The Lasso (Tibshirani, 1996)

Lasso for linear models

B(A) = argming(n~'[[Y = XBIF + A [I18]l1 )
\26" ~——

=2 161

~» convex optimization problem
> Lasso does variable selection
some of the 3;(\) = 0
(because of “¢1-geometry”)
» (()\) is a shrunken LS-estimate



Lasso for prediction: Xpew/3())



Lasso for prediction: Xpew/3())

Lasso for variable selection:
8(\) = {J; Bi(n) #0}
for  Sp={j;p° #0}

no significance testing involved
it's convex optimization only!

(and that can be a problem... see later)



Some results from asymptotic theory

triangular array of observations:
Zﬁn/X +epi, I=1,. n=12,...

consistency:

(B(X) = Bo) "Zx(B(\) — Bo) = 0p(1) (n — ),

Y x = n—'X"X in case of a fixed design
Y x equals covariance of the covariate X in case of a random
design

IX(5 — 8°)|13/n for fixed design,
E[(Xnew(B(X) — °))?] for random design,



consistency holds under the main assumption:

1611 :o( ,og’zp))

when choosing X in a suitable range.

optimal prediction:

n

E[IX(3(\) — 522/ = O(S""’g(”))
So = card(Sp)

if one would knew a-priori the sy relevant covariates
use OLS which yields

B[ X(Bors — 8°)ll2/ = 2

for optimal prediction: we need additional assumptions on the
design X



Variable screening

under some additional assumptions on the design:

for suitable A = A, and with large probability

P
IB-8lh=315-6l< C log(p)so/n
J=1 depending on X,o2
hence:  max|f; — 31 < 13— 8l < C\/log(p)so/n

and if mjin{\ﬁ,-|; Bj # 0} > C+/log(p)so/n
then [ #0forallje S, ie.S2 S



with large probability

(p)
U



with large probability
S 0 Sy

8| < O(min(n, p)) =_ O(n)

if p>n

T

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal Ay

A

S( )\opt) =2 SO



with large probability
S 0 Sy

8| < O(min(n, p)) =_ O(n)

if p>n

T

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal Ay

A

S( )\opt) =2 SO

~> Lasso as an
excellent screening procedure

i.e. true active set is contained in estimated active set from
Lasso



Lasso screening is easy to use,
~——

prediction optimal tuning
computationally efficient, and statistically accurate

O(npmin(n,p))



Sso = 3, p= 1000, n = 50; 2 independent realizations
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Motif regression (p = 195, n = 287)
26 selected covariates when using Acy

original data
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presumably: the truly relevant variables are among the 26
selected covariates



Variable selection with Lasso

an older formulation:
Theorem (Meinshausen & PB, 2004 (publ: 2006))

» sufficient and necessary neighborhood stability condition
on the design X; see also Zhao & Yu (2006)
> p = ppis growing with n
» pp = O(n*) for some 0 < a < oo (high-dimensionality)
> |Stue,n| = |So,n| = O(n*) for some 0 < k < 1 (sparsity)
» the non-zero jj’s are outside the n—'/2-range
» Y, XU’s Gaussian (not crucial)

Then: if A\ = \, ~ const.n=1/279/2 (0 < § < 1/2),

P[S(A\) = So] = 1 - O(exp(~Cn'~%)) (n— o)
1 even for relatively small n

Q



Problem 1:

Neighborhood stability condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix exhibits
“strong linear dependence” (in terms of sub-matrices)

if it fails and because of necessity of the condition
= Lasso is not consistent for selecting the relevant variables



neighborhood stability condition < irrepresentable condition
(Zhao & Yu, 2006)
XX - %

active set So = {j; 5 # 0} = {1,..., 80} consists of the first 5o
variables; partition

s TS LS
Yses  Lsesg

irrep. condition : |Tgc 5. X o sign(fBy, ..., 0s) < 1
S5:50785,5 0

not easy to get insights when it holds...



Problem 2: Choice of \

for prediction oracle solution

p
Aopt = ArgMIN,E[(Y =~ Bi(A) XW)?]
=1

P[S(Aopt) = So] < 1 (n— o)  (or = 0if pp — 00 (1 — 0))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2006)



recap: variable screening

So = 3, p=1'000, n= 50; 2 independent realizations

Lasso Lasso
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~> want to get rid of the variables with small estimated
coefficients



Adaptive Lasso (zou, 2006)

re-weighting the penalty function

|5j |

‘ /n/tj‘

3 = argming(||Y — XB15/n + )\Z

Binit; from Lasso in first stage (or OLSif p < n)

Zou (2006)

for orthogonal design,

if Binit = OLS:

Adaptive Lasso = NN-garrote
~> less bias than Lasso




So =3, p= 1000, n=50
same 2 independent realizations from before
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Motif regression: n =287, p =195

Lasso Adaptive Lasso
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trivial property
Binitj =0= B;=0
since

|5 |

| /mt,/|

3 = argming(||Y — Xﬁl!z/”+)‘z

another motif regression (linear model): n = 2587, p = 666
Lasso 1-Step 2-Step

test set squared prediction error  0.6193 0.6230 0.6226
number of selected variables 91 42 28

~» substantially sparser model fit with
twice-iterated adaptive Lasso (three-stage procedure)



Relaxed Lasso (Meinshausen, 2007)

similar in spirit to the adaptive Lasso; and similar in
performance



