Generalized Linear Models and the Lasso

GLM

$$
\begin{aligned}
& Y_{1}, \ldots, Y_{n} \text { independent, } \\
& \underbrace{g}_{\text {link fct. }} \mathbb{E}\left[Y_{i} \mid X_{i}=x\right]=\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}
\end{aligned}
$$

example: binary classification

$$
\begin{aligned}
& Y_{i} \sim \operatorname{Bernoulli}\left(\pi\left(X_{i}\right)\right)(\in\{0,1\}), \\
& \log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)} \quad \text { (logit link) }
\end{aligned}
$$

(note that $\pi(x)=\mathbb{E}[Y \mid X=x]$)
conditional probability (density) of $Y \mid X=x$ is of the form

$$
p(y \mid x)=p_{f(x)}(y)=p_{\mu, \beta}(y \mid x)
$$

\leadsto negative log-likelihood

$$
-\sum_{i=1}^{n} \log \left(p_{\mu, \beta}\left(Y_{i} \mid X_{i}\right)\right)=n^{-1} \sum_{i=1}^{n} \underbrace{\rho_{\mu, \beta}}_{\text {loss fct. }}\left(X_{i}, Y_{i}\right)
$$

Lasso estimator:

$$
\hat{\mu}, \hat{\beta}=\operatorname{argmin}_{\mu, \beta}\left(n^{-1} \sum_{i=1}^{n} \rho_{\mu, \beta}\left(X_{i}, Y_{i}\right)+\lambda\|\beta\|_{1}\right)
$$

Note: no penalty for intercept term
many standard models yield a loss function $(=-\log (p(y \mid x))))$ which is convex in μ, β
\leadsto Lasso can be computed efficiently
example: binary classification
$Y_{i} \sim \operatorname{Bernoulli}(\pi(x))$ with

$$
\log \left(\frac{\pi(x)}{1-\pi(x)}\right)=\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}
$$

negative log-likelihood equals
$-\sum_{i=1}^{n} \log \left(p_{\mu, \beta}\left(Y_{i} \mid X_{i}\right)\right)=\sum_{i=1}^{n}\left(-Y_{i} f_{\mu, \beta}\left(X_{i}\right)+\log \left(1+\exp \left(f_{\mu, \beta}\left(X_{i}\right)\right)\right)\right)$,
and the corresponding loss function is
$\rho_{\mu, \beta}(x, y)=-y\left(\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}\right)+\log \left(1+\exp \left(\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}\right)\right)$.
in terms of the linear predictor $f(x)=\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}$
\leadsto loss function equals

$$
\rho(x, y)=\rho(f(x), y)=-y f+\log (1+\exp (f)),
$$

where $f(x)=f$
this is a convex function in f since

- the first term is linear
- the second term has positive second derivative
- and the sum of convex functions is convex
furthermore: $f=f_{\mu, \beta}(x)=\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}$ is linear \leadsto

$$
\rho_{\mu, \beta}(x, y)=h_{y}\left(f_{\mu, \beta}(x)\right)
$$

is convex in μ, β
as a composition of a convex function $h_{y}(\cdot)$ (convex for all y) and a linear function

The Group Lasso (Yuan \& Lin, 2006)

high-dimensional parameter vector is structured into q groups or partitions (known a-priori):

$$
\mathcal{G}_{1}, \ldots, \mathcal{G}_{q} \subseteq\{1, \ldots, p\}, \text { disjoint and } \cup_{g} \mathcal{G}_{g}=\{1, \ldots, p\}
$$

corresponding coefficients: $\beta_{\mathcal{G}}=\left\{\beta_{j} ; j \in \mathcal{G}\right\}$

Example: categorical covariates
$X^{(1)}, \ldots, X^{(p)}$ are factors (categorical variables)
each with 4 levels (e.g. "letters" from DNA)
for encoding a main effect: 3 parameters for encoding a first-order interaction: 9 parameters and so on ...
parameterization (e.g. sum contrasts) is structured as follows:

- intercept: no penalty
- main effect of $X^{(1)}$: group \mathcal{G}_{1} with $d f=3$
- main effect of $X^{(2)}$: group \mathcal{G}_{2} with $d f=3$
- first-order interaction of $X^{(1)}$ and $X^{(2)}: \mathcal{G}_{p+1}$ with $d f=9$
- ...
often, we want sparsity on the group-level either all parameters of an effect are zero or not
often, we want sparsity on the group-level either all parameters of an effect are zero or not
this can be achieved with the Group-Lasso penalty

$$
\lambda \sum_{g=1}^{q} s\left(d f_{g}\right) \underbrace{\left\|\beta_{\mathcal{G}_{g}}\right\|_{2}}_{\sqrt{\|\cdot\|_{2}^{2}}}
$$

typically $s\left(d f_{\mathcal{G}_{g}}\right)=\sqrt{d f_{\mathcal{G}_{g}}}$ so that $s\left(d f_{\mathcal{G}_{g}}\right)\left\|\beta_{\mathcal{G}_{g}}\right\|_{2}=O\left(d f_{g}\right)$
properties of Group-Lasso penalty

- for group-sizes $\left|\mathcal{G}_{g}\right| \equiv 1 \sim$ standard Lasso-penalty
- convex penalty \sim convex optimization for standard likelihoods (exponential family models)
- either $\left(\hat{\beta}_{\mathcal{G}}(\lambda)\right)_{j}=0$ or $\neq 0$ for all $j \in \mathcal{G}$
- penalty is invariant under orthonormal transformation e.g. invariant when requiring orthonormal parameterization for factors

Some aspects from theory

"again":

- optimal prediction and estimation (oracle inequality)
- group screening: $\hat{S} \supseteq \quad \underbrace{S_{0}}$ with high prob.
set of active groups

Computation and KKT

criterion function

$$
Q_{\lambda}(\beta)=n^{-1} \sum_{i=1}^{n} \underbrace{\rho_{\beta}\left(x_{i}, Y_{i}\right)}_{\text {loss fct. }}+\lambda \sum_{g=1}^{G} s\left(d f_{g}\right)\left\|\beta_{g}\right\|_{2}
$$

loss function $\rho_{\beta}(.,$.$) convex in \beta$
KKT conditions:

$$
\begin{aligned}
& \nabla \rho(\hat{\beta})_{g}+\lambda s\left(d f_{g}\right) \frac{\hat{\beta}_{\mathcal{G}_{g}}}{\left\|\hat{\beta}_{\mathcal{G}_{g}}\right\|_{2}}=0 \text { if } \hat{\beta}_{\mathcal{G}_{g}} \neq 0 \text { (not the 0-vector), } \\
& \left\|\nabla \rho(\hat{\beta})_{g}\right\|_{2} \leq \lambda s\left(d f_{g}\right) \text { if } \hat{\beta}_{\mathcal{G}_{g}} \equiv 0
\end{aligned}
$$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $k \neq \mathcal{G}_{j}$) fixed

$$
\text { Lasso: }\left(\beta_{1}, \beta_{2}=\beta_{2}^{(0)}, \ldots, \beta_{j}=\beta_{j}^{(0)}, \ldots, \beta_{p}=\beta_{p}^{(0)}\right)
$$

$$
\uparrow
$$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $k \neq \mathcal{G}_{j}$) fixed

$$
\text { Lasso: }\left(\beta_{1}=\beta_{1}^{(1)}, \beta_{2}, \ldots, \beta_{j}=\beta_{j}^{(0)}, \ldots, \beta_{p}=\beta_{p}^{(0)}\right)
$$

\uparrow

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

$$
\text { Lasso: }\left(\beta_{1}=\beta_{1}^{(1)}, \beta_{2}=\beta_{2}^{(1)}, \ldots, \beta_{j}, \ldots, \beta_{p}=\beta_{p}^{(0)}\right)
$$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

$$
\text { Lasso: }\left(\beta_{1}=\beta_{1}^{(1)}, \beta_{2}=\beta_{2}^{(1)}, \ldots, \beta_{j}=\beta_{j}^{(1)}, \ldots, \beta_{p}\right)
$$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $k \neq \mathcal{G}_{j}$) fixed

$$
\text { Lasso: }\left(\beta_{1}, \beta_{2}=\beta_{2}^{(1)}, \ldots, \beta_{j}=\beta_{j}^{(1)}, \ldots, \beta_{p}=\beta_{p}^{(1)}\right)
$$

$$
\uparrow
$$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

Group Lasso: $\left(\beta_{\mathcal{G}_{1}}, \beta_{\mathcal{G}_{2}}=\beta_{\mathcal{G}_{2}}^{(0)}, \ldots, \beta_{\mathcal{G}_{j}}=\beta_{\mathcal{G}_{j}}^{(0)}, \ldots, \beta_{\mathcal{G}_{q}}=\beta_{\mathcal{G}_{q}}^{(0)}\right)$
\uparrow

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

Group Lasso: $\left(\beta_{\mathcal{G}_{1}}=\beta_{\mathcal{G} 1}^{(1)}, \beta_{\mathcal{G}_{2}}, \ldots, \beta_{\mathcal{G}_{j}}=\beta_{\mathcal{G}_{j}}^{(0)}, \ldots, \beta_{\mathcal{G}_{q}}=\beta_{\mathcal{G}_{q}}^{(0)}\right)$
\uparrow

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

Group Lasso: $\left(\beta_{\mathcal{G}_{1}}=\beta_{\mathcal{G}_{1}}^{(1)}, \beta_{\mathcal{G}_{2}}=\beta_{\mathcal{G}_{2}}^{(1)}, \ldots, \beta_{\mathcal{G}_{j}}, \ldots, \beta_{\mathcal{G}_{q}}=\beta_{\mathcal{G}_{q}}^{(0)}\right)$
\uparrow

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $k \neq \mathcal{G}_{j}$) fixed

Group Lasso: $\left(\beta_{\mathcal{G}_{1}}=\beta_{\mathcal{G} 1}^{(1)}, \beta_{\mathcal{G}_{2}}=\beta_{\mathcal{G}_{2}}^{(1)}, \ldots, \beta_{\mathcal{G}_{j}}=\beta_{\mathcal{G}_{j}}^{(1)}, \ldots, \beta_{\mathcal{G}_{q}}\right)$

Block coordinate descent algorithm

generic description for both, Lasso or Group-Lasso problems:

- cycle through all coordinates $j=1, \ldots, p, 1,2, \ldots$ or

$$
j=1, \ldots, q, 1,2, \ldots
$$

- optimize the penalized log-likelihood w.r.t. β_{j} (or $\beta_{\mathcal{G}_{j}}$) keeping all other coefficients $\beta_{k}, k \neq j$ (or $\left.k \neq \mathcal{G}_{j}\right)$ fixed

Group Lasso: $\left(\beta_{\mathcal{G}_{1}}, \beta_{\mathcal{G}_{2}}=\beta_{\mathcal{G}_{2}}^{(1)}, \ldots, \beta_{\mathcal{G}_{j}}=\beta_{\mathcal{G}_{j}}^{(1)}, \ldots, \beta_{\mathcal{G}_{q}}=\beta_{\mathcal{G}_{q}}^{(1)}\right)$
\uparrow
for Gaussian log-likelihood (squared error loss):
blockwise up-dates are easy and closed-form solutions exist (use KKT)
for other loss functions (e.g. logistic loss):
blockwise up-dates: no closed-form solution
$~$
strategy which is fast: improve every coordinate/group numerically, but not until numerical convergence (by using quadratic approximation of log-likelihood function for improving/optimization of a single block)
and further tricks... (still allowing provable numerical convergence)
logistic case: $p=10^{6}, n=100$
group-size $=20$, sparsity: 2 active groups $=40$ parameters
for 10 different λ-values
CPU using grplasso: 203.16 seconds ≈ 3.5 minutes (dual core processor with 2.6 GHz and 32 GB RAM)

How fast?

logistic case: $p=10^{6}, n=100$
group-size $=20$, sparsity: 2 active groups $=40$ parameters
for 10 different λ-values
CPU using grplasso: 203.16 seconds ≈ 3.5 minutes (dual core processor with 2.6 GHz and 32 GB RAM)
we can easily deal today with predictors in the Mega's
i.e. $p \approx 10^{6}-10^{7}$

DNA splice site detection: (mainly) prediction problem

 DNA sequence
response $Y \in\{0,1\}$: splice or non-splice site predictor variables: 7 factors each having 4 levels
(full dimension: $4^{7}=16^{\prime} 384$)
data:

training:	$5^{\prime} 610$ true splice sites
	$5^{\prime} 610$ non-splice sites
	plus an unbalanced validation set
test data:	$4^{\prime} 208$ true splice sites
	$89^{\prime} 717$ non-splice sites

logistic regression:
$\log \left(\frac{p(x)}{1-p(x)}\right)=\beta_{0}+$ main effects + first order interactions $+\ldots$
use the Group-Lasso which selects whole terms

- mainly neighboring DNA positions show interactions (has been "known" and "debated")
- no interaction among exons and introns (with Group Lasso method)
- no second-order interactions (with Group Lasso method)
predictive power:
competitive with "state to the art" maximum entropy modeling from Yeo and Burge (2004)
correlation between true and predicted class

> | Logistic Group Lasso | 0.6593 |
| :---: | :--- |
| max. entropy (Yeo and Burge) | 0.6589 |

our model (not necessarily the method/algorithm) is simple and has clear interpretation
a slight generalization: generalized Group Lasso penalty

$$
\lambda \sum_{j=1}^{q} s\left(d f_{j}\right) \sqrt{\beta_{\mathcal{G}_{j}}^{T} A_{j} \beta_{\mathcal{G}_{j}}},
$$

where A_{j} are positive definite $d f_{j} \times d f_{j}$ matrices
A_{j} positive definite \leadsto can re-parameterize:

$$
\tilde{\beta}_{\mathcal{G}_{j}}=A_{j}^{1 / 2} \beta_{\mathcal{G}_{j}},
$$

and hence

$$
\lambda \sum_{j=1}^{q} s\left(d f_{j}\right)\left\|\tilde{\beta}_{\mathcal{G}_{j}}\right\|_{2}
$$

matrix $A_{j}^{1 / 2}$: use e.g. the Choleski decomposition of course, we also need to re-parameterize the (generalized) linear model part

