y)
'YE(VminJ)

Q) = ay(Pey

corr,b

/v b=1,...B)

~ reject H(()j): Bi=0 «— Pglalﬁa

PY) equals roughly a raw P-value based on sample size | n/2],
multiplied by

afactor ~ (5-10)-|5|
(which is to be compared with p)



for familywise error rate (FWER) =
[P[at least one false positive selection]

Theorem (Meinshausen, Meier & PB, 2008)
assumptions: Gaussian linear model (with fixed design) and

> lim,_.. P[S D 8] =1 screening property
» |S| < |n/2] sparsity property
Then:

Pf(ifl)al’s yield asymptotic FWER control

lim sup P(ngl Piy <o) < a

n—oo

i.e. (conservative) familywise error control



False discovery rate (FDR) (Benjamini & Hochberg, 1995)

based on ordered Pﬁt'l)al’s from before
~» control of FDR for multiple testing of regression coefficients
with p > n

(Meinshausen, Meier & PB, 2008)



assumptions for selector S:
are satisfied for

» Lasso
e assuming compatibility conditions on the design X
e assuming sparsity of true regression coefficients

» [,Boosting, Sure Independence Screening, PC-algorithm,...
e assuming reasonable conditions on the design
e assuming sparsity of true regression coefficients



Simulations for FWER: p = 1000, n = 100
design matrix from multivariate Gaussian with ¥ = 0.5/l
signal to noise ratio € {0.25,1,4, 16}

Lasso with CV
- MM_:

MEAN( TRUE POSITIVES )

T T
0.15 0.20

P(FALSE POSITIVES > 0)

multi sample-split method (M) has
» much better error control than single sample-split method
» (slightly) more power than single split method



Motif regression

p =195, n=287 :
for & = 0.05, only one variable/motif j remains

PO —0.0059 (= 0.59%)

and also with FDR control: only this one variable



Motif regression

p =195 n=287 y
for & = 0.05, only one variable/motif j remains

PO —0.0059 (= 0.59%)
and also with FDR control: only this one variable
in this application:

we are rather concerned about false positive findings
~» (conservative) P-values are very useful



From another perspective

using Lasso:

1. on first half of the sample: with high probability,

S 2 Ssubst; C

Ssubst;C = {jv |ﬁj| > C}v C > const. V IOg(p)/n

2. on second half of the sample:
to get rid of the false positives, do OLS re-estimation and
threshold with a P-value controlling FWER



