
Lecture Notes I

(still incompete, with “???” symbols)

Peter Bühlmann & Sara van de Geer

2

Contents

1 Introduction 5

2 Lasso for Linear Models 7

2.1 Introduction . 7

2.2 Orthonormal design . 9
2.3 Prediction . 9

2.3.1 Practical aspects about the Lasso for prediction 9

2.3.2 Some results from asymptotic theory 11
2.4 Variable screening and ‖β̂ − β‖q-norms . 12

2.5 Variable selection . 15
2.5.1 Neighborhood stability and irrepresentable condition 17

2.6 The adaptive Lasso: a two-stage procedure 17

2.6.1 Orthonormal design . 19
2.6.2 The adaptive Lasso: variable selection under weak conditions 20

2.6.3 Computation . 21
2.6.4 Multi-step adaptive Lasso . 21

2.7 The relaxed Lasso . 23

2.8 Degrees of freedom of the Lasso . 23
2.9 Path-following algorithms . 25

2.9.1 Coordinatewise optimization and shooting algorithms 26
2.10 Functions in R . 28

2.11 Exercises . 28

3 Generalized Linear Models and the Lasso 31

3.1 The Lasso estimator: penalizing the negative log-likelihood 31
3.1.1 Binary response variable and logistic regression 32

3.1.2 Poisson regression . 33
3.1.3 Multi-category response and Multinomial distribution 34

3.2 Exercises . 36

4 The Group Lasso 37

4.1 The Group Lasso penalty . 37
4.2 Factor variables as covariates . 38

4.2.1 Prediction of splice sites in DNA sequences 39

4.3 Properties of the Group Lasso for generalized linear models 42
4.4 The generalized Group Lasso penalty . 43

4.5 The adaptive Group Lasso . 44
4.6 Algorithms for the Group Lasso . 45

4.6.1 Block Coordinate Descent . 46

3

4 CONTENTS

4.6.2 Block Coordinate Gradient Descent 48

Chapter 1

Introduction

In many applications, datasets arise where the number of covariates is very large, e.g. in
the thousands or ten-thousands, while the sample size is quite small, e.g. in the dozens or
hundreds. More formally, such high-dimensional data is of the form

(X1, Y1), . . . , (Xn, Yn) (1.1)

with p-dimensional covariates Xi ∈ X ⊂ Rp and response variables Yi ∈ Y ⊂ Rq. We
say that a problem is high-dimensional if p ≫ n, usually irrespective of the magnitude
of the dimension q of the response. Quite often, the response is univariate with q =
1: the most prominent examples are regression where Y = R, classification with Y a
categorical space (e.g. labeled as Y = {0, 1, . . . J − 1}) but our book will also cover more
general areas or models such as survival analysis with survival times Y ∈ Y = R+ or
Poisson regression with Y = {0, 1, 2, . . .} = N0. Typically, we assume that the pairs
(Xi, Yi) in (1.1) are independent, identically distributed (i.i.d.) but some generalization
to stationary processes, covering areas of time series analysis or spatial statistics, is fairly
straightforward.

Every reasonable model for data as in (1.1) involves at least one parameter per covariate:
a linear model involves one parameter while say an additive model (in the covariates)
would involve a few or many parameters in each basis expansion per covariate. Therefore,
with high-dimensional data, we will be confronted with the situation where the number of
parameters will be much larger than sample size. In general, it will be hopeless to estimate
all unknown parameters from data unless the true underlying parameter vector is sparse.
In case where the true parameter vector is sparse, e.g. many parameters are equal to zero
or some norm of the parameter vector is small, it is possible to infer the true parameter
vector and its structure, e.g. the zeroes of the parameter vector, from data. Our book will
focus on methods and theory for estimating a sparse, high-dimensional parameter vector
in various models. Furthermore, we will demonstrate some applications of these methods
for problems and data-sets arising from molecular biology.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Lasso for Linear Models

2.1 Introduction

The Lasso, proposed by Tibshirani [1996], is an acronym for Least Absolute Shrinkage and
Selection Operator. Among the main reasons why it has become very popular for high-
dimensional estimation problems are its statistical accuracy for prediction and variable
selection coupled with its computational feasibility. Furthermore, since the Lasso is a
penalized likelihood approach, the method is rather general and can be used in a broad
variety of models. In the simple case of a linear model with orthonormal design, the Lasso
equals the soft thresholding estimator (see e.g. Donoho and Johnstone [1994] and Donoho
[1995]).

We consider here the setting where the observed data are realizations of

(X1, Y1), . . . , (Xn, Yn)

with p-dimensional covariates Xi ∈ X ⊂ Rp and univariate response variables Yi ∈ Y ⊂ R.
The covariates are either deterministic fixed values or random variables: regarding the
methodology, there is no difference between these two cases. Typically, we assume that the
samples are independent but the generalization to stationary processes poses no essential
methodological albeit some mathematical problems arise for proving properties.

Modeling high-dimensional data is challenging. For a continuous response variable Y ∈ R,
a simple yet very useful approach is given by a linear model

Yi =

p∑

j=1

βjX
(j)
i + εi (i = 1, . . . , n), (2.1)

where ε1, . . . , εn i.i.d., independent of {Xi; i = 1, . . . , n} and with IE[εi] = 0. We often use
the matrix- and vector-notation

Y = Xβ + ε

with response vector Yn×1, design matrix Xn×p, parameter vector βp×1 and error vector
εn×1.

For simplicity and without loss of generality, we assume that the intercept is zero and that
all covariates are centered and measured on the same scale. Both of these assumptions

7

8 CHAPTER 2. LASSO FOR LINEAR MODELS

can be approximately achieved by mean centering and scaling with the standard deviation
and thus, for practical purposes, we consider models of the form

Yi − Y =

p∑

j=1

βj(X
(j)
i −X

(j)
) + εi,

with σ̂2
j = n−1

∑n
i=1(X

(j)
i − X

(j)
)2 = 1 for all j. The only unusual aspect of the linear

model in (2.1) is the fact that p≫ n.

The ordinary least squares estimator is not unique and will heavily overfit the data. Thus,
a form of complexity regularization will be necessary. We focus here on regularization
with the ℓ1-penalty. The estimation of the parameters in model (2.1) can be done with
the Lasso [Tibshirani, 1996]:

β̂(λ) = arg min
β

(
‖Y −Xβ‖22/n + λ‖β‖1

)
, (2.2)

where ‖Y −Xβ‖22 =
∑n

i=1(Yi − (Xβ)i)
2, ‖β‖1 =

∑p
j=1 |βj | and where λ ≥ 0 is a penalty

parameter. The estimator has the property that it does variable selection in the sense
that β̂j(λ) = 0 for some j’s (depending on the choice of λ) and β̂j(λ) can be thought as a
shrunken least squares estimator; hence, the name Least Absolute Shrinkage and Selection
Operator. An intuitive explanation for the variable selection property is given below.

The optimization in (2.2) is convex, enabling efficient computation of the estimator, see
Section 2.9. In addition, it is sometimes useful to know that the optimization problem in
(2.2) is equivalent to

β̂primal(s) = arg min
β;‖β‖1≤s

‖Y −Xβ‖22/n, (2.3)

with a one-to-one correspondence between λ in (2.2) and s in (2.3) which depends on the
data (X1, Y1), . . . , (Xn, Yn). Such an equivalence holds since ‖Y −Xβ‖22/n is convex in β
with convex constraint ‖β‖1 ≤ s. More details are described in e.g. Bertsekas [1995, Ch.
5.3].

Because of the ℓ1-geometry, the Lasso is performing variable selection in the sense that
an estimated component can be exactly zero. To see this, we consider the representation
in (2.3) and Figure 2.1: the residual sum of squares reaches a minimal value (for certain
constellations of the data) if its contour lines hit the ℓ1-ball in its corner which corresponds
to β̂primal,1 = 0. Figure 2.1 indicates that such a phenomenon does not occur with say
Ridge regression,

β̂Ridge(λ) = arg min
β

(
‖Y −Xβ‖22/n + λ‖β‖22

)
,

with its equivalent primal equivalent solution

β̂Ridge;primal(s) = arg min
β;‖β‖2≤s

‖Y −Xβ‖22/n, (2.4)

with a one-to-one correspondence between λ and s which depends on the data.

2.2. ORTHONORMAL DESIGN 9

Figure 2.1: Left: Contour lines of residual sum of squares and ℓ1-ball corresponding to
the Lasso problem in (2.3). Right: Analogous to left panel but with ℓ2-ball corresponding
to Ridge regression in (2.4).

2.2 Orthonormal design

It is instructive to consider the orthonormal design where p = n and the design matrix
satisfies n−1XTX = Ip×p. For this case, the Lasso estimator is the soft-threshold estimator

β̂j(λ) = sign(Zj)(|Zj | − λ/2)+, Zj = (XT Y)j (j = 1, . . . , p = n), (2.5)

where (x)+ = max(x, 0) denotes the positive part. This follows from the general charac-
terization in Lemma 2.4.1 below and we leave the exact derivation as Exercise ???. This
estimator can be written as

β̂j(λ) = gsoft(Zj),

where gsoft(·) is the soft-threshold function depicted in Figure 2.2.

2.3 Prediction

We refer to prediction whenever the goal is the estimation of the regression function
IE[Y |X = x] =

∑p
j=1 βjx

(j) in model (2.1). This is also the relevant quantity for predicting
a new observation.

2.3.1 Practical aspects about the Lasso for prediction

From a practical perspective, prediction with the Lasso is straightforward and easy. Typ-
ically, we use some cross-validation (CV) scheme, e.g., 10-fold CV, to select a reasonable
tuning parameter λ minimizing the cross-validated squared error risk. In addition, we can
validate the accuracy of the performance by using again some cross-validation scheme.

10 CHAPTER 2. LASSO FOR LINEAR MODELS

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

threshold functions

z

Adaptive Lasso
Hard−thresholding
Soft−thresholding

Figure 2.2: Various threshold functions g(·) for orthonormal design: soft-threshold (dashed
line), hard-threshold (dotted line), Adaptive Lasso (solid line). The estimators are of the
form β̂j = g(Zj) with Zj as in (2.5).

Regarding the latter, we should cross-validate the whole procedure which includes the se-
lection of the tuning parameter λ. In particular, by comparing the cross-validated risk, we
can see whether the Lasso yields a performance which is better, equal or worse than an-
other prediction algorithm. However, it is not straightforward to test rigorously whether
the performances of two prediction algorithms are significantly different or not, see for
example van de Wiel et al. [2009].

Binary classification of lymph node status using gene expressions

We consider a binary classification problem involving a binary response variable Y ∈ {0, 1},
describing the lymph node status of a cancer patient, and we have a covariate with p = 7129
gene expression measurements. There are n = 49 breast cancer tumor samples. The data
is taken from West et al. [2001]. It is known that this is a difficult, high noise classification
problem. The best methods achieve about a cross-validated misclassification error of about
20%.

Despite that this is a binary classification problem, we can use the Lasso as in (2.2) which
yields an estimate of the conditional class probability p(x) = IP[Y = 1|X = x] = IE[Y |X =
x]:

p̂λ(x) = xβ̂(λ).

Of course, we could use the Lasso also for logistic regression as described later in Chapter
3. In either case, we classify as follows:

Ĉλ(x) =

{
1 p̂λ(x) > 1/2
0 p̂λ(x) ≤ 1/2

2.3. PREDICTION 11

For comparison, we consider a forward variable selection method in penalized linear logis-
tic regression with ℓ2-norm (Ridge-type) penalty. The optimal regularization parameter,
for Lasso and forward penalized logistic regression, is chosen by 10-fold cross-validation.
For evaluating the performance of the tuned algorithms, we use a cross-validation scheme
for estimating the test-set misclassification error. We randomly divide the sample into 2/3
training- and 1/3 test-data and we repeat this 100 times: the average test-set misclassifi-
cation error is reported in Table 2.1. Note that we run a double cross-validation: one inner
level for choosing the regularization parameter and one outer level for assessing the per-
formance of the algorithm. Table 2.1 illustrates that the forward selection approach yields

Lasso forw. penalized logist. regr.

21.1% 35.25%

Table 2.1: Misclassification test set error using cross-validation

much poorer performance than the Lasso. Forward selection methods tend to be unstable
[Breiman, 1996]: they are of a very greedy nature striving for maximal improvement of
the objective function (e.g. residual sum of squares) in every step.

Finally, we report that the Lasso selected on cross-validation average 13.12 out of p = 7129
variables (genes). Thus, the fitted linear model is very sparse with respect to the ℓ0-norm,
i.e. the selected number of variables is very small.

2.3.2 Some results from asymptotic theory

We describe here some results which are developed and described in detail in Chapter ??.
Greenshtein and Ritov [2004] have proved in the high-dimensional setting that the Lasso
consistently estimates the regression function as sample size n → ∞. To capture high-
dimensional scenarios, the asymptotics is with respect to a triangular array of observations:

Yn;i =

pn∑

j=1

βn;jX
(j)
n;i + εn;i, i = 1, . . . , n; n = 1, 2, . . . (2.6)

Thereby, we allow that pn ≫ n. The assumptions about εn;i are as in the linear model in
(2.1). A consistency result requires some sparsity assumption of the form

‖β‖1 = O

(√
n

log(p)

)
.

Assuming further mild regularity conditions, the following holds: for a suitable range of
λ = λn the Lasso is consistent for estimating the underlying regression function:

(β̂(λ)− β0)
T ΣX(β̂(λ)− β0) = oP (1) (n→∞), (2.7)

where ΣX is n−1XTX in case of a fixed design or equals the covariance of the covariate
X in case of a random design. Note that the left hand side in (2.7) can be written as the
average squared error loss:

‖X(β̂ − β0)‖22/n for fixed design,

IE[(Xnew(β̂(λ)− β0))2] for random design,

12 CHAPTER 2. LASSO FOR LINEAR MODELS

where IE is with respect to the new test observation Xnew (1× p vector) and X(β̂(λ)−β0)
is the difference between the estimated and true regression function f̂(X) − f0(X). The
asymptotics is according to the triangular array in (2.6). More details are presented in
Chapter ??? in Corollary ??.

In fact, under certain compatibility conditions on the design X, one can show a so-called
oracle inequality

IE[‖X(β̂(λ)− β0)‖2/n] = O

(
s0 log(p)

n

)
, (2.8)

where s0 = card(S0) = card({j; β0
j 6= 0}), see Corollary ??. This means that, up to the

log(p)-term, the mean-squared prediction error is of the order as if one would knew a-priori
which of the s0 covariates are relevant and using ordinary least squares estimation based
on the true, relevant s0 variables only. This rate is optimal, up to the factor log(p), in
scenarios where the regression coefficients of the relevant s0 variables are not very small.

2.4 Variable screening and ‖β̂ − β‖q-norms

Instead of prediction Xnewβ̂, we consider the estimation accuracy in terms of inference for
the parameter β. Under some assumptions on the design X in a linear model, it can be
shown that for some suitable range of λ,

‖β̂(λ)− β0‖q → 0 in probability (n→∞), (2.9)

where q ∈ {1, 2} and ‖β‖q = (
∑

j |βj |q)1/q. The asymptotic framework is again with

respect to the triangular array described in (2.6) where β0 = β0
n is allowed to depend on

n. The derivation of such results is given in Chapter ??, Section ??.

The result in (2.9) has fairly direct and interesting implications in terms of variable screen-
ing. Consider the active set of variables

S0 = {j; 1 ≤ j ≤ p, β0
j 6= 0}

which contains all covariates with non-zero corresponding regression coefficients. Note
that in a setting as in (2.6), the active set S0 = S0;n depends on n. Since the Lasso
estimator in (2.2) is selecting some variables, in the sense that some of the coefficients are
exactly zero (β̂j(λ) = 0 for some j’s, depending on λ), we use it as screening set:

Ŝ(λ) = {j; 1 ≤ j ≤ p, β̂j(λ) 6= 0}. (2.10)

It is worth pointing out that no significance testing is involved. We now argue that
the variables with corresponding non-zero coefficients remain the same across different
solutions β̂(λ) of the optimization in (2.2), see Lemma 2.4.1. Note that different solutions
occur if the optimization is not strictly convex as in the case where p > n.

An important characterization of the solution β̂(λ) in (2.2) can be derived from the Karush-
Kuhn-Tucker conditions (and some additional reasoning regarding uniqueness of zeroes).

Lemma 2.4.1 Denote the gradient of n−1‖Y − bxβ‖2 by G(β) = −2XT (Y − Xβ)/n.
Then: a necessary and sufficient condition for β̂ to be a solution of (2.2) is:

Gj(β̂) = − sign(β̂j)λ if β̂j 6= 0,

|Gj(β̂)| ≤ λ if β̂j = 0.

2.4. VARIABLE SCREENING AND ‖β̂ − β‖Q-NORMS 13

Moreover, if the solution of (2.2) is not unique (e.g. if p > n) and Gj(β̂) < λ for some

solution β̂(λ), then β̂j(λ) = 0 for all solutions of (2.2).

Proof: For the first statements regarding a necessary and sufficient characterization of
the solution, we invoke subdifferential calculus (BERTSEKAS ????). Denote the criterion
function by

Qλ(β) = ‖Y −Xβ‖22/n + λ‖β‖1.

For a minimizer β̂(λ) of Qλ(·) it is then necessary and sufficient that the subdifferential at
β̂(λ) is zero. If the jth component β̂j(λ) 6= 0, this means that the ordinary first derivative

at β̂(λ) has to be zero:

∂Qλ(β)

∂βj
= −2XT

j (Y −Xβ) + λsign(βj)|β=β̂(λ) = 0.

Of course, this is equivalent to

Gj(β̂(λ) = −2XT
j (Y −Xβ(λ) = −λsign(β̂j(λ)) if β̂j(λ) 6= 0.

On the other hand, if β̂j(λ) = 0, the subdifferential at β̂(λ) has to include the zero element
(see BERTSEKAS ???). That is:

Gj(β̂(λ)) + λe = 0 for some e ∈ [−1, 1], and if β̂j(λ) = 0.

But this is equivalent to

|Gj(β̂(λ))| ≤ λ if β̂j(λ) = 0.

And this is the second statement about the characterization of the solution of β̂(λ).

Regarding uniqueness of the zeroes among different solutions. Assume that there exist two

solutions β̂(1) and β̂(2) such that for a component j we have β̂
(1)
j = 0 with Gj(β̂

(1))| < λ

but β̂
(2)
j 6= 0. Because the set of all solutions is convex,

β̂ρ = (1− ρ)β̂(1) + ρβ̂(2)

is also a minimizer for all ρ ∈ [0, 1]. By assumption β̂ρ,j 6= 0 and hence, by the first

statement from the KKT conditions, |Gj(β̂ρ)| = λ for all ρ ∈ (0, 1). Hence, it holds for

g(ρ) = |Gj(β̂)ρ)| that g(0) < λ and g(ρ) = λ for all ρ ∈ (0, 1). But this is a contradiction
to the fact that g(·) is continuous. Hence, a non-active (i.e. zero) component j with
|Gj(β̂| < λ can not be active (i.e. non-zero) in any other solution. 2

Ideally, we would like to infer the active set S0 from data. We will see in Section 2.5 that
the Lasso as used in (2.10) requires fairly strong conditions on the design matrix X. A
less ambitious but still relevant goal in practice is to find at least the covariates whose
corresponding absolute values of the regressions coefficients |βj | are substantial (and other
variables may be included as well). More formally, for some C > 0, define the substantial
covariates as

Ssubst(C) = {j; 1 ≤ j ≤ p, |βj | ≥ C}.

14 CHAPTER 2. LASSO FOR LINEAR MODELS

Using the result in (2.9), which holds under weaker assumptions than the restrictive neigh-
borhood stability or irrepresentable condition:

for any fixed 0 < C <∞ : IP[Ŝ(λ) ⊃ Ssubst(C)]→ 1 (n→∞). (2.11)

We leave the proof of this fact as Exercise 5???. This result can be generalized as follows.
Assume that

‖β̂n(λn)− β0‖1 ≤ an with high probability. (2.12)

We note that typically, an = const.s0

√
log(pn)/n with s0 = |S0|. Then,

for Cn > an : with high probability Ŝn(λn) ⊃ Ssubst(Cn). (2.13)

The proof is elementary and we leave it as Exercise 6???. It may happen that Ssubst(Cn) =

S0 and then, Ŝ(λn) ⊃ S0 with high probability.

We refer to the property in (2.11) or in (2.13) as variable screening : with high probability,
the Lasso estimated model includes the substantial covariates. Variable screening with the
Lasso has a great potential because of the following fact. Every Lasso estimated model
has cardinality smaller or equal to min(n, p): this follows from the analysis of the LARS
algorithm [Efron et al., 2004]. If p ≫ n, min(n, p) = n is a small number and hence, we
achieve a huge dimensionality reduction in terms of the original covariates. For example,
in the lymph node status classification problem in Section 2.3.1, we reduce from p = 7129
to at most n = 49 covariates.

Tuning parameter selection for variable screening

Consider the prediction optimal parameter supplied by an oracle,

λ∗ = λ∗
n = argminλIE[(Ynew −

p∑

j=1

β̂j(λ)X(j)
new)2], (2.14)

where (Xnew, Ynew) is an independent copy of (Xi, Yi) (i = 1, . . . , n). Then, at least for
some examples,

IP[Ŝ(λ∗
n) ⊃ S] → 1 (n→∞), (2.15)

see Meinshausen and Bühlmann [2006, Prop. 1]. The over-estimation behavior in (2.15) is
quite typical for many finite-sample cases, that is, the prediction optimal estimated Lasso
model is too large, containing with high probability the true model.

This ties in nicely with the screening property in (2.11) or (2.13). We summarize that
the Lasso screening procedure is very useful and easy to implement: we choose the regu-
larization parameter by cross-validation with respect to the prediction squared error loss,
denoted by λ̂CV , and the Lasso screening procedure then yields Ŝ(λ̂CV) which is expected
to contain S0 and whose cardinality is bounded by |Ŝ(λ̂CV)| ≤ min(n, p).

As an alternative, we may pursue a Lasso screening procedure by including min(n, p)
variables (e.g. using the LARS algorithm until the end [Efron et al., 2004]) and hence, no
tuning parameter needs to be chosen. If p≫ n, this tuning-free dimensionality reduction
can be very worthwhile for a first stage.

2.5. VARIABLE SELECTION 15

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

motif regression

variables

co
ef

fic
ie

nt
s

Figure 2.3: HIF1α motif regression with n = 287, p = 195.

2.5 Variable selection

The problem of variable selection for a high-dimensional linear model in (2.1) is impor-
tant since in many areas of applications, the primary interest is about the relevance of
covariates. As there are 2p possible sub-models, computational feasibility is an important
concern. The usual variable selection procedure is based on least squares and a penalty
which involves the number of parameters in the candidate sub-model:

β̂(λ) = argminβ

{
1

n

n∑

i=1

(Yi −
p∑

j=1

βjX
(j)
i)2 + λ‖β‖0

}
, (2.16)

where the ℓ0-norm penalty is ‖β‖0 =
∑p

j=1 I(βj 6= 0). Many well known model selection
criteria such as the Akaike Information Criterion (AIC), the Bayesian Information Cri-
terion (BIC) or the Minimum Description Length (MDL) fall into this framework. For
example, when the error variance is known, AIC and BIC correspond to λ = 4σ2 and
λ = log(n)2σ2, respectively. The estimator in (2.16) is infeasible to compute when p is of
medium or large size since the ℓ0-norm penalty is a nonconvex function in β. Computa-
tional infeasibility remains even when using branch-and-bound techniques, cf. Hofmann
et al. [2007], Gatu et al. [2007]. Forward selection strategies are computationally fast
but they can be very instable [Breiman, 1996], as illustrated in Table 2.1 where forward
selection produced a poor result. Other ad-hoc methods may be used to get approxima-
tions for the ℓ0-norm penalized least squares estimator in (2.16). On the other hand, the
requirement of computational feasibility and statistical accuracy can be met by the Lasso
defined in (2.2): it can also be viewed as a convex relaxation of the optimization problem
with the ℓ0-norm in (2.16).

We will first build up the methodology and theory by using the Lasso in a single stage.
We will describe later in Section 2.6 how to use the Lasso not just once but in two (or

16 CHAPTER 2. LASSO FOR LINEAR MODELS

more) stages. Consider the set of estimated variables using the Lasso as in (2.10):

Ŝ(λ) = {j; 1 ≤ j ≤ p, β̂j(λ) 6= 0}.

In particular, we can compute all possible Lasso sub-models

ŜUB = {Ŝ(λ); all λ} (2.17)

with O(np min(n, p)) operation counts, see Section 2.9. As pointed out above in Section

2.4, every sub-model in ŜUB has cardinality smaller or equal to min(n, p). Furthermore,

the number of sub-models in ŜUB is typically of the order O(min(n, p)) [Rosset and Zhu,
2007]. Thus, in summary, each Lasso estimated sub-model contains at most min(n, p)
variables which is a small number if p ≫ n, and the number of different Lasso estimated
sub-models is O(min(n, p)) which represents a huge reduction compared to all possible 2p

sub-models if p≫ n.

The question of interest is whether the true set of effective variables S0 = {j; 1 ≤ j ≤
p, β0

j 6= 0} is contained in ŜUB and if yes, which particular choice of λ will identify the
true underlying set of active variables S0.

An asymptotic result described below shows that with probability tending to 1, S0 ⊆ ŜUB
and that the Lasso is appropriate for addressing the problem of variable selection. As in
Section 2.3, to capture high-dimensionality of the model (2.1) in an asymptotic sense, we
consider the triangular array scheme in (2.6). The main and restrictive assumption for
consistent variable selection concerns the (fixed or random) design matrix X. The con-
dition, called neighborhood stability or irrepresentable condition, is described with some
more rigour in Section 2.5.1. Under such a neighborhood stability condition, Meinshausen
and Bühlmann [2006, Theorems 1 and 2] show the following: for a suitable λ = λn,

IP[Ŝ(λ) = S0]→ 1 (n→∞). (2.18)

This can be seen as an asymptotic justification to replace (or relax) the computationally
hard ℓ0-penalty problem in (2.16) by the ℓ1-penalty problem of the Lasso in (2.2).

It is worth mentioning here, that the neighborhood stability condition on the design is
sufficient and necessary and hence, we have a sharp result saying when the Lasso is consis-
tent for variable selection and when not. It should represent a warning that the restrictive
assumptions on the design have some relevant implications on the statistical practice for
high-dimensional model selection: with strongly correlated design, the Lasso can perform
very poorly for variable selection. A further difficulty comes with the choice of the regu-
larization parameter. An extension of formula (2.15) is: for some examples, it holds

IP[Ŝ(λ∗
n) ⊃ S] → 1 (n→∞),

lim sup
n→∞

IP[Ŝ(λ∗
n) = S] < 1 (n→∞), (2.19)

where λ∗ is the prediction optimal (theoretical) tuning parameter in (2.14). More detailed
mathematical formulations and statements are provided in Chapter ??. Furthermore,
we will describe in Chapter ?? the relation between Gaussian Graphical Modeling and
variable selection in a linear model.

2.6. THE ADAPTIVE LASSO: A TWO-STAGE PROCEDURE 17

2.5.1 Neighborhood stability and irrepresentable condition

There is certainly an interesting potential to use the Lasso for variable selection in high-
dimensional models, as described in (2.18). However, the so-called neighborhood stability
condition is crucial for consistent variable selection with the Lasso. In fact, this neigh-
borhood stability condition is sufficient and essentially necessary for consistent model
selection with the Lasso in the sense of (2.18), see Theorems 1, 2 and Proposition 3 in
Meinshausen and Bühlmann [2006]. The word “essentially” refers to the fact that the
necessary condition requires a quantity to be ≤ 1 while the sufficient condition requires
strict < 1.

The neighborhood stability condition is equivalent to the so-called irrepresentable condi-
tion (at least for the case where p < n is fixed) which has been introduced by Zou [2006]
and Zhao and Yu [2006] and which is easier to describe. We assume that the design matrix
X satisfies

n−1XTX→ Σ,

where Σ is a positive definite matrix. For example, for a random and centered design Σ
equals the covariance matrix of the p-dimensional covariate X. Without loss of generality,
we assume that the active set S0 = {j; βj 6= 0} = {1, . . . , s0} consists of the first s0

variables. Let

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is a s0 × s0 matrix corresponding to the active variables, Σ12 = ΣT
21 is a

s0 × (p − s0) matrix and Σ22 a (p − s0) × (p − s0) matrix. The irrepresentable condition
then reads:

|Σ21Σ
−1
11 sign(β1, . . . , βs0)| < 1 (2.20)

where the inequality is to be understood componentwise, for all (p− s0) components, and
sign(β1, . . . , βp) = (sign(β1), . . . , sign(βp))

T . As with the neighborhood stability condition,
the irrepresentable condition in (2.20) is sufficient and essentially necessary for consistent
model selection with the Lasso (“essentially” refers to the fact that the necessary condition
requires the relation “≤ 1”, while the sufficient condition requires strict < 1). For the high-
dimensional setting and in terms of the triangular array as in (2.6), it is understood that
the right-hand side of (2.20) is bounded away from 1 for all n ∈ N.

Roughly speaking, the neighborhood stability or irrepresentable condition fails to hold
if the design matrix X is too much “ill-posed” and exhibits a too strong degree of lin-
ear dependence within “smaller” sub-matrices of X. Examples where the irrepresentable
condition holds include the following, cf. Zhao and Yu [2006]:

2.6 The adaptive Lasso: a two-stage procedure

An interesting approach to correct Lasso’s overestimation behavior, see formulae (2.15),
(2.11) and (2.13), is given by the adaptive Lasso (Zou, 2006) which replaces the ℓ1-norm

18 CHAPTER 2. LASSO FOR LINEAR MODELS

penalty by a re-weighted version. For a linear model as in (2.1), it is defined as a two-stage
procedure:

β̂adapt = argminβ‖Y −Xβ‖22/n + λ

p∑

j=1

|βj |
|β̂init,j |

), (2.21)

where β̂init is an initial estimator.

In the high-dimensional context, we propose to use the Lasso from a first stage as the
initial estimator, tuned in a prediction optimal way. Typically, we use cross-validation
to select the tuning parameter, denoted here by λinit,CV . Thus, the initial estimator is

β̂init = β̂(λinit,CV) as in (2.2). For the second stage, we use again cross-validation to
select the parameter λ in the adaptive Lasso (2.21). Proceeding this way, we select the
regularization parameters in a sequential way: this is computationally much cheaper since
we optimize twice over a single parameter instead of simultaneous optimization over two
tuning parameters. The procedure is also described in Section 2.6.4 when using k = 2.

The adaptive Lasso has the following obvious property:

β̂init,j = 0 ⇒ β̂adapt,j = 0. (2.22)

Furthermore, if |β̂init,j | is large, the adaptive Lasso employs a small penalty (i.e. little
shrinkage) for the jth coefficient βj which implies less bias. Thus, the adaptive Lasso
yields a sparse solution and it can be used to reduce the number of false positives (selected
variables which are not relevant) from the first stage. This is a desirable property since the
Lasso from the first stage has the screening property that Ŝ ⊇ S0 with high probability.
Further details about variable selection with the adaptive Lasso are described below in
Section 2.6.2 and Section ??. In the latter, we treat the case where the penalty is of the
form λ

∑p
j=1 wj |βj | with 0 ≤ wj <∞. That is, the weight wj =∞, arising in (2.21) with

β̂init,j = 0, is not allowed. This can be seen as a less stringent way of preserving a zero
estimate from the initial estimate.

An illustration

We illustrate the Lasso and adaptive Lasso on some simulated example from a linear
model as in (2.1) with p = 1000 and n = 50. We choose β1 = 2, β2 = 1, β3 = 0.5 and
β4 = . . . β1000 = 0, ε ∼ N (0, 1) and X(1), . . . ,X(1000) i.i.d. ∼ N (0, 1). This amount to a
“medium-size” signal to noise ratio

V ar(f(X))

σ2
= 5.5,

where f(x) = xβ. Figure 2.4 shows the coefficient estimates for the Lasso and the adaptive
Lasso, with initial estimator from the Lasso, respectively. The tuning parameters are
selected as follows. For the Lasso, we use the optimal λ from 10-fold cross-validation.
This Lasso fit is used as initial estimator and we then choose λ for the second stage in
adaptive Lasso by optimizing 10-fold cross-validation again. We exploit the fact that Lasso
is a powerful screening method: all three relevant variables are selected, i.e., Ŝ ⊇ S0, but
it also selects 41 noise covariates. The adaptive Lasso yields a substantially sparser fit: it
selects all of the 3 relevant variables and 10 noise covariates in addition.

2.6. THE ADAPTIVE LASSO: A TWO-STAGE PROCEDURE 19

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Lasso

variables

co
oe

ffi
ci

en
ts

0 200 400 600 800 1000
0.

0
0.

5
1.

0
1.

5
2.

0

Adaptive Lasso

variables

co
oe

ffi
ci

en
ts

Figure 2.4: Estimated regression coefficients in linear model with p = 1000 and n = 50.
Left: Lasso. Right: Adaptive Lasso with Lasso as initial estimator. Both methods used
with tuning parameters selected from 10-fold cross-validation.

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Lasso

variables

co
ef

fic
ie

nt
s

0 50 100 150 200

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Adaptive Lasso

variables

co
ef

fic
ie

nt
s

Figure 2.5: ???

2.6.1 Orthonormal design

In the special case of an orthonormal design with p = n and Σ̂ = n−1XTX = Ip×p,
the adaptive Lasso has an explicit solution. We consider the case with the ordinary least

20 CHAPTER 2. LASSO FOR LINEAR MODELS

squares initial estimator β̂init,j = n−1(XT Y)j = Zj (j = 1, . . . , p = n). Then, the adaptive
Lasso equals

β̂adapt,j = sign(Zj)(|Zj | −
λ

2|Zj |
)+, Zj = (XTY)j (j = 1, . . . , p = n),

where (x)+ = max(x, 0) denotes the positive part. This is again a thresholding-type
estimator β̂adapt,j = g(Zj), where the thresholding function g(·) is depicted in Figure 2.2.
The derivation is left as Exercise 2???.

Figure 2.2 has the following interpretation. Hard-thresholding yields a truncated least-
squares estimator and hence, its bias is only due to the truncation (thresholding). Soft-
thresholding, corresponding to Lasso, involves shrinkage, either to zero or to a value which
is in absolute value smaller than the least squares estimate by λ. Hence, even if the least
squares estimate is large in absolute value, soft-thresholding shrinks by the additive term
λ. Finally, the adaptive Lasso “adapts” to the least squares estimate whenever the latter
is large in absolute value and thus, the adaptive Lasso is less biased than the Lasso.

There is an interesting connection to the nonnegative garrote estimator [Breiman, 1995]
which is defined as

β̂nn−gar = ĉj β̂init,j ,

ĉ = argminc(n
−1

n∑

i=1

(Yi −
p∑

j=1

cj β̂init,jX
(j)
i)2

subject to cj ≥ 0 (j = 1, . . . , p) and

p∑

j=1

cj ≤ λ.

In the special case of an orthonormal design and using ordinary least squares as initial
estimator, the nonnegative garrote estimator is equal to the adaptive Lasso.

2.6.2 The adaptive Lasso: variable selection under weak conditions

For (consistent) variable selection in a linear model, the Lasso needs, as a necessary and
sufficient condition, that the design matrix satisfies the neighborhood stability or irrep-
resentable condition described in Section 2.5.1. On the other hand, we have argued in
Section 2.4 and formula (2.9) that the Lasso is reasonable for estimating the true under-
lying β0 in terms of the ‖.‖q-norm with q ∈ {1, 2}. As an implication, the Lasso has the
screening property where Ŝ ⊇ S0 with high probability. Thereby, we need to assume that
the non-zero regression coefficients are not too small, i.e.

min{|βj |; βj 6= 0, j = 1, . . . , p} ≥ Cs0

√
log(p)/n

for some constant C > 0, see also formula (2.13).

With the adaptive Lasso, the hope is that the two-stage process would be sufficient to
correct Lasso’s overestimation behavior. This can be mathematically proved, assuming
compatibility conditions on the design X which are weaker than the neighborhood stabil-
ity or irrepresentable condition. These compatibility conditions are sufficient to achieve
variable selection consistency:

IP[Ŝadapt.Lasso,n = S0]→ 1 (n→∞),

2.6. THE ADAPTIVE LASSO: A TWO-STAGE PROCEDURE 21

even if p≫ n. The fact that we can achieve consistent variable selection with the adaptive
Lasso for cases where the Lasso is inconsistent for estimating the set S0 is related to the
issue that the adaptive Lasso exhibits less bias than the Lasso, as mentioned in Section
2.6.1. A detailed mathematical treatment for the adaptive Lasso is given in Section ??.

2.6.3 Computation

The optimization for the adaptive Lasso in (2.21) can be re-formulated as a Lasso problem.
We re-parameterize by re-scaling the covariates as follows:

X̃(j) = |β̂init,j |X(j), β̃j =
βj

|β̂init,j |
.

Then, the objective function in (2.21) becomes

‖Y − X̃β̃‖22/n + λ‖β̃‖1.

This is a Lasso-problem. Denote a solution by
ˆ̃
β and by back-transformation, we obtain

a solution for the adaptive Lasso in (2.21) by

β̂adapt = |β̂init,j |ˆ̃βj.

In particular, any algorithm for solving the Lasso can be used for computation of the
adaptive Lasso. We refer to Section 2.9 for Lasso algorithms.

2.6.4 Multi-step adaptive Lasso

For regularization in high-dimensional problems, we may want to use more than one or two
tuning parameters. This can be achieved by pursuing more adaptive (or weighted) Lasso
iterations where every iteration involves a separate tuning parameter (and as described
below, these parameters are “algorithmically” constrained). The multi-step adaptive Lasso
[Bühlmann and Meier, 2008] works as follows.

Multi-Step Adaptive Lasso (MSA-LASSO)

1. Initialize the weights w
(0)
j ≡ 1 (j = 1 . . . , p).

2. For k = 1, 2 . . . ,M :
Use the adaptive Lasso with penalty function

λ∗(k)
p∑

j=1

w
(k−1)
j |βj |.

where λ∗(k) is the regularization parameter leading to prediction optimality. Denote
the estimator by β̂(k) = β̂(k)(λ∗(k)). In practice, the value λ∗(k) can be chosen with
some cross-validation scheme.
Up-date the weights

w
(k)
j =

1

|β̂(k−1)(λ∗(k−1))j |
, j = 1, . . . , p.

22 CHAPTER 2. LASSO FOR LINEAR MODELS

For k = 1 (one-stage), we do an ordinary Lasso fit and k = 2 (two-stage) corresponds to
the adaptive Lasso.

We will illustrate below the MSA-LASSO on a small simulated model and a real data set
from molecular biology. Before doing so, we describe some properties of the method which
are straightforward to derive.

First, MSA-LASSO increases the sparsity in every step in terms of the ℓ0-norm, that is the
number of selected variables decreases although there isn’t necessarily a strict decrease.
This follows immediately from (2.22). Second, MSA-LASSO can be computed using an
algorithm for the Lasso problem in every step, see also Section 2.6.3. The computational
complexity of computing all Lasso solutions over the whole range for the tuning param-
eter λ is of the order O(np min(n, p)), see formula (2.29) below. Thus, MSA-LASSO has
computational complexity O(Mnp min(n, p)) since we fix the selected regularization pa-
rameter λ∗(k) from the kth iteration. Due to the increase of sparsity in later, a later
step is faster to compute than an early one. The computational load is in sharp contrast
to computing all solutions over the whole range of all M tuning parameters: this would
require O(np(min(n, p))M) essential operations.

MSA-LASSO is related to approximating a non-convex optimization with the ℓr-norm
penalty for r close to 0:

β̂(λ) = argminβ(‖Y −Xβ‖22/n + λ‖β‖rr). (2.23)

The relation is based on an algorithmic descent property of a local linear approximation
for the above ℓr-penalized least-squares criterion (2.23), as discussed in detail in Zou
and Li [2008] (their Theorem 2 and the formula appearing just before their Proposition
2). In their framework though and in (2.23), there is a single regularization parameter
λ while MSA-LASSO uses a few regularization parameters, each of them constrained to
be prediction optimal. It is shown empirically in Bühlmann and Meier [2008] that the
algorithmic restriction of choosing the regularization parameters in a sequentially optimal
fashion is often very reasonable. We discuss in Chapter ??, Section ?? properties of the
ℓr-norm penalized least squares method with 0 < r < 1.

Motif regression in computational biology

Reducing the number of false positives is often very desirable in biological applications
since follow-up experiments can be costly and laborious. In fact, it can be appropriate to
do conservative estimation with a low number of selected variables since we still see more
selections than what may be validated in a laboratory.

We illustrate the MSA-LASSO method on a problem of motif regression [Conlon et al.,
2003] for finding transcription factor binding sites in DNA sequences. Such transcription
factor binding sites, also called motifs, are short “words” of DNA base pairs denoted by
{A,C,G, T}, typically 6-15 base pairs long. Beer and Tavazoie [2004] contains a collection
of microarray data and a collection of motif candidates for yeast. The latter is typically
extracted from computational algorithms based on DNA sequence data only: for every
of the n genes we have a score for each of the p candidate motifs which describes the
abundance of occurrences of the candidate motif up-stream of every gene. This yields a
n×p design matrix X with motif scores for every gene (i.e. rows of X) and every candidate
motif (i.e. columns of X). The idea is to predict the gene expression value of a gene based
on motif scores.

2.7. THE RELAXED LASSO 23

The dataset which we consider consists of n = 2587 gene expression values of a heat-shock
experiment and p = 666 motif scores. We use a training set of size 1300 and a validation
set of size 650. The remaining data is used as a test-set. We use a linear model and the
MSA-LASSO for fitting the model which is fairly high-dimensional with ntrain ≈ 2p.

The squared prediction error on the test-set, approximating IE[(Ŷnew − Ynew)] = (β̂ −
β)T Σ(β̂ − β) + Var(ε) with Σ = Cov(X), remains essentially constant for all estimators
(probably due to high noise, i.e. large value of Var(ε)). But the number of selected variables
decreases substantially:

Lasso (k = 1) 1-Step (k = 2) 2-Step (k = 3)
test set squared prediction error 0.6193 0.6230 0.6226

number of selected variables 91 42 28

The list of top-ranked candidate motifs (i.e. the selected covariates ranked according to
|β̂j |) gets slightly rearranged between the different estimators. The hope (and in part a
verified fact) is that the 1- or 2-step estimator yields more stable lists with fewer false
positives.

2.7 The relaxed Lasso

The relaxed Lasso Meinshausen [2007] is similar to the adaptive Lasso in the sense that it
addresses the bias problems of the Lasso. The method works as follows. In a first stage,
all possible Lasso sub-models in ŜUB defined in (2.17) are computed. Then, in a second
stage, every sub-model Ŝ is considered and the Lasso with smaller penalty parameter is
used on such sub-models. That is, we consider the estimator

β̂Ŝ(λ, φ) = arg min
β∈Ŝ(λ)

{
‖Y −Xβ‖22 + φ · λ‖β‖1

}
(0 ≤ φ ≤ 1),

β̂Ŝc(λ, φ) = 0, (2.24)

where Ŝ(λ) is the estimated sub-model from the first stage (see (2.17)) and βS = {βj ; j ∈
S} for some subset S ⊆ {1, . . . , p}. It is worth pointing out that once we have computed
the Lasso with parameter λ in the first stage, it is often very fast to compute the relaxed
estimator in (2.24). The tuning parameters λ and φ can be selected by some cross-
validation scheme. However, unlike as for the adaptive Lasso, we should select them
simultaneously. A special case occurs with φ = 0 which is known as the Lasso-OLS hybrid
Efron et al. [2004], using an OLS estimator in the second stage.

The relaxed and the adaptive Lasso seem to perform similarly in practice. Both procedures
can be generalized to other penalties and models.

2.8 Degrees of freedom of the Lasso

Degrees of freedom are often used to quantify the complexity of a model fit and we can
use them for choosing the amount of regularization. So far, we have always mentioned
cross-validation for choosing reasonable tuning parameters of the Lasso or some multi-
stage Lasso method. Another possibility is to use information criteria, such as the Akaike

24 CHAPTER 2. LASSO FOR LINEAR MODELS

Information Criterion (AIC) or the Bayesian Information Criterion (BIC), which penalize
the likelihood by the degrees of freedom of the fitted model. For example, for a Gaussian
linear model as in (2.1), the estimated model with fitted values Ŷi (i = 1, . . . , n) has
BIC-score:

BIC = n log(σ̂2) + log(n) · df(Ŷ),

σ̂2 = n−1
n∑

i=1

(Yi − Ŷi)
2,

where df(Ŷ) denotes the degrees of freedom of the fitted model.

Degrees of freedom can be defined in various ways, particularly when using different es-
timators than maximum likelihood. Stein’s theory about unbiased risk estimation leads
to a rigorous definition of degrees of freedom in a Gaussian linear model as in (2.1) with
fixed design and errors εi ∼ N (0, σ2). We denote by HY = Ŷ the hat-operator which
maps the response vector Y = (Y1, . . . , Yn)T to its fitted values Ŷ = (Ŷ1, . . . , Ŷn)T . The
degrees of freedom for a possibly non-linear hat-operator H are then defined as

df(H) =

n∑

i=1

Cov(Ŷi, Yi)/σ
2, (2.25)

where Ŷi arise from any model fitting method, see Efron [2004].

When using maximum likelihood estimation in parametric models, the degrees of freedom
equal the number of estimated parameters. Or for linear hat-operators where Ŷ = HY

with a hat-matrix H, the degrees of freedom in (2.25) equal

df(H) = trace(H) (2.26)

which is a standard formula for degrees of freedom of linear hat-operators, see Hastie and
Tibshirani [1990]. The derivation of (2.26)is left as Exercise 4.

At first sight, it seems difficult to assign degrees of freedom of the Lasso. First, it is
a nonlinear fitting method, e.g. soft-thresholding in the special case of an orthonormal
design, and hence, formula (2.26) cannot be used. Secondly, counting the number of
parameters seems completely wrong. A bit surprisingly, it is this second view which leads
to a very useful formula.

We can easily count the number of non-zero estimated parameters, i.e. |Ŝ|. It is plausible
that shrinkage estimators involve less degrees of freedom than non-shrunken maximum
likelihood estimates. On the other hand, the Lasso is estimating the sub-model with
the active set Ŝ, i.e. Ŝ is random, which adds variability and degrees of freedom in
comparison to the situation where the model would be fixed. Surprisingly, the cost of
search for estimating the model and the fact that shrinkage instead of maximum likelihood
estimators are used compensate each other. The following result holds: for the Lasso with
penalty parameter λ and associated hat-operator H = H(λ), the degrees of freedom are,

df(H) = IE[|Ŝ|],

see Zou et al. [2007]. In words, the expected number of selected variables from a Lasso(λ)
estimate equals the degree of freedom. A simple unbiased estimator for the degrees of
freedom of the Lasso is then:

d̂f(H) = |Ŝ|.

2.9. PATH-FOLLOWING ALGORITHMS 25

Needless to say that this formula is extremely easy to use. We can now choose the regu-
larization parameter λ according to e.g. the BIC criterion

λ̂BIC = argminλ(n log(n−1‖Y −H(λ)Y‖2) + log(n) · |Ŝ(λ)|). (2.27)

As we will see in Section 2.9, the regularization path of β̂(λ) is piecewise linear as a
function of λ. Hence, the minimizer of (2.27) can be evaluated exactly.

2.9 Path-following algorithms

Usually, we want to compute the estimator β̂(λ) in (2.2) for many values of λ. For
example, selection of a good value of λ, e.g. by using cross-validation, typically requires
the computation over many different candidate values.

For the estimator in (2.2), it is possible to compute the whole regularized solution path
over all values of λ in the following sense. The regularized solution path {β̂(λ); λ ∈ R+}
is piecewise linear with respect to λ. That is:

there exist λ0 = 0 < λ1 < λm−1 < λm =∞, γ0, γ1, . . . , γm−1 ∈ Rp such that

β̂(λ) = β̂(λk) + (λ− λk)γk for λk ≤ λ ≤ λk+1 (0 ≤ k ≤ m). (2.28)

The implication of the definition and additional fact is that the non-zero coefficients of
β̂(λ) only change at the points λk, and there is a maximal value λmax = λm−1 where
β̂(λ) = 0 for all λ ≥ λmax and β̂j(λ) 6= 0 for λ < λmax and some j. The value λmax is
characterized by

λmax = max
1≤j≤p

|2XT
j Y|/n.

This follows from the characterization of the Lasso solutions in Lemma 2.4.1. Furthermore,
at every λk only a single component of β̂(λk) changes. The number of different λk-values
is typically of the order m = O(n), see Rosset and Zhu [2007].

The fact that the estimator in (2.2) has a piecewise linear solution path as in (2.28) has
computational consequences. All what we need to compute are the values (λk, γk) (k =
0, . . . ,m−1). Having these, we can easily reconstruct the whole regularized solution path.
The (modified) LARS algorithm from [Efron et al., 2004] can be used for this task. Its
computational complexity, for computing the whole regularization path is:

O(np min(n, p)) essential operation counts. (2.29)

Hence, if p ≫ n, O(np min(n, p)) = O(p) and we have a computational complexity which
is linear in the dimensionality p.

Despite the fact that the LARS algorithm is exact for the whole piecewise regularization
path, other algorithms described in Section 2.9.1 can be considerably faster for computing
the Lasso over a large grid of λ-values [Friedman et al., 2007]. In addition, for other
models and penalties, there is often no piecewise regularization path anymore and other
algorithms are needed.

26 CHAPTER 2. LASSO FOR LINEAR MODELS

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** ***************

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

* * * * * *** ** * * *** ** * *****

*
* **

* ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** ****

*

* * * * * *** ** * * *** ** * ***** ***

******* ***** * * ** * ***** **************

*********** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************
*

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** ****

* * * * * ***

**
* *

*** ** * *****
*** ******* ******* ***** * * ** * ***** ************** *************** **** ************

*

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** *******

**** ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * *****

*********** **** *************

* * * * * *** ** * * *** ** * *****
*** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *******

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ******

******** *************** **** ************** * * * * *** ** * * ***
**

*
***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******
*

***** *
* ** * *****

************** ****
*********** **** *****

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *********

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** **************

*

*

*

*

*** ** * *

**
*

**

** ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * *****

**
*

**
**
*
**

**** ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * *
*** ** * ***** *** ******* ******* ***** *

* ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** *
***** ***

******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * ***

**
* *

**

* *****
*** *******

***** * * ** * *****

************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** ***

** *******
***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * ***
** * * *** *

* * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** *
* * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * *

*

*

**
* *

*** ** * *****
*** *******

***** *

* ** * *****
************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** *******
**

*

***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *******
******* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * *
*** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** **
* *

**

*
***** *** ******* ******* ***** * * ** * ***** ***********

*** *************** **** ********

* * * * * *** ** * * *** **
*

*** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ******

* * * * * *** ** * * *** ** * *****
*** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** *******

* ***** * * ** * ***** **********

**** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * *****

******* **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * *
*** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ***

***** * * ** * *****

**** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ****

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ****
* *

* ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** **************

**** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * *****

********* ***************
**** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ***********
*** ***************

**** *************

* * * *

*

** * *
*** ** * *****

* * ** * ***** ************** *****
********** **** *****

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ****

*** *******
******** **** *********

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** *
* ** * *****

************** *************** **** ********

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *****

**** *************

* * * * * *** ** * * ***
**

*
***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** ************** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** **************

*************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* *

*

*

*

**
* *

*** ** *
***** ***

******* *******
***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * *****

**
***** *******

***** *
* ** * ***** ***

**

*** *************** ****

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * *****
************** ***************

*********** * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** *************** **** *************

* * * * * *** ** * * *** ** * ***** *** ******* ******* ***** * * ** * ***** ************** **

****** **** ******

LASSO

40
03

73
17

62
40

04
28

74
36

69
18

55
11

31

Figure 2.6: Plot of regularization path for riboflavin production data with n = 71, p =

4088. x-axis: ‖β̂(λ)‖1/max{‖β̂(λ)‖1; λ}; y-axis: β̂j

√
V̂ ar(X(j))(n − 1).

2.9.1 Coordinatewise optimization and shooting algorithms

For very high-dimensional but sparse problems, coordinate descent algorithms are often
much faster than exact path-following methods such as the LARS-algorithm [Efron et al.,
2004]. In addition, when using other loss functions than squared error or when having a
group-structure in the penalty function, exact path-following algorithms are not available
and other optimization algorithms are needed. These two facts are the main motivation
to focus on coordinatewise methods. We refer to Efron et al. [2004] for a description of
the LARS algorithm for solving the Lasso optimization in (2.2).

Despite the fact that the regularized solution path for β̂(λ) in (2.2) is piecewise linear,
see (2.28), it is often sufficient (or even better) for practical purposes to compute β̂(λ)
on a grid of values Λ = {0 ≤ λgrid,1 < λgrid,2 < λgrid,g}. In particular, the value λk

in (2.28) are data-dependent and hence, they change for say every cross-validation run.
Therefore, when determining the best regularization parameter λ with cross-validation,
we have to use fixed (data-independent) candidate values for λ anyway (or work with a
fixed parameter on another scale).

We recommend to choose the grid to be equi-distant on the log-scale as follows. Choose

λgrid,g = λmax = max
1≤j≤p

|2XT
j Y|/n,

λgrid,k−1 = λgrid,k exp(−C),

where C > 0 is a constant. Typically, we would choose C as a function of λgrid,1: for the
latter, we recommend

λgrid,1 ≈ n−1,

2.9. PATH-FOLLOWING ALGORITHMS 27

and hence

C =
log(λmax)− log(λgrid,1)

g − 1
.

The general idea is to compute a solution β̂(λgrid,g) and use it as a starting value for the

computation of β̂(λgrid,g−1) and so on: the value β̂(λgrid,k) is used as a warm-start for the

computation of β̂(λgrid,k−1). Hence, we will focus in the sequel on the computation for a
single regularization parameter λ.

The simplest algorithm which exploits the characterization from Lemma 2.4.1 pursues
coordinate descent minimization. Denote by

Qλ(β) = ‖Y −Xβ‖2/n + λ‖β‖1

the criterion function in (2.2). Denote by

Gj(β) = 2XT
j (Y −Xβ)/n

the gradient of ‖Y −Xβ‖22/n.

Consider the following algorithm.

Algorithm 1 Coordinate descent minimization

1: Let β(0) ∈ Rp be an initial parameter vector. Set m = 0.
2: repeat

3: Increase m by one: m = m + 1.
4: For j = 1, . . . , p:

if |Gj(β
(m−1)
−j)| ≤ λ : set β

(m)
j = 0,

otherwise: β
(m)
j = arg min

βj

Qλ(β
(m−1)
+j),

where β−j is the parameter vector setting the jth component to zero and β
(m−1)
+j is

the parameter vector which equals β(m−1) except for the jth component where it is
equal to βj.

5: until numerical convergence

In case of the squared error loss, we obtain an explicit up-dating formula. The gradient
equals

Gj(β) = −2XT
j (y −Xβ)/n

and the up-date is

β
(m)
j =

sign(Zj)(|Zj | − λ/2)+

Σ̂jj

,

Zj = XT
j (Y −Xβ−j)/n, Σ̂ = n−1XTX. (2.30)

Thus, we are doing componentwise soft-thresholding. The derivation is left as Exercise 7.
For more details about such an algorithm and variations for other Lasso-related problems,

28 CHAPTER 2. LASSO FOR LINEAR MODELS

we refer to Friedman et al. [2007]. Fu [1998]’s shooting algorithm for the Lasso is a special
case of a coordinate descent approach.

Numerical convergence of the coordinate descent minimization algorithm is guaranteed as
follows. Denote by β̂(m) the parameter vector after m iterations. Then every limit point
of the sequence {β(m);m = 1, 2, . . .} is a minimum point of Qλ(·). This fact follows from
the more general result in Proposition 4.6.1 in Chapter 4.

The coordinatewise optimization above can easily incorporate the more general case where
some parameters are unpenalized, i.e.

β̂ = arg min
β

Qλ(β),

Qλ(β) = ‖Y −Xβ‖2/n + λ

p∑

j=q+1

|βj |,

and thus, β1, . . . , βq are unpenalized. The up-dating step in the optimization algorithm
then looks as follows:

if j ∈ {1, . . . , q} : β
(m)
j = arg min

βj

Qλ(β
(m−1)
+j),

if j ∈ {q + 1, . . . , p} :

if |Gj(β
(m−1)
−j)| ≤ λ : set β

(m)
j = 0,

otherwise: β
(m)
j = arg min

βj

Qλ(β
(m−1)
+j).

2.10 Functions in R

DESCRIPTION AND REFERENCE TO R-PACKAGES

2.11 Exercises

Exercise 1.

(i) Show that in the orthonormal case, the Lasso equals the soft-threshold estimator which
is shown in Figure 2.2.
(ii) Show that the ℓ0-penalty estimator in (2.16) equals the hard-threshold estimator which
is shown in Figure 2.2.

Exercise 2.

(i) For the orthonormal case, derive the threshold function for the adaptive Lasso with
ordinary least squares initial estimator. This threshold function is shown in Figure 2.2.
(Hint: Consider every component and the parameter λj = λ/|Zj |) .
(ii) For the orthonormal case, show that the nonnegative garrote estimator with ordinary
least squares initial estimate equals the adaptive Lasso.

Exercise 3. Derive formula (2.13) from (2.9).

2.11. EXERCISES 29

Exercise 4.

Prove that formula (2.26) holds for linear hat-operators Ŷ = HY where H is linear (i.e.
S is a n× n matrix).

Exercise 5.

Assume that (2.9) holds. For fixed 0 < C <∞, prove formula (2.11).

Exercise 6. (Similar to Exercise 5).
Assume that (2.12) holds. Prove formula (2.13).

Exercise 7. Prove formula (2.30).

30 CHAPTER 2. LASSO FOR LINEAR MODELS

Chapter 3

Generalized Linear Models and

the Lasso

Generalized linear models (GLMs) [McCullagh and Nelder, 1989] are very useful to treat
many extensions of a linear model in a unified way. We consider a model with univariate
response Y and p-dimensional covariates X:

Y1, . . . , Yn independent

g(IE[Yi|Xi = x]) = µ +

p∑

j=1

βjx
(j), (3.1)

where g(·) is a real-valued, know link function, µ denotes the intercept term and the
covariates Xi are either fixed or random. We use the notation

f(x) = fµ,β(x) = µ +
∑

j = 1pβjx
(j)

to denote the linear predictor. An implicit assumption of the model in (3.1) is that the
conditional distribution of Yi given Xi is depending on Xi only through the function
g(IE[Yi|Xi]) = fµ,β(Xi) = µ +

∑p
j=1 βjx

(j). That is, the conditional probability (density)
of Y |X = x is of the form

p(y|x) = pf(x)(y|x) = pµ,β(y|x), (3.2)

where the last equality follows since the link function g(·) is known and hence, the un-
knowns are only the parameters µ and β, see (3.1).

Obviously, a linear model is a special case of a generalized linear model with the identity
link function g(x) = x. Other well-known examples are described below.

3.1 The Lasso estimator: penalizing the negative log-likelihood

For generalized linear models, the Lasso estimator is defined by penalizing the negative
log-likelihood with the ℓ1-norm.

The negative log-likelihood equals

−
n∑

i=1

log(pµ,β(Yi|Xi)),

31

32 CHAPTER 3. GENERALIZED LINEAR MODELS AND THE LASSO

where pµ,β(y|x) is as in (3.2). This expression can be re-written (and scaled by the factor
n−1)) as an empirical risk with a loss function ρ(., .):

n−1
n∑

i=1

ρµ,β(Xi, Yi),

ρµ,β(x, y) = − log(pµ,β(Yi|Xi)).

For many examples and models, the loss function ρµ,β(x, y) is convex for all values x, y.
In particular, if the conditional distribution of Y given X = x is from an sub-class of
the exponential family model (see McCullagh and Nelder [1989, Section 2.2]), we obtain
convexity of ρµ,β(x, y) = ρf(µ,β)(x, y) which depends on µ, β only through some linear func-
tion f(µ, β). Rather than striving for the most general set-up, we will present important
examples below.

The ℓ1-norm penalized Lasso estimator is then defined as:

µ̂, β̂ = arg min
µ,β

(n−1
n∑

i=1

ρµ,β(Xi, Yi) + λ‖β‖1).

Note that we typically do not penalize the intercept term.

The properties for the Lasso in generalized linear models are very similar as for the linear
models case. We have again some high-dimensional consistency, some oracle inequalities
(and hence optimality) and some variable screening (and selection) properties. The theory
can be derived in a similar fashion as for the Lasso in linear models, see ???.

3.1.1 Binary response variable and logistic regression

Consider the case of logistic regression where Yi|Xi = x ∼ Bernoulli(π(x)) (i.e. Binomial(1,π(x)))
with

log

(
π(x)

1− π(x)

)
= µ +

p∑

j=1

βjx
(j).

This is a GLM with link function g(π) = log(π
1−π) (π ∈ (0, 1)).

The negative log-likelihood equals

−
n∑

i=1

log(fµ,β(Yi|Xi)) =

n∑

i=1

(−Yifµ,β(Xi) + log(1 + exp(fµ,β(Xi)))) ,

and the corresponding loss function is

ρµ,β(x, y) = −y(µ +

p∑

j=1

βjx
(j)) + log(1 + exp(µ +

p∑

j=1

βjx
(j))).

In terms of the linear predictor, this loss function equals

ρ(x, y) = ρ(f(x), y) = −yf + log(1 + exp(f)),

where we abbreviate f(x) = f on the right hand side. This is a convex function in f
since the first term is linear, the second term has positive second derivative and the sum

3.1. THE LASSO ESTIMATOR: PENALIZING THE NEGATIVE LOG-LIKELIHOOD33

of convex functions is convex. Furthermore, f = fµ,β(x) = µ +
∑p

j=1 βjx
(j) is linear and

hence

ρµ,β(x, y) = hy(fµ,β(x))

is convex in µ, β as a composition of a convex function hy(·) (convex for all y) and a linear
function.

The loss function can be written as

ρ(f, y) = log(1 + exp(−(2y − 1)f)) = log(1 + exp(−ỹf)),

ỹ = 2y − 1 ∈ {−1, 1}. (3.3)

We see from this formulation that the loss function is a function of ρ(ỹf) of a single
argument, the so-called margin in binary classification. We leave the derivation of (3.3)
as Exercise ???. By scaling, the equivalent loss function is often used:

ρ(f, y) = log2(1 + exp(−ỹf)), (3.4)

which equals one at the value zero and hence, it becomes an upper bound of the misclas-
sification error, see Figure ???.

3.1.2 Poisson regression

For response variable Y taking values in 0, 1, 2, . . ., i.e. count data, we consider Poisson
regression where the conditional distribution Yi|Xi = x ∼ Poisson(λ(x)). Using the link
function

log(λ(x)) = µ +

p∑

j=1

βjx
(j).

we have a GLM as in (3.1).

The negative log-likelihood equals

−
n∑

i=1

log(fµ,β(Yi|Xi)) =
n∑

i=1

{−Yifµ,β(Xi) + exp(fµ,β(Xi)),

and the corresponding loss function is

ρµ,β(x, y) = −y(µ +

p∑

j=1

βjx
(j)) + exp(µ +

p∑

j=1

βjx
(j)).

The first term is linear and hence convex in µ, β, the second term is a composition of a
convex and a linear function and hence convex in µ, β, the sum of convex functions is
convex µ, β, and hence the loss function is convex in µ, β.

34 CHAPTER 3. GENERALIZED LINEAR MODELS AND THE LASSO

3.1.3 Multi-category response and Multinomial distribution

The Multinomial distribution is an example with a vector-valued link function. Con-
sider a response Y ∈ {0, 1, . . . , k − 1} which appears in multi-category classification prob-
lems. We assume that the conditional distribution of Y given X = x is Y |X = x ∼
Multinom(π(x)), where π(x) = π0(x), . . . , πk−1(x) with

∑k−1
r=0 πr(x) = 1 for all x. The

link function

g : [0, 1]k → Rk, π = (π0, . . . , πk−1) 7→ f = (f0, . . . , fk−1)

is easier to describe by its inverse

g−1
r (f) = πr =

exp(fr)∑k−1
s=0 exp(fs)

, r = 0, . . . , k − 1.

This automatically ensures that
∑k−1

r=0 πr = 1. Thus,

log(πr) = fr − log(

k−1∑

s=0

exp(fs)).

The linear predictors are parameterized as

fr(x) = µr +

p∑

j=1

βr;jx
(j), r = 0, . . . , k − 1.

Note that this is over-parameterized since it would suffice to determine say f1, . . . , fk−1

(without say f0), but the constraint
∑k−1

r=0 πr(x) = 1 for all x is automatically enforced.

The negative log-likelihood is

−
n∑

i=1

k−1∑

r=0

log(πr(Xi))I(Yi = r) =
n∑

i=1

log(
k−1∑

s=0

exp(fs(Xi)))−
k−1∑

r=0

I(Yi = r)fr(Xi),

fr(Xi) = µr +

p∑

j=1

βr;jX
(j)
i .

The corresponding loss function is

ρµ,β(x, y) = log(

k−1∑

s=0

exp(µs +

p∑

j=1

βs;jx
(j)))−

k−1∑

r=0

I(y = r)(µr +

p∑

j=1

βr;jx
(j)).

This is again a convex function in {µr, βr;j; r = 0, . . . , k−1, j = 1, . . . , p}. The reasoning
is as follows. The second term includes linear functions only and hence convexity follows
since the sum of convex functions is convex. The first term is of the form

log(

k−1∑

s=0

exp(µs +

p∑

j=1

βs;jx
(j))) = log(

∑

s

exp(fs(µs, βs))), fs = µs +

p∑

j=1

βs;jx
(j).

The function

log(
∑

s

exp(fs)) (3.5)

3.1. THE LASSO ESTIMATOR: PENALIZING THE NEGATIVE LOG-LIKELIHOOD35

is convex in f0, . . . , fk−1: it is the so-called “log-sum-exp” function, see Boyd & Van-
denberghe, Section 3.1.5. Hence, the composition of linear functions fs(µs, βs) (s =
0, . . . , k − 1) with the convexity of the “log-sum-exp” function shows that the first term
is convex in the parameters {µr, βr;j ; r = 0, . . . , k − 1, j = 1, . . . , p} as well and hence
we have convexity of the loss function (since sums of convex functions are convex). The
convexity of the “log-sum-exp” function is left as an Exercise ???.

Contingency tables

The multinomial distribution arises also when modelling contingency tables. Consider q
categorical factor variables Z(1), . . . , Z(q) where each factor Z(j) ∈ I(j), I(j) denoting a
categorical space of d(j) levels (labels). Thus, the q factors take values in the categorical
space

I = I(1) × . . . × I(q),

and we can enumerate I = {i; i = 0, 1, . . . , k− 1} where k =
∑q

j=1 |I(j)|. We then denote
by

Y = (Z(1), . . . , Z(q)) ∈ I.

The observations are Y1, . . . , Yn i.i.d. with Yi ∈ I and Yi ∼ Multinom(π) with k = |I|-
dimensional π satisfying

∑k−1
r=0 πr = 1. Very often, a log-linear model is used:

log(π) = µ + Xβ,

with k× p (k = |I|) design matrix X which encodes the full saturated model (with p = k)
or some sub-model including only intersection terms up to a certain order (with p < k).
Typically, an intercept term µ is used to ensure that

∑k−1
r=0 πr = 1. This can be enforced

in the same way as for Multinomial regression. We use

πr =
exp(µ + (Xβ)r)∑
t∈I exp(µ + (Xβ)t)

, r ∈ I (3.6)

which implies

log(πr) = µ + (Xβ)r − log(
∑

t∈I

exp(µ + (Xβ)t)), r ∈ I.

With the parameterization in (3.6), the negative log-likelihood equals

−
n∑

i=1

log(fµ,β(Yi) = −
n∑

i=1

∑

r∈I

I(Yi = r){µ + (Xβ)r − log(
∑

t∈I

exp(µ + (Xβ)t))}.

and the corresponding loss function, involving y only, is

ρµ,β(y) = log(
∑

s∈I

exp(µ + (Xβ)s))−
∑

r∈I

I(y = r)(µ + (Xβ)r).

The loss function is convex in µ, β by using the same argument as for the corresponding
loss for Multinomial regression.

36 CHAPTER 3. GENERALIZED LINEAR MODELS AND THE LASSO

The Lasso estimator is then

µ̂, β̂ = arg min
µ,β

n−1
n∑

i=1

ρµ,β(Yi) + λ‖β‖1,

This Lasso estimator has the interesting property that it can be used for problems where
many cells have zero counts, i.e.

∑n
i=1 I(Yi = r) = 0 for many r ∈ I, which arises

when having a moderate number of factors q implying that k = |I| is very large. From
a conceptual point of view, one would often aim for an estimator where whole main or
interactions terms (with respect to the structure of the factors Z(1), . . . , Z(q)) are zero or
not: this can be naturally achieved with the Group Lasso described in Chapter 4, see
[Dahinden et al., 2007].

A major drawback of the Lasso (also without penalty; and also of the Group Lasso)
estimator as defined above is its computational cost. Even when restricting the model to
lower-order interactions (with p < k), the row-dimension of X remains to be k = |I| and
the computation of the estimator is at least linear in k. Thus, this naive Lasso strategy
can only work for say k up to say 106. For example, if every factors has 2 levels only, this
would require approximately 2q ≤ 106 and hence q ≤ log2(10

6) ≈ 20: that is, we cannot
handle more than 20 factors with such an approach. For special cases with binary factor
variables, fast componentwise ℓ1-penalization is possible (Wainwright et al???). More
generally, decomposition approaches based on graphical models can be used (Dahinden
and PB ???) but they are not well understood from a theoretical perspective.

3.2 Exercises

Exercise 1.

Derive formula (3.3), i.e. the margin point of view of logistic regression.

Exercise 2.

Prove that the log-sum-exp function in (3.5) is a convex function in its k arguments
f0, . . . , fk−1. Hint: Prove this by directly verifying the definition of a convex function

f(ax + (1− a)y) ≤ af(x) + (1− a)f(y)

for all x, y, 0 ≤ a ≤ 1.

Chapter 4

The Group Lasso

In some applications, a high-dimensional parameter vector β in a regression model is
structured in groups G1, . . . ,Gq which build a partition of the index set {1, . . . , p}. That
is, ∪q

j=1Gj = {1, . . . , p} and Gj ∩ Gk = ∅ (j 6= k). The parameter vector β then carries the
structure

β = (βG1 , . . . , βGq), βGj
= {βr; r ∈ Gr}. (4.1)

An important class of examples where some group structure occurs are in connection with
factor variables. For example, consider a real-valued response variable Y and p categorical
covariates X(1), . . . ,X(p) where each X(j) ∈ X has 4 levels encoded with the labels from
X = {0, 1, 2, 3}. Then, for encoding a main effect, we need 3 parameters, encoding a
first-order interaction requires 9 parameters and so on. Having chosen a parameterization
with a parameter vector β, e.g. with sum contrasts, the group structure is as follows. The
main effect of X(1) corresponds to βG1 with |βG1 | = 3; and likewise, the main effect of all
other variables X(j) corresponds to βGj

with |βGj
| = 3 for all j = 1, . . . , p. Furthermore, a

first-order interaction of X(1) and X(2) corresponds to βGp+1 with |βGp+1 | = 9, and so on.

Another example are nonparametric additive regression models where the groups Gj cor-
respond to basis expansions for the jth additive function of the jth covariate X(j). A
detailed treatment is given in Chapter ??.

4.1 The Group Lasso penalty

When estimating models with a group structure for the parameter vector, we often want
to encourage sparsity on the group-level. Either all entries of β̂Gj

should be zero or all of
them non-zero. This can be achieved with the Group Lasso penalty

λ

q∑

j=1

mj‖βGj
‖2, (4.2)

where ‖βGj
‖2 denotes the standard Euclidean norm. The multiplier mj serves for balancing

the cases where groups are of very different sizes. Typically we would choose

mj =
√

Tj ,

37

38 CHAPTER 4. THE GROUP LASSO

where Tj denotes the cardinality |βGj
|.

The Group Lasso estimator in a linear or generalized linear model as in (2.1) or (3.1)
respectively is then defined as

β̂(λ) = arg min
β

Qλ(β),

Qλ(β) = n−1
n∑

i=1

ρβ(Xi, Yi) + λ

q∑

j=1

mj‖βGj
‖2,

where ρβ(x, y) is a loss function which is convex in β. For example, ρβ(x, y) = |y−βT x|2 or
one of the loss function described in Chapter 3 or ρβ(x, y) = − logβ(f(y|x)) where f(·) is
the density of Y given X = x. As in Chapter 3, we often include an unpenalized intercept
term: the estimator is then

µ̂(λ), β̂(λ) = arg min
µ,β

Sλ(µ, β),

Sλ(µ, β) = n−1
n∑

i=1

ρµ,β(Xi, Yi) + λ

G∑

g=1

s(dfg)‖βGg‖2. (4.3)

As examples of such loss functions we mention ρµ,β(x, y) = |y − µ − βT x| or loss func-
tions described in Chapter 3. In the sequel, we often focus on the notationally simpler
case without intercept; in practice the intercept term is often important but there is no
conceptual difficulty in including it as described in (4.3).

Lemma 4.1.1 Assume that ρβ(x, y) ≥ C > −∞ for all x, y, β. Then, for λ > 0 and
mj > 0 for all j, the minimum in the optimization problem (4.9) is attained.

Proof. Because Qλ(β) = n−1
∑n

i=1 ρβ(Xi, Yi)+λ
∑q

j=1 mj‖βGj
‖2)→∞ if ‖(βG1 , . . . , βGq)‖2 →

∞ the minimum is attained. 2

The Group Lasso estimator has the following properties. Depending on the value of the
regularization parameter λ, the estimated coefficients within a group Gj satisfy: (β̂Gj

)r ≡ 0

for all components r = 1, . . . , Tj or (β̂Gj
)r 6= 0 for all components r = 1, . . . , Tj . This has

to do with the non-differentiability of the
√· function at zero. Furthermore, with trivial

groups consisting of singletons Gj = j for all j = 1, . . . , p, and using mj = Tj ≡ 1, the
penalty function in (4.2) equals the standard Lasso penalty. Finally, the Group Lasso
penalty is invariant under orthonormal transformations.

The Group Lasso estimator has similar qualitative properties as the Lasso. It exhibits
good accuracy for prediction and parameter estimation, and it has the groupwise variable
screening property saying that all relevant groups whose corresponding parameter vector
βG 6= 0 are also estimated as active groups with corresponding parameter vector β̂G 6= 0.
We give more details in Section 4.3 and present some rigorous mathematical theory in ???.

4.2 Factor variables as covariates

As mentioned earlier, grouping of the parameter vector occurs naturally with factor vari-
ables. We consider here the simple case with just two covariates X(1),X(2) ∈ X =

4.2. FACTOR VARIABLES AS COVARIATES 39

{0, 1, 2, 3} (where {0, 1, 2, 3} denotes a set of four categorical labels), i.e. two factors each
having 4 levels. Consider a linear model with real-valued response Y and some dummy
variables encoding the contribution of the two factors:

Yi = µ +

3∑

k=0

γkI(X
(1)
i = k) +

3∑

k=0

δkI(X
(2)
i = k)

+

3∑

k,ℓ=0

κk,ℓI(X
(1)
i = k,X

(2)
i = ℓ) + εi (i = 1, . . . , n), (4.4)

where we assume sum-constraints
∑

k γk =
∑

k δk = 0,
∑

k κk,ℓ =
∑

ℓ κk,ℓ = 0 for all k, ℓ,
I(·) denotes the indicator function and ε1, . . . , εn are i.i.d. variables with IE[εi] = 0. This
model can be parameterized as

Y = Xβ + ε, (4.5)

with Y = (Y1, . . . , Yn), ε = (ε1, . . . , εn) and n × 16 design matrix X̃ which ensures the
sum-constraints from above.

The parameterization in (4.5) can be achieved as follows. A first model matrix X̃ can
be constructed which ensures the sum-constraints mentioned above. In the R-software,
the function model.matrix provides such a first design matrix X̃ . Next, we center all
columns of X̃ to mean zero. This is typically more appropriate since we do not penalize the
intercept term (and hence, we project onto the space of variables which are not penalized).
Afterwards, we parameterize using orthonormal bases for the sub-spaces corresponding
to the two main effects (parameterized in (4.4) with γ, δ) and to the interaction effect
(parameterized in (4.4) with κ). As a result, we end up with a design matrix X as in
(4.5) and we can apply the Group Lasso for estimation of β. It is worth pointing out
that the sum-constraint plays no special role here: other constraints such as Helmert
contrasts can be parameterized with orthonormal bases for the sub-spaces of the main
effects and interactions. Since the Group Lasso penalty is invariant under orthonormal
transformations of the parameter vector, the estimation results (for Ŷ = Xβ̂) are not
affected by the choice of the contrast. However, we point out that the estimation depends
whether we choose orthonormal bases for the different sub-spaces or not. It is not true
that orthonormal bases will necessarily yield the best results: in general, finding the best
basis is a very difficult problem.

4.2.1 Prediction of splice sites in DNA sequences

The prediction of short DNA motifs plays an important role in many areas of computa-
tional biology. Gene finding algorithms such as GENIE [Burge and Karlin, 1997] often
rely on the prediction of splice sites. Splice sites are the regions between coding (exons)
and non-coding (introns) DNA segments. The 5’ end of an intron is called a donor splice
site and the 3’ end an acceptor splice site. A donor site whose first two intron positions
are the letters “GT” is called canonical, whereas an acceptor site is called canonical if the
corresponding intron ends with “AG”. An overview of the splicing process and of some
models that are used for detecting splice sites can be found in Burge [1998].

We analyze here the MEMset Donor dataset. It consists of a training set of 8’415 true
(encoded as Y = 1) and 179’438 false (encoded as Y = 0) human donor sites. An additional

40 CHAPTER 4. THE GROUP LASSO

test set contains 4’208 true and 89’717 false donor sites. A sequence of a real splice site
consists of the last 3 bases of the exon and the first 6 bases of the intron. False splice
sites are sequences on the DNA which match the consensus sequence at position four
and five. Removing the consensus “GT” results in a sequence length of 7 with values in
{A,C,G, T}7 : thus, the predictor variables are 7 factors, each having 4 levels. The data
are available at http://genes.mit.edu/burgelab/maxent/ssdata/. A more detailed
description can be found in Yeo and Burge [2004].

We fit a logistic regression model using the Group Lasso penalty for the main effects and
higher-order interactions among the 7 factors X(1), . . . ,X(p). For p(x) = IP[Y = 1|X = x],
we model logit(p(x)) analogously as in (4.4), but now in the logistic setting and with 7
factors. We use the sum-constraint as encoding scheme for the dummy variables, i.e. the
coefficients have to add up to zero. The entire predictor space has dimension 49 = 262’144
but we restrict ourselves to interactions of at most order 2. After re-parameterizing with
orthonormal bases for all groups Gj corresponding to the sub-spaces from main effects or
interaction terms, we end up with a model

logit(π) = β0 + Xβ

with n× 1155 design matrix X. We then use the Group Lasso estimator

β̂(λ) = arg min
β

−ℓ(β;Y1, . . . , Yn) + λ

q∑

j=1

√
Tj‖βGj

‖2, (4.6)

where the intercept β0 is unpenalized and Tj = |Gj |.
The original training dataset is used to build a smaller balanced training dataset (5’610
true, 5’610 false donor sites) and an unbalanced validation set (2’805 true, 59’804 false
donor sites). All sites are chosen randomly without replacement such that the two sets
are disjoint. The additional test set (4’208 true and 89’717 false donor sites) remains
unchanged. Note that the ratio of true to false sites are equal for the validation and the
test set.

All models are fitted on the balanced training dataset. As the ratio of true to false splice
sites strongly differs from the training to the validation and the test set, the intercept is
corrected as follows [King and Zeng, 2001]:

β̂corr
0 = β̂0 − log

(
ȳ

1− ȳ

)
+ log

(
π

1− π

)
,

where π is the proportion of true sites in the validation set.

The penalty parameter λ is chosen according to the (unpenalized) log-likelihood score on
the validation set using the corrected intercept estimate.

For a threshold τ ∈ (0, 1) we assign observation i to class 1 if pβ̂(xi) > τ and to class
0 otherwise. Note that the class assignment can also be constructed without intercept
correction by using a different threshold.

The correlation coefficient ρτ corresponding to a threshold τ is defined as the Pearson
correlation between the binary random variable of the true class membership and the
binary random variable of the predicted class membership. In Yeo and Burge [2004] the
maximal correlation coefficient

ρmax = max{ρτ | τ ∈ (0, 1)}

4.2. FACTOR VARIABLES AS COVARIATES 41

is used as a goodness of fit statistics on the test set.

The candidate model that was used for the Logistic Group Lasso consists of all 3-way
and lower order interactions involving 64 terms or p = 1156 parameters. Such a Group
Lasso fitted model achieves ρmax = 0.6593 on the test set which is very competitive with
published results from Yeo and Burge [2004] whose best ρmax equals 0.6589.

In the spirit of the adaptive Lasso in Section 2.6 or the relaxed Lasso in 2.7, we consider
here also some two-stage procedures. Instead of an adaptive group ℓ1-penalization which
could be used here, we consider the following. The first stage is Group Lasso yielding a
parameter vector β̂(λ). Denote by Ŝ(λ) = {j; β̂j(λ) 6= 0}. In the second stage, we either
use maximum likelihood estimation (Group Lasso/MLE hybrid) or ℓ2-penalization (Group
Lasso/Ridge hybrid) on the reduced space given by the selected variables in Ŝ(λ). The
latter amounts to the following: when splitting the parameter vector into the components
(βŜ(λ), βŜc(λ)) where the estimator β̂(λ) is non-zero and zero, respectively, we define:

β̂Ŝ(λ)(λ, κ) = arg min
β

Ŝ(λ)

−ℓ((βŜ(λ), 0Ŝc(λ));Y1, . . . , Yn) + κ‖βŜ(λ)‖22,

and for κ = 0, we have the Group Lasso/MLE hybrid. The penalty parameters λ and κ
are again chosen according to the (unpenalized) log-likelihood score on the validation set
using the corrected intercept estimate.

Term

1 3 5 7 1:3 1:5 1:7 2:4 2:6 3:4 3:6 4:5 4:7 5:7
2 4 6 1:2 1:4 1:6 2:3 2:5 2:7 3:5 3:7 4:6 5:6 6:7

l 2
−

no
rm

0
1

2 GL
GL/R
GL/MLE

Term

1:2:3 1:2:5 1:2:7 1:3:5 1:3:7 1:4:6 1:5:6 1:6:7 2:3:5 2:3:7 2:4:6 2:5:6 2:6:7 3:4:6 3:5:6 3:6:7 4:5:7 5:6:7
1:2:4 1:2:6 1:3:4 1:3:6 1:4:5 1:4:7 1:5:7 2:3:4 2:3:6 2:4:5 2:4:7 2:5:7 3:4:5 3:4:7 3:5:7 4:5:6 4:6:7

l 2
−

no
rm

0
1

2

Figure 4.1: ℓ2-norms ‖β̂j‖2, j ∈ {1, . . . , q} of the parameter groups with respect to the
blockwise orthonormalized design matrix when using a candidate model with all 3-way
interactions. i : j : k denotes the 3-way interaction between the ith, jth and kth sequence
position. The same scheme applies to the 2-way interactions and the main effects. Active
3-way interactions are additionally marked with vertical lines.

In terms of predictive accuracy, there is no benefit when using such two-stage procedures.
On the other hand, while the Group Lasso solution has some active 3-way interactions, the

42 CHAPTER 4. THE GROUP LASSO

Group Lasso/Ridge hybrid and the Group Lasso/MLE hybrid only contain 2-way interac-
tions. Figure 4.1 shows the ℓ2-norm of each parameter group for the three estimators. The
3-way interactions of the Group Lasso solution seem to be very weak. Considering also
the non-hierarchical models for the two-stage procedures yields the same selected terms.
Decreasing the candidate model size to only contain 2-way interactions gives similar re-
sults.

In summary, the prediction performance of the Group Lasso estimate in a simple logistic
regression factor model is competitive with Maximum Entropy models that were used in
Yeo and Burge [2004] and which have been viewed as (among) the best for short motif
modeling and splice site prediction. Advantages of the Group Lasso include selection of
terms. In addition, other (possibly continuous) predictor variables as for example global
sequence information could be naturally included in the Group Lasso approach to improve
the rather low correlation coefficients [Yeo and Burge, 2004].

4.3 Properties of the Group Lasso for generalized linear

models

Denote by f(x) = βT x and f̂λ(x) = β̂T (λ)x the linear predictor and its estimate in
a generalized linear model as in (3.1). For prediction, when choosing an appropriate
regularization parameter λ, the Group Lasso estimator is consistent in high-dimensional
settings where p = pn is of much larger order than sample size n:

(β̂(λ)− β0)
T ΣX(β̂(λ)− β0) = oP (1) (n→∞),

where ΣX is n−1XTX in case of a fixed design or equals the covariance of the covariate X
in case of a random design. Note that the quantity on the left-hand side can be expressed
as

n−1
n∑

i=1

{(β̂(λ)− β0)T Xi} for fixed design,

IE[{(β̂(λ)− β0)T Xnew}2] for random design,

where IE is with respect to the new test observation Xnew Under additional assumptions
regarding the “compatibility” of the design matrix X , we obtain the convergence rate

(β̂(λ)− β0)
T ΣX(β̂(λ)− β0) = OP (

(1 + log(q)/
√

m)ms0

nφ2
), (4.7)

where we assume, for simplicity, equal group-size m ≡ Gj for all j = 1, . . . , q, q is the
number of groups and φ2 is a number which depends on the compatibility of the design at
best is bounded below by a positive constant. More mathematical details are given in ???.
When comparing this rate of convergence with (2.8) for the Lasso (which also involves a
number φ2 which we omitted there), we see that we do not realize any essential gain in
terms of prediction power by using the Group Lasso; nor is there an essential loss assuming
that m isn’t very large. We also see from (4.7) that is the group-sizes are large, say in the
order of sample size n, the Group Lasso is not consistent for prediction. For such cases,
we need additional assumptions such as smoothness to be able to achieve consistency of
predictions. This is treated in greater detail in Chapter ??.

4.4. THE GENERALIZED GROUP LASSO PENALTY 43

Furthermore, under “compatibility” assumptions on the design matrix X, the Group Lasso
estimator achieves oracle optimality in terms of ‖β̂(λ) − β‖r for r ∈ {1, 2}. Detailed
mathematical arguments are given in ???.

The variable screening property on the groupwise level, analogous to the description in
Section 2.4, also holds for the Group Lasso. Denote by Sgroup = {j; βGj

6= 0} the set of
groups whose corresponding coefficient vector is not equal to the 0-vector (i.e. at least
one component is different from zero). Analogously we denote by Ŝgroup(λ) its estimated
version. Then, for suitable λ = λn:

IP[Ŝgroup(λ) ⊇ Sgroup]→ 1 (n→∞).

Such a result follows from a convergence rate of ‖β̂(λ)−β‖1 and assuming that the smallest
non-zero coefficient is larger than a certain detection limit. More details are given in ???.
The variable screening property is very useful to do effective dimensionality reduction
while keeping the relevant groups in the model. Typically, the number of groups in Ŝgroup

is much smaller than the total number q of groups. Furthermore, if the group-sizes are
relatively small, the number of parameters in Ŝgroup is often smaller than sample size n.
As pointed out above, if the group-sizes are large, additional smoothness assumptions still
yield statistically meaningful (or even optimal) results. This topic is treated in greater
detail in Chapter ??. We emphasize that even if there is no prediction gain (nor loss) with
the Group Lasso i comparison to the Lasso, it may still be very worthwhile to use it since
it has sparsity for whole groups and corresponding group selection may be very desirable
in practical applications, for example when using dealing with factor variables.

4.4 The generalized Group Lasso penalty

The Group Lasso penalty in (4.2) is

λ

q∑

j=1

mj‖βGj
‖2 = λ

q∑

j=1

mj

√
βT
Gj

βGj
.

In some applications, we need a more flexible penalty of the form:

λ

q∑

j=1

mj

√
βT
Gj

AjβGj
, (4.8)

where Aj are positive definite dfj × dfj matrices. A concrete example are additive models
treated in more detail in Section ??.

Due to the fact that Aj is positive definite, we can re-parameterize:

β̃Gj
= A

1/2
j βGj

,

and hence, an ordinary Group Lasso penalty arises of the form

λ

q∑

j=1

s(dfj)‖β̃Gj
‖2.

The matrix A
1/2
j can be derived as follows. Using e.g. the Choleski decomposition Aj =

RT
j Rj for some quadratic matrix Rj which we denote by A

1/2
j = Rj .

44 CHAPTER 4. THE GROUP LASSO

Of course, we also need to re-parameterize the (generalized) linear model part:

Xβ =

q∑

j=1

XGj
βGj

.

The re-parameterization is then for every sub-design matrix XGj
:

X̃Gj
= XGj

R−1
j = XGj

A
−1/2
j , j = 1, . . . , q

such that Xβ =
∑q

j=1 X̃Gj
β̃Gj

.

The generalized Group Lasso estimator in a linear model is defined by:

β̂ = arg min
β

‖Y −Xβ‖2n + λ

q∑

j=1

s(dfj)
√

βT
Gj

AjβGj
.

Equivalently, we have:

β̂Gj
= A

−1/2
j

ˆ̃βGj
,

(ˆ̃βG1
, . . . , ˆ̃βG1

)T = arg min
β̃G1

,...,β̃Gq

‖Y −
q∑

j=1

X̃Gj
β̃Gj
‖2n + λ

q∑

j=1

s(dfj)‖β̃Gj
‖2.

4.5 The adaptive Group Lasso

The idea of the adaptive Lasso in Section 2.6 can also be applied to the generalized Group
Lasso. As a starting point, we assume to have an initial estimator ˆβinit. Ideally, it is
tailored for the structure with groups G1, . . . ,Gq as in (4.1) so that we have sparsity of

β̂init,Gr in the sense that the whole sub-vector estimate β̂init,Gr is zero or all components
thereof are non-zero. A natural candidate for an initial estimator is the Group Lasso
estimate in (4.6) or the generalized Group Lasso estimate with the penalty in (4.8). From
a practical perspective, we would tune the regularization parameter for the initial estimator
according to prediction optimality using some cross-validation scheme. Thereby, we would
measure prediction accuracy with the squared error or negative log-likelihood loss.

The adaptive Group Lasso is then defined with the following re-weighted penalty. Instead
of (4.2), we take

λ

q∑

j=1

s(dfj)
‖βGj
‖2

‖β̂init,Gj
‖2

.

In terms of computation, we can re-scale the covariates in a linear or generalized linear
model:

X̃(j) = X(j)‖β̂init,Gr‖2 if j ∈ Gr.

Then,
∑p

j=1 βjX
(j) =

∑p
j=1 β̃jX̃

(j) with

β̃j =
βj

‖β̂init,Gr‖2
if j ∈ Gr.

4.6. ALGORITHMS FOR THE GROUP LASSO 45

Hence, we can use the same program to compute the adaptive Group Lasso as for the
plain (non-adaptive) case.

Obviously, we can also use an adaptive generalized Group Lasso. Instead of (4.8) we use

λ

q∑

j=1

s(dfj)

√
βT
Gj

AjβGj

√
β̂T

init,Gj
Ajβ̂init,Gj

.

As above, for computation we can make a reduction to a plain generalized Group Lasso
penalty by the rescaling,

X̃(j) = X(j)wj if j ∈ Gr,

wj =
√

β̂T
init,Gj

Ajβ̂init,Gj
.

The adaptive Group Lasso is primarily recommended to be used for better selection of
groups of variables. The heuristics and motivation is the same as for the adaptive Lasso
described in Section 2.6. Moreover, when using the Group Lasso as initial estimator,
the adaptive Group Lasso is always at least as sparse in terms of number of non-zero
coefficients (and number of groups with non-zero coefficients). This can be desirable in
practice and if the underlying true structure is indeed very sparse, we get better prediction
results as well.

4.6 Algorithms for the Group Lasso

The Group Lasso estimator β̂λ is given by a minimizer of the convex function

Qλ(β) = n−1
n∑

i=1

ρβ(xi, Yi) + λ

G∑

g=1

s(dfg)‖βg‖2, (4.9)

where ρβ(xi, Yi) is a loss function which is convex in β. For the squared error loss, we
consider

ρβ(x, Y) = |Y − xT β|2, (Y ∈ R, x ∈ Rp),

and for the logistic loss we have

ρβ(x, Y) = −Y fβ(x) + log(1 + exp(fβ(x)), (Y ∈ {0, 1}, x ∈ Rp),

fβ(x) = xT β.

We denote in the sequel the empirical risk by

ρ(β) = n−1
n∑

i=1

ρβ(xi, Yi)

and the penalized version by

Qλ(β) = ρ(β) + λ

q∑

g=1

s(dfg)‖βG}
‖2.

46 CHAPTER 4. THE GROUP LASSO

As a consequence of the Karush-Kuhn-Tucker (KKT) conditions (REFERENCE BERT-
SEKAS???), and assuming that ρ(β) is convex, a necessary and sufficient condition for β̂
to be a solution of (4.9) is

∇ρ(β̂)g + λs(dfg)
β̂Gg

‖β̂Gg‖2
= 0 if β̂Gg 6= 0 (i.e. not equal to the 0-vector),

‖∇ρ(β̂)g‖2 ≤ λs(dfg) if β̂Gg ≡ 0. (4.10)

Proof of formula (4.10): If β̂Gg 6= 0, the criterion function Qλ(·) is partially differentiable
with respect t βGg and it is necessary and sufficient (there are no local minima due to
convexity) that these partial derivatives are zero: that is, the first equation in (4.10). If
β̂Gg ≡ 0, the criterion function Qλ(·) is not differentiable but we can invoke subdifferential
calculus (BERTSEKAS???). The subdifferential of Qλ(·) with respect to βg is the set

∂Qλ(βg) = {∇ρ(βg) + λe, e ∈ E(βg)},

E(βg) = {e ∈ Rdfg : e = s(dfg)
βg

‖βg‖2
if βg 6= 0 and ‖e‖2 ≤ s(dfg) if βg = 0}.

Note that the latter case with βg 6= 0 is of interest: then, the vector is e is any vector within
the ball having Euclidean radius s(dfg) In addition, the parameter vector βg minimizes
Qλ(βg) if and only if 0 ∈ ∂Qλ(βg) which is equivalent to the (first and) second statement
in (4.10). 2

Note that (4.10) is a generalization of the first statements in Lemma 2.4.1 from Section
???.

4.6.1 Block Coordinate Descent

For the squared error loss, we can proceed in a simple way using some block coordinate
descent algorithm, as proposed by Yuan and Lin [2006]. The idea of block coordinate
descent is more general, however, and we can use it also for other loss functions ρβ(·, ·),
as in formula (4.9) which is differentiable with respect to β.

We cycle through the parameter groups and minimize the objective function Qλ(·), keeping
all but the current parameter group fixed. This leads us to the algorithm presented in
Table 4.1, where we denote by β−g the parameter vector β when setting βg to 0 while all
other components remain unchanged. Similarly, Xg denotes the n× dfg matrix consisting
of the columns of the design matrix corresponding to the predictor from group g.

In step (3), the ℓ2-norm of the negative gradient looks as follows for the squared and
logistic loss, respectively:

‖2n−1XT
g (y −Xβ−g)‖2 ≤ λs(dfg) for the squared error loss,

‖n−1XT
g (y − pβ−g)‖2 ≤ λs(dfg) for the logistic loss,

where for the latter pβi = IPβ[Yi = 1|Xi]. In step (3), we first check whether the minimum
is at the non-differentiable point βg = 0. If not, we can use a standard numerical minimizer,
e.g. a Newton type algorithm, to find the optimal solution with respect to βg.

In case of the squared error loss, the block-update is explicit if n−1XT
g Xg = Idfg

. Note that
this assumption is quite “natural” since the penalty term is invariant under orthonormal

4.6. ALGORITHMS FOR THE GROUP LASSO 47

Block Coordinate Descent Algorithm

(1) Let β ∈ Rp+1 be an initial parameter vector.
(2) β0 ← arg min

β0

Qλ(β)

(3) for g = 1, . . . , G
if ‖(−∇ρβ−g

(Y,X))g‖2 ≤ λs(dfg)
βg ← 0

else

βg ← arg min
βg

Qλ(β)

end

end

(4) Repeat steps (2)–(3) until some convergence criterion is met.

Table 4.1: Group Lasso Algorithm using Block Coordinate Descent Minimization.

transformations: that is, it does not matter how we proceed to orthonormalize the design
sub-matrices corresponding to the different groups. It then holds that the minimizer in
Step (3) is given by:

if ‖(−∇ρβ−g
(Y,X))g‖2 = ‖XT

g (Y −Xβ−g)‖2 > λs(dfg) :

βg = arg min
βg

Qλ(β) = (1− λs(dfg)/2

‖Ug‖2
)+Ug, Ug = n−1XT

g (y −Xβ−g) = n−1XT
g y,

where (x)+ = max(x, 0).

In case of non-squared error loss, we need to do numerical optimization for a block-update.
Then, the values of the last iteration can be used as starting values to save computing
time. If the group was not in the model in the last iteration, we first go a small step in the
opposite direction of the gradient of the negative log-likelihood function to ensure that we
start at a differentiable point.

Proposition 4.6.1 For the quantities in formula (4.9), assume that Qλ(β) is convex and
ρβ(·, ·) is differentiable with respect to β. Then, Steps (2) and (3) of the block coordinate
descent algorithm perform groupwise minimizations of Qλ(·) and are well defined in the
sense that the corresponding minima are attained. Furthermore, if we denote by β̂(t) the
parameter vector after t block updates, then every limit point of the sequence {β̂(t)}t≥0 is
a minimum point of Qλ(·).

Proof. The fact that the groupwise minima are attained follows from the same arguments
as in the proof of Lemma 4.1.1. We now show that step (3) minimizes the convex function
Qλ(βg) for g ≥ 1. Since Qλ(βg) is not differentiable everywhere, we invoke subdifferen-
tial calculus [Bertsekas, 1995]. The subdifferential of Qλ(·) with respect to βg is the set

∂Qλ(βg) = {−XT
g (y − pβ) + λe, e ∈ E(βg)}, E(βg) = {e ∈ Rdfg : e = s(dfg)

βg

‖βg‖2
if βg 6=

0 and ‖e‖2 ≤ s(dfg) if βg = 0}. The parameter vector βg minimizes Qλ(βg) if and only
if 0 ∈ ∂Qλ(βg) which is equivalent to the formulation of step 3. Furthermore conditions
(A1), (B1) - (B3) and (C2) in Tseng [2001] hold. By Lemma 3.1 and Proposition 5.1 in
Tseng [2001] every limit point of the sequence {β̂(t)}t≥0 is a stationary point of the convex
function Qλ(·), hence a minimum point. 2

48 CHAPTER 4. THE GROUP LASSO

Because the iterates can be shown to stay in a compact set, the existence of a limit point
is guaranteed.

The main drawback of such an algorithm is for the case of non squared error loss where the
blockwise minimizations of the active groups have to be performed numerically. However,
for small and moderate sized problems in the dimension p and the group sizes dfg this
turns out to be sufficiently fast. For large-scale applications it would be attractive to have
a closed form solution for a block update as for the case of squared error loss (but for a
different problem than in Step (3) of the Block Coordinate Descent Algorithm). This will
be discussed in the next subsection.

4.6.2 Block Coordinate Gradient Descent

As discussed above, the blockwise up-dates are available in closed form for squared error
loss. For other loss functions, the idea is to use a quadratic approximation which then
allows for some rather explicit blockwise up-dates. More technical, the key idea is to
combine a quadratic approximation of the empirical loss with an additional line search
which in fact is the block coordinate gradient descent method from Tseng and Yun [2008].
The description here follows closely Meier et al. [2008].

Using a second order Taylor expansion at β̂(t) and replacing the Hessian of the empirical
risk ρ(β) by a suitable matrix H(t) we define

M
(t)
λ (d) = ρ(β̂(t)) + dT∇ρ(β̂(t)) +

1

2
dT H(t)d (4.11)

+ λ

G∑

g=1

s(dfg)‖β̂(t)
g + dg‖2

≈ Qλ(β̂(t) + d),

where d ∈ Rp+1.

Now we consider the minimization of M
(t)
λ (·) with respect to the gth penalized parameter

group. This means that we restrict ourselves to vectors d with dk = 0 for k 6= g. Moreover,

we assume that the corresponding dfg × dfg submatrix H
(t)
gg is of the form H

(t)
gg = h

(t)
g · Idfg

for some scalar h
(t)
g ∈ R.

If ‖∇ρ(β̂(t))g − h
(t)
g β̂

(t)
g ‖2 ≤ λs(dfg), the minimizer of (4.11) is

d(t)
g = −β̂(t)

g .

Note that this is similar to ???, due to the KKT conditions ???, where we also examine
the absolute value of the gradient. Otherwise,

d(t)
g = − 1

h
(t)
g

{
∇ρ(β̂(t))g − λs(dfg)

∇ρ(β̂(t))g − h
(t)
g β̂

(t)
g

‖∇ρ(β̂(t))g − h
(t)
g β̂

(t)
g ‖2

}
.

If d(t) 6= 0, an inexact line search using the Armijo rule has to be performed: Let α(t) be
the largest value in {α0δ

l}l≥0 such that

Qλ(β̂(t) + α(t)d(t))−Qλ(β̂(t)) ≤ α(t)σ∆(t),

4.6. ALGORITHMS FOR THE GROUP LASSO 49

Block Coordinate Gradient Descent Algorithm

(1) Let β ∈ Rp+1 be an initial parameter vector.
(2) for g = 0, . . . , G

Hgg ← hg(β) · Idfg

d← arg min
d | dk=0, k 6=g

Mλ(d)

if d 6= 0
α← Line search
β ← β + α · d

end

end

(3) Repeat step (2) until some convergence criterion is met.

Table 4.2: Group Lasso Algorithm for non squared error loss using Block Coordinate
Gradient Descent Minimization. An unpenalized intercept term can be easily incorporated
as outlined in the text.

where 0 < δ < 1, 0 < σ < 1, α0 > 0, and ∆(t) is the improvement in the objective function
Qλ(·) when using a linear approximation for the log-likelihood, i.e.

∆(t) = (d(t))T∇ρ(β̂(t)) + λs(dfg)‖β̂(t)
g + d(t)

g ‖2 − λs(dfg)‖β̂(t)
g ‖2.

Finally, we define
β̂(t+1) = β̂(t) + α(t)d(t).

The algorithm is outlined in Table 4.2. It is worth pointing out that the block updates
are fairly explicit, similarly to the Block coordinate descent algorithm in Table 4.1 for the
squared error loss.

When minimizing M
(t)
λ (·) with respect to a penalized group, we first have to check whether

the minimum is at a non-differentiable point as outlined above. For an (unpenalized)
intercept β0, this is not necessary and the solution can be directly computed

d
(t)
0 = − 1

h
(t)
0

∇ρ(β̂(t))0.

For a general matrix H(t) the minimization with respect to the gth parameter group

depends on H(t) only through the corresponding submatrix H
(t)
gg . To ensure a reasonable

quadratic approximation in (4.11), H
(t)
gg is ideally chosen to be close to the corresponding

submatrix of the Hessian of the empirical risk function. Restricting ourselves to matrices

of the form H
(t)
gg = h

(t)
g · Idfg

, a possible choice is [Tseng and Yun, 2008]

h(t)
g = max

[
diag

{
∇2ρ(β̂(t))gg

}
, c∗

]
, (4.12)

where c∗ > 0 is a lower bound to ensure convergence (see Proposition 4.6.2). The matrix
H(t) does not necessarily have to be recomputed in each iteration. Under some mild
conditions on H(t) convergence of the algorithm is assured as can be seen from Tseng and
Yun [2008] and from the proof of Proposition 4.6.2.

Standard choices for the tuning parameters are for example α0 = 1, δ = 0.5, σ = 0.1
[Bertsekas, 1995, Tseng and Yun, 2008]. Other definitions of ∆(t) as for example to include

50 CHAPTER 4. THE GROUP LASSO

the quadratic part of the improvement are also possible. We refer the reader to Tseng and
Yun [2008] for more details and proofs that ∆(t) < 0 for d(t) 6= 0 and that the line search
can always be performed.

Proposition 4.6.2 Assume that ρ(β) is convex. If H
(t)
gg is chosen according to (4.12),

then every limit point of the sequence {β̂(t)}t≥0 is a minimum point of Qλ(·).

This result is a consequence of a more general theory on the coordinate gradient descent
method, see Tseng and Yun [2008, Theorem 4.1].

Remark 4.6.1 When cycling through the coordinate blocks, we could restrict ourselves to
the current active set and visit the remaining blocks e.g. every 10th iteration to update
the active set. This is especially useful for very high-dimensional settings and it easily
allows for p ≈ 104 − 105. Moreover, it is also possible to update the coordinate blocks in a
non-cyclic manner or all at the same time which would allow for a parallelizable approach
with the convergence result still holding.

Remark 4.6.2 The block coordinate gradient descent algorithm can be applied to the
Group Lasso in any generalized linear model where the response y has a distribution from
the exponential family. This is available in the R-package grplasso.

To calculate the solutions β̂λ on a grid of the penalty parameter 0 ≤ λK < . . . < λ1 ≤ λmax

we can for example start at

λmax = max
g∈{1,...,G}

1

s(dfg)
‖∇ρ(β)g|β≡0‖2

where all parameters in all the groups are equal to zero. We then use β̂λk
as a starting

value for β̂λk+1
and proceed iteratively until β̂λK

with λK equal or close to zero. Instead

of updating the approximation of the Hessian H(t) in each iteration, we can use a constant
matrix based on the previous parameter estimates β̂λk

to save computing time, i.e.

H(t)
gg = hg(β̂λk

)Idfg
,

for the estimation of β̂λk+1
. Some cross-validation can then be used for choosing the

parameter λ.

Bibliography

Michael A. Beer and Saeed Tavazoie. Predicting gene expression from sequence. Cell, 117:
185–198, 2004.

D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995.

L. Breiman. Better subset regression using the nonnegative garrote. Technometrics, 37:
373–384, 1995.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

Peter Bühlmann and Lukas Meier. Discussion of “One-step sparse estimates in nonconcave
penalized likelihood models” (auths Zou, H. and Li, R.). Annals of Statistics, 36(4):
1534–1541, 2008.

Christopher Burge. Modeling dependencies in pre-mRNA splicing signals. In S.L. Salzberg,
D.B. Searls, and S. Kasif, editors, Computatational Methods in Molecular Biology, chap-
ter 8, pages 129–164. Elsevier Science, 1998.

Christopher Burge and Samuel Karlin. Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268(1):78–94, 1997.

Erin M. Conlon, X. Shirley Liu, Jason D. Lieb, and Jun S. Liu. Integrating regulatory motif
discovery and genome-wide expression analysis. Proceedings of the National Academy
of Science, 100:3339 – 3344, 2003.

C. Dahinden, G. Parmigiani, M.C. Emerick, and P. Bühlmann. Penalized likelihood for
sparse contingency tables with an application to full-length cDNA libraries. BMC Bioin-
formatics, 8(476):1–11, 2007.

D.L. Donoho. Denoising via soft-thresholding. IEEE Trans. Info. Theory, 41:613–627,
1995.

D.L. Donoho and J.M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, 1994.

B. Efron. The estimation of prediction error: covariance penalties and cross-validation.
Journal of the American Statistical Association, 99:619–632, 2004.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression (with discus-
sion). The Annals of Statistics, 32:407–451, 2004.

Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coor-
dinate optimization. Annals of Applied Statistics, 1(2):302–332, 2007.

51

52 BIBLIOGRAPHY

W.J. Fu. Penalized regressions: The Bridge versus the Lasso. Journal of Computational
and Graphical Statistics, 7:397–418, 1998.

C. Gatu, P.I. Yanev, and E.J. Kontoghiorghes. A graph approach to generate all possible
regression submodels. Comp. Statist. & Data Anal., 52:799–815, 2007.

E. Greenshtein and Y. Ritov. Persistence in high-dimensional predictor selection and the
virtue of over-parametrization. Bernoulli, 10(6):971–988, 2004.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman & Hall, London,
1990.

M. Hofmann, C. Gatu, and E.J. Kontoghiorghes. Efficient algorithms for computing the
best subset regression models for large-scale problems. Comp. Statist. & Data Anal.,
52:16–29, 2007.

Gary King and Langche Zeng. Logistic regression in rare events data. Political Analysis,
9(2):137–163, 2001.

P. McCullagh and J.A. Nelder. Generalized linear models. Chapman & Hall, London,
second edition, 1989.

Lukas Meier, Sara van de Geer, and Peter Bühlmann. The Group Lasso for logistic
regression. Journal of the Royal Statistical Society Series B, 70(1):53–71, 2008.

N. Meinshausen. Relaxed Lasso. Computational Statistics & Data Analysis, 52:374–393,
2007.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with
the Lasso. The Annals of Statistics, 34:1436–1462, 2006.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
35:1012–1030, 2007.

R. Tibshirani. Regression analysis and selection via the Lasso. Journal Royal Statist. Soc.
B, 58:267–288, 1996.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, Series B, 117(1):387–423, 2008.

M.A. van de Wiel, Berkhof J., and van Wieringen W.N. Testing the prediction error
difference between two predictors. Biostatistics, 10:550–560, 2009.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. Olson,
J. Marks, and J. Nevins. Predicting the clinical status of human breast cancer by using
gene expression profiles. Proceedings of the National Academy of Sciences (USA), 98:
11462–11467, 2001.

Gene W. Yeo and Christopher B. Burge. Maximum entropy modeling of short sequence
motifs with applications to RNA splicing signals. Journal of Computational Biology, 11
(2/3):475–494, 2004.

BIBLIOGRAPHY 53

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society Series B, 68(1):49–67, 2006.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541–2563, 2006.

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models
(with discussion). The Annals of Statistics, 36:1509–1566, 2008.

H. Zou, T. Hastie, and R. Tibshirani. On the “degrees of freedom” of the Lasso. The
Annals of Statistics, 35:2173–2192, 2007.

