Generalized Linear Models and the Lasso

GLM
Yi, ..., Ynindependent,
p
E[Yi|Xi=x] = p+ xU)
\g,_/ [YilXi l=u ;ﬂ/
link fct. !

example: binary classification

Y; ~ Bernoulli(r(X;))(€ {0,1}),

log(——X)_y — +zp:ﬂ-x(f) (logit link)
09(1_7T(X) =W < | g

(note that 7(x) = E[Y|X = x])




conditional probability (density) of Y|X = x is of the form

P(Y|X) = Prx) (V) = Pus(yIx)

~» negative log-likelihood

n
=Y log(p,.s(YilXi) = n~ Z Pup, (X3, Y)
- Iossfct

Lasso estimator:

~

ﬂaﬁ rgmln“ﬁ Zpuﬂ )(MY)—I_)\HﬁH'I)
i=1

Note: no penalty for intercept term



many standard models yield a loss function (= —log(p(y|x))))
which is convex in p, 8
~» Lasso can be computed efficiently

example: binary classification
Y; ~ Bernoulli(r(x)) with

Iog(1 () >—M+Zﬁ;

negative log-likelihood equals

n

= _10g(pus(YilX)) = D _ (= Yifu5(X) +log(1 + exp(f.,5(X))))
i=1 i=1

and the corresponding loss function is

(X, y) = u+Zﬂ, +Iog1+e><pu+Zﬁ, xUy)
j=1



in terms of the linear predictor f(x) = pu + 37, gix\)
~ loss function equals

p(x,y) = p(f(x),y) = —yf +log(1 + exp(f)),
where f(x) = f
this is a convex function in f since
» the first term is linear

» the second term has positive second derivative
» and the sum of convex functions is convex

furthermore: f = £, 5(x) = u+ Y24 BixU) is linear ~

Pup (X, ¥) = hy(£u,5(X))

is convex in p, 3
as a composition of a convex function hy(-) (convex for all y)
and a linear function



The Group Lasso (Yuan & Lin, 2006)

high-dimensional parameter vector is structured into g groups
or partitions (known a-priori):

G1,...,G9 C{1,...,p}, disjointand Uy Gg = {1,...,p}

corresponding coefficients: gg = {f;; j € G}



Example: categorical covariates
XM, ..., X(P) are factors (categorical variables)
each with 4 levels (e.g. “letters” from DNA)

for encoding a main effect: 3 parameters

for encoding a first-order interaction: 9 parameters

and soon ...

parameterization (e.g. sum contrasts) is structured as follows:
» intercept: no penalty

main effect of X(1): group G¢ with df =3

main effect of X(®): group G, with df = 3

>
>
> ...
» first-order interaction of X(") and X®): G, 1 with df = 9
>

often, we want sparsity on the group-level
either all parameters of an effect are zero or not



often, we want sparsity on the group-level
either all parameters of an effect are zero or not

this can be achieved with the Group-Lasso penalty

q

A af
> s(dfy) [|Bg,l2

g=1

N

II-112

typically s(dfg,) = |/ dfg, so that s(dfg, )8, |2 = O(dfy)



properties of Group-Lasso penalty
» for group-sizes |G4| = 1 ~» standard Lasso-penalty

» convex penalty ~» convex optimization for standard
likelihoods (exponential family models)

> either (Gg(\)); =0or#0foralljeg
» penalty is invariant under orthonormal transformation

e.g. invariant when requiring orthonormal parameterization
for factors



Some aspects from theory

“again”:
» optimal prediction and estimation (oracle inequality)
» group screening: S D So with high prob.
~~
set of active groups



Computation and KKT

criterion function

G
B Zpﬁ Xi, Y] "’)‘23 dfg)||Bgll2;

:1 —1
loss fct. g

loss function pg(.,.) convex in 3
KKT conditions:
Bg,

155,12
IVa(B)gll2 < As(dfg) if gy = O.

Vp(B)g + As(dfy) = 0if Bg, # 0 (not the 0-vector),



Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Lasso: (81, B2 = B, ..., 6 = 6(0 ---aﬁpzﬂx(no))

:
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Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
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Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Group Lasso: (B, = Bgi: B, = By s+ -+ Bg; = B -+ Baq)

.



Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:
» cycle through all coordinates j =1,...,p,1,2,...
or j=1,...,q9,1,2,...
> optimize the penalized log-likelihood w.r.t. 3; (or Sg;)
keeping all other coefficients 3k, k # j (or k # G;) fixed

Group Lasso: (8g,, g, = 85, -, 8¢, = B, B = BL))

,



for Gaussian log-likelihood (squared error loss):
blockwise up-dates are easy and closed-form solutions exist
(use KKT)

for other loss functions (e.g. logistic loss):

blockwise up-dates: no closed-form solution

~>

strategy which is fast: improve every coordinate/group
numerically, but not until numerical convergence

(by using quadratic approximation of log-likelihood function for
improving/optimization of a single block)

and further tricks... (still allowing provable numerical
convergence)



How fast?

logistic case: p = 108, n=100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)



How fast?

logistic case: p = 108, n=100
group-size = 20, sparsity: 2 active groups = 40 parameters
for 10 different A-values

CPU using grplasso: 203.16 seconds ~ 3.5 minutes
(dual core processor with 2.6 GHz and 32 GB RAM)

we can easily deal today with predictors in the Mega’s
i.e. p~ 105 — 107



DNA splice site detection: (mainly) prediction problem
DNA sequence

...ACGGC... EEE QQ Irr  ...AAC...
potential donor site

3 positions exon GC 4 positions intron

response Y € {0, 1}: splice or non-splice site
predictor variables: 7 factors each having 4 levels

(full dimension: 47 = 16'384)
data:

training: 5610 true splice sites
5610 non-splice sites
plus an unbalanced validation set

test data: 4'208 true splice sites
89717 non-splice sites



logistic regression:

log <1€(/)o(()x)> = [y + main effects + first order interactions + . ..

use the Group-Lasso which selects whole terms
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» mainly neighboring DNA positions show interactions
(has been “known” and “debated”)

» no interaction among exons and introns (with Group Lasso
method)

» no second-order interactions (with Group Lasso method)



predictive power:
competitive with “state to the art” maximum entropy modeling
from Yeo and Burge (2004)

correlation between true and predicted class
Logistic Group Lasso 0.6593
max. entropy (Yeo and Burge) | 0.6589

our model (not necessarily the method/algorithm) is simple and
has clear interpretation



a slight generalization: generalized Group Lasso penalty

q

A s(df)y/BE Aifg,.

=1

where A; are positive definite df; x df; matrices
A; positive definite ~+ can re-parameterize:

Bg, = Vzﬁg,,
and hence
q
A s(df)l g Iz
Jj=1
matrix A1/2 use e.g. the Choleski decomposition

of course we also need to re-parameterize the (generalized)
linear model part



