The Lasso (Tibshirani, 1996)

Lasso for linear models

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}(n^{-1}\|\mathbf{Y}-\mathbf{X} \beta\|^{2}+\underbrace{\lambda}_{\geq 0} \underbrace{\|\beta\|_{1}}_{\sum_{j=1}^{p}\left|\beta_{j}\right|})
$$

\sim convex optimization problem

- Lasso does variable selection some of the $\hat{\beta}_{j}(\lambda)=0$ (because of " ℓ_{1}-geometry")
- $\hat{\beta}(\lambda)$ is a shrunken LS-estimate

Lasso for prediction: $x_{\text {new }} \hat{\beta}(\lambda)$

Lasso for variable selection:

(and that can be a problem... see later)

Lasso for prediction: $x_{\text {new }} \hat{\beta}(\lambda)$

Lasso for variable selection:

$$
\begin{aligned}
& \quad \hat{S}(\lambda)=\left\{j ; \hat{\beta}_{j}(\lambda) \neq 0\right\} \\
& \text { for } \quad S_{0}=\left\{j ; \beta_{j}^{0} \neq 0\right\} \\
& \text { no significance testing involved } \\
& \text { it's convex optimization only! }
\end{aligned}
$$

(and that can be a problem... see later)

Some results from asymptotic theory

triangular array of observations:

$$
Y_{n ; i}=\sum_{j=1}^{p_{n}} \beta_{n ; j} X_{n ; i}^{(j)}+\varepsilon_{n ; i}, i=1, \ldots, n ; \quad n=1,2, \ldots
$$

consistency:

$$
\left(\hat{\beta}(\lambda)-\beta_{0}\right)^{T} \Sigma_{X}\left(\hat{\beta}(\lambda)-\beta_{0}\right)=o_{P}(1)(n \rightarrow \infty)
$$

$\Sigma_{X}=n^{-1} \mathbf{X}^{T} \mathbf{X}$ in case of a fixed design
Σ_{X} equals covariance of the covariate X in case of a random design

$$
\left\|\mathbf{X}\left(\hat{\beta}-\beta^{0}\right)\right\|_{2}^{2} / n \text { for fixed design }
$$

$\mathbb{E}\left[\left(X_{\text {new }}\left(\hat{\beta}(\lambda)-\beta^{0}\right)\right)^{2}\right]$ for random design,
consistency holds under the main assumption:

$$
\|\beta\|_{1}=O\left(\sqrt{\frac{n}{\log (p)}}\right)
$$

when choosing λ in a suitable range.
optimal prediction:

$$
\mathbb{E}\left[\left\|\mathbf{X}\left(\hat{\beta}(\lambda)-\beta^{0}\right)\right\|_{2} / n\right]=O\left(\frac{s_{0} \log (p)}{n}\right)
$$

$s_{0}=\operatorname{card}\left(S_{0}\right)$
if one would knew a-priori the s_{0} relevant covariates use OLS which yields

$$
\mathbb{E}\left[\left\|\mathbf{X}\left(\hat{\beta}_{O L S}-\beta^{0}\right)\right\|_{2} / n\right]=\frac{s_{0}}{n}
$$

for optimal prediction: we need additional assumptions on the design \mathbf{X}

Variable screening

under some additional assumptions on the design: for suitable $\lambda=\lambda_{n}$ and with large probability

$$
\|\hat{\beta}-\beta\|_{1}=\sum_{j=1}^{p}\left|\hat{\beta}_{j}-\beta_{j}\right| \leq \underbrace{C}_{\text {depending on } \mathbf{X}, \sigma^{2}} \sqrt{\log (p) s_{0} / n}
$$

hence: $\max _{j}\left|\hat{\beta}_{j}-\beta_{j}\right| \leq\|\hat{\beta}-\beta\|_{1} \leq C \sqrt{\log (p) s_{0} / n}$
and if $\min _{j}\left\{\left|\beta_{j}\right| ; \beta_{j} \neq 0\right\}>C \sqrt{\log (p) s_{0} / n}$
then

$$
\hat{\beta}_{j} \neq 0 \text { for all } j \in S_{0}, \quad \text { i.e. } \hat{S} \supseteq S_{0}
$$

with large probability

$$
\hat{S} \supseteq S_{0}
$$

i.e. a huge dimensionality reduction in the original covariates!

furthermore: "typically", for prediction-optimal $\lambda_{\text {opt }}$

Lasso as an
i.e. true active set is contained in estimated active set from Lasso
with large probability

$$
\hat{S} \supseteq S_{0}
$$

$$
|\hat{S}| \leq O(\min (n, p)) \underbrace{=}_{\text {if } p \gg n} O(n)
$$

i.e. a huge dimensionality reduction in the original covariates!
furthermore: "typically", for prediction-optimal λ_{opt}

$$
\hat{S}\left(\lambda_{\mathrm{opt}}\right) \supseteq S_{0}
$$

with large probability

$$
\hat{S} \supseteq S_{0}
$$

$$
|\hat{S}| \leq O(\min (n, p)) \underbrace{=}_{\text {if } p \gg n} O(n)
$$

i.e. a huge dimensionality reduction in the original covariates!
furthermore: "typically", for prediction-optimal $\lambda_{\text {opt }}$

$$
\begin{gathered}
\hat{S}\left(\lambda_{\text {opt }}\right) \supseteq S_{0} \\
\sim \text { Lasso as an } \\
\text { excellent screening procedure }
\end{gathered}
$$

i.e. true active set is contained in estimated active set from Lasso

Lasso screening is $\underbrace{\text { easy to use, }}_{\text {prediction optimal tuning }}$
computationally efficient, and statistically accurate $O(n p \min (n, p))$
$s_{0}=3, p=1^{\prime} 000, n=50 ; 2$ independent realizations

44 selected variables
36 selected variables

Motif regression $(p=195, n=287)$
26 selected covariates when using $\hat{\lambda}_{C V}$

presumably: the truly relevant variables are among the 26 selected covariates

Variable selection with Lasso

an older formulation:
Theorem (Meinshausen \& PB, 2004 (publ: 2006))

- sufficient and necessary neighborhood stability condition on the design X; see also Zhao \& Yu (2006)
- $p=p_{n}$ is growing with n
- $p_{n}=O\left(n^{\alpha}\right)$ for some $0<\alpha<\infty$ (high-dimensionality)
- $\left|S_{\text {true }, n}\right|=\left|S_{0, n}\right|=O\left(n^{\kappa}\right)$ for some $0<\kappa<1$ (sparsity)
- the non-zero β_{j} 's are outside the $n^{-1 / 2}$-range
- $Y, X^{(j)}$'s Gaussian (not crucial)

Then: if $\lambda=\lambda_{n} \sim$ const. $n^{-1 / 2-\delta / 2}(0<\delta<1 / 2)$,

$$
\begin{aligned}
\mathbb{P}\left[\hat{S}(\lambda)=S_{0}\right] & =1-O\left(\exp \left(-C n^{1-\delta}\right)\right)(n \rightarrow \infty) \\
& \approx 1 \text { even for relatively small } n
\end{aligned}
$$

Problem 1:
Neighborhood stability condition is restrictive
sufficient and necessary for consistent model selection with Lasso
it fails to hold if design matrix exhibits
"strong linear dependence" (in terms of sub-matrices)
if it fails and because of necessity of the condition
\Rightarrow Lasso is not consistent for selecting the relevant variables
neighborhood stability condition \Leftrightarrow irrepresentable condition
(Zhao \& Yu, 2006)

$$
n^{-1} X^{\top} X \rightarrow \Sigma
$$

active set $S_{0}=\left\{j ; \beta_{j} \neq 0\right\}=\left\{1, \ldots, s_{0}\right\}$ consists of the first s_{0} variables; partition

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{S_{0}, S_{0}} & \Sigma_{S_{0}, S_{0}^{c}} \\
\Sigma_{S_{0}^{c}, S_{0}} & \Sigma_{S_{0}^{c}, S_{0}^{c}}
\end{array}\right)
$$

irrep. condition: $\left|\Sigma_{S_{0}^{c}, S_{0}} \Sigma_{S_{0}, S_{0}}^{-1} \operatorname{sign}\left(\beta_{1}, \ldots, \beta_{S_{0}}\right)\right|<1$
not easy to get insights when it holds...

Problem 2: Choice of λ
for prediction oracle solution

$$
\lambda_{\mathrm{opt}}=\operatorname{argmin}_{\lambda} \mathbb{E}\left[\left(Y-\sum_{j=1}^{p} \hat{\beta}_{j}(\lambda) X^{(j)}\right)^{2}\right]
$$

$\mathbb{P}\left[\hat{S}\left(\lambda_{\text {opt }}\right)=S_{0}\right]<1(n \rightarrow \infty) \quad\left(\right.$ or $=0$ if $\left.p_{n} \rightarrow \infty(n \rightarrow \infty)\right)$
asymptotically: prediction optimality yields too large models (Meinshausen \& PB, 2004; related example by Leng et al., 2006)
recap: variable screening
$s_{0}=3, p=1^{\prime} 000, n=50 ; 2$ independent realizations

44 selected variables
36 selected variables \leadsto want to get rid of the variables with small estimated coefficients

Adaptive Lasso (Zou, 2006)

re-weighting the penalty function

$$
\begin{aligned}
& \hat{\beta}=\operatorname{argmin}_{\beta}\left(\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\hat{\beta}_{\text {init, }, j}\right|}\right), \\
& \hat{\beta}_{\text {init }, j} \text { from Lasso in first stage } \underbrace{\text { (or OLS if } p<n)}_{\text {Zou (2006) }}
\end{aligned}
$$

for orthogonal design,
if $\hat{\beta}_{\text {init }}=$ OLS:
Adaptive Lasso = NN-garrote \leadsto less bias than Lasso

$$
s_{0}=3, p=1^{\prime} 000, n=50
$$

same 2 independent realizations from before

13 selected variables
(44 with Lasso)

3 selected variables (36 with Lasso)

Motif regression: $n=287, p=195$

26 selected variables
16 selected variables
trivial property

$$
\hat{\beta}_{i n i t, j}=0 \Rightarrow \hat{\beta}_{j}=0
$$

since

$$
\hat{\beta}=\operatorname{argmin}_{\beta}\left(\|\mathbf{Y}-\mathbf{X} \beta\|_{2}^{2} / n+\lambda \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\hat{\beta}_{\text {init }, j}\right|}\right)
$$

another motif regression (linear model): $n=2587, p=666$			
	0.6193	0.6230	0.6226
number of selected variables	91	42	28

\leadsto substantially sparser model fit with
twice-iterated adaptive Lasso (three-stage procedure)

Relaxed Lasso (Meinshausen, 2007) similar in spirit to the adaptive Lasso; and similar in performance

