
The Lasso (Tibshirani, 1996)

Lasso for linear models

β̂(λ) = argminβ(n−1‖Y− Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

; convex optimization problem

I Lasso does variable selection
some of the β̂j(λ) = 0
(because of “`1-geometry”)

I β̂(λ) is a shrunken LS-estimate



Lasso for prediction: xnew β̂(λ)

Lasso for variable selection:

Ŝ(λ) = {j ; β̂j(λ) 6= 0}
for S0 = {j ;β0

j 6= 0}

no significance testing involved
it’s convex optimization only!

(and that can be a problem... see later)
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Some results from asymptotic theory
triangular array of observations:

Yn;i =

pn∑
j=1

βn;jX
(j)
n;i + εn;i , i = 1, . . . ,n; n = 1,2, . . .

consistency:

(β̂(λ)− β0)T ΣX (β̂(λ)− β0) = oP(1) (n→∞),

ΣX = n−1XT X in case of a fixed design
ΣX equals covariance of the covariate X in case of a random
design

‖X(β̂ − β0)‖22/n for fixed design,
E[(Xnew (β̂(λ)− β0))2] for random design,



consistency holds under the main assumption:

‖β‖1 = O
(√

n
log(p)

)
when choosing λ in a suitable range.

optimal prediction:

E[‖X(β̂(λ)− β0)‖2/n] = O
(

s0 log(p)

n

)
,

s0 = card(S0)
if one would knew a-priori the s0 relevant covariates
use OLS which yields

E[‖X(β̂OLS − β0)‖2/n] =
s0

n

for optimal prediction: we need additional assumptions on the
design X



Variable screening

under some additional assumptions on the design:

for suitable λ = λn and with large probability

‖β̂ − β‖1 =

p∑
j=1

|β̂j − βj |≤ C︸︷︷︸
depending on X,σ2

√
log(p)s0/n

hence: max
j
|β̂j − βj | ≤ ‖β̂ − β‖1 ≤ C

√
log(p)s0/n

and if min
j
{|βj |; βj 6= 0} > C

√
log(p)s0/n

then β̂j 6= 0 for all j ∈ S0, i.e. Ŝ ⊇ S0



with large probability

Ŝ ⊇ S0

|Ŝ| ≤ O(min(n,p)) =︸︷︷︸
if p�n

O(n)

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal λopt

Ŝ(λopt) ⊇ S0

; Lasso as an
excellent screening procedure

i.e. true active set is contained in estimated active set from
Lasso
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|Ŝ| ≤ O(min(n,p)) =︸︷︷︸
if p�n

O(n)

i.e. a huge dimensionality reduction in the original covariates!

furthermore: “typically”, for prediction-optimal λopt
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Lasso screening is easy to use,︸ ︷︷ ︸
prediction optimal tuning

computationally efficient,︸ ︷︷ ︸
O(np min(n,p))

and statistically accurate



s0 = 3, p = 1′000, n = 50; 2 independent realizations
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Motif regression (p = 195, n = 287)

26 selected covariates when using λ̂CV
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presumably: the truly relevant variables are among the 26
selected covariates



Variable selection with Lasso

an older formulation:
Theorem (Meinshausen & PB, 2004 (publ: 2006))

I sufficient and necessary neighborhood stability condition
on the design X ; see also Zhao & Yu (2006)

I p = pn is growing with n
I pn = O(nα) for some 0 < α <∞ (high-dimensionality)
I |Strue,n| = |S0,n| = O(nκ) for some 0 < κ < 1 (sparsity)
I the non-zero βj ’s are outside the n−1/2-range
I Y , X (j)’s Gaussian (not crucial)

Then: if λ = λn ∼ const .n−1/2−δ/2 (0 < δ < 1/2),

P[Ŝ(λ) = S0] = 1−O(exp(−Cn1−δ)) (n→∞)

≈ 1 even for relatively small n



Problem 1:

Neighborhood stability condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix exhibits
“strong linear dependence” (in terms of sub-matrices)

if it fails and because of necessity of the condition
⇒ Lasso is not consistent for selecting the relevant variables



neighborhood stability condition⇔ irrepresentable condition
(Zhao & Yu, 2006)

n−1X T X → Σ

active set S0 = {j ; βj 6= 0} = {1, . . . , s0} consists of the first s0
variables; partition

Σ =

(
ΣS0,S0 ΣS0,Sc

0

ΣSc
0 ,S0 ΣSc

0 ,S
c
0

)

irrep. condition : |ΣSc
0 ,S0

Σ−1
S0,S0

sign(β1, . . . , βs0)| < 1

not easy to get insights when it holds...



Problem 2: Choice of λ

for prediction oracle solution

λopt = argminλE[(Y −
p∑

j=1

β̂j(λ)X (j))2]

P[Ŝ(λopt) = S0] < 1 (n→∞) (or = 0 if pn →∞ (n→∞))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2006)



recap: variable screening

s0 = 3, p = 1′000, n = 50; 2 independent realizations
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coefficients



Adaptive Lasso (Zou, 2006)

re-weighting the penalty function

β̂ = argminβ(‖Y− Xβ‖22/n + λ

p∑
j=1

|βj |
|β̂init ,j |

),

β̂init ,j from Lasso in first stage (or OLS if p < n)︸ ︷︷ ︸
Zou (2006)

for orthogonal design,
if β̂init = OLS:
Adaptive Lasso = NN-garrote
; less bias than Lasso
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s0 = 3, p = 1′000, n = 50
same 2 independent realizations from before
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Motif regression: n = 287, p = 195
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trivial property

β̂init ,j = 0⇒ β̂j = 0

since

β̂ = argminβ(‖Y− Xβ‖22/n + λ

p∑
j=1

|βj |
|β̂init ,j |

)

another motif regression (linear model): n = 2587, p = 666
Lasso 1-Step 2-Step

test set squared prediction error 0.6193 0.6230 0.6226
number of selected variables 91 42 28

; substantially sparser model fit with
twice-iterated adaptive Lasso (three-stage procedure)



Relaxed Lasso (Meinshausen, 2007)

similar in spirit to the adaptive Lasso; and similar in
performance


