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Goal

in genomics:
if we would make an intervention at a single gene, what would
be its effect on a phenotype of interest?

want to infer/predict such effects without actually doing the
intervention
i.e. from observational data
(from observations of a “steady-state system”)

it doesn’t need to be genes
can generalize to intervention at more than one variable/gene
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Examples

Policy making in economics
what would happen to an economic variable (e.g. “health
costs”) when implementing a certain policy (e.g. “new health
policy”) ?

James Heckman: Nobel Prize Economics 2000



Genomics

1. Flowering of arabidopsis thaliana

phenotype/response variable of interest:
Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21′326 genes

remark: “gene expression”: process by which information from
a gene is used in the synthesis of a functional gene product
(e.g. protein)

question: infer/predict the effect of knocking-out/knocking-down
(or enhancing) a single gene (expression) on the
phenotype/response variable Y?



2. Gene expressions of yeast

p = 5360 genes
phenotype of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
phenotype of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of a single gene knock-down on all
other genes



; consider the framework of an

intervention effect = causal effect
(mathematically defined ; see later)



Regression – the “statistical workhorse”: the wrong approach

we could use linear model (fitted from n observational data)

Y =

p∑
j=1

βjX (j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the effect of variable X (j) in terms of “association”

i.e. change of Y as a function of X (j) when keeping all other
variables X (k) fixed

; not very realistic for intervention problem
if we change e.g. one gene, some others will also change
and these others are not (cannot be) kept fixed
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and indeed:

Figure 1
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; can do much better than (penalized) regression!
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Effects of single gene knock-downs on all other genes (yeast)
(Maathuis, Colombo, Kalisch & PB, 2010)

• p = 5360 genes (expression of genes)
• 231 gene knock downs ; 1.2 · 106 intervention effects
• the truth is “known in good approximation”

(thanks to intervention experiments)

goal: prediction of the true large intervention effects
based on observational data with no knock-downs

n = 63
observational data
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A bit more specifically

I univariate response Y
I p-dimensional covariate X

question:
what is the effect of setting the j th component of X to a certain
value x :

do(X (j) = x)

; this is a question of intervention type

not the effect of X (j) on Y when keeping all other variables fixed
(regression effect)



Intervention calculus (a review)
“dynamic” notion of an effect:
if we set a variable X (j) to a value x (intervention)
; some other variables X (k) (k 6= j) and maybe Y will change

we want to quantify the “total” effect of
X (j) on Y including “all changed” X (k) on Y

a graph or influence diagram will be very useful

X1

X2

X3X4

Y

quantify total effect of X (2) to Y



for simplicity: just consider DAGs (Directed Acyclic Graphs)
random variables are represented as nodes in the DAG

assume a Markov condition, saying that

X (j)|X (pa(j)) cond. independent of its non-descendant variables

; recursive factorization of joint distribution

P(Y ,X (1), . . . ,X (p)) = P(Y |X (pa(Y )))

p∏
j=1

P(X (j)|X (pa(j)))

for intervention calculus: use truncated factorization (e.g. Pearl)
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assume Markov property for causal DAG:

non-intervention

X(1)

X(2)

X(3)X(4)

Y

intervention do(X (2) = x)

X(1)

X(2) = x

X(3)X(4)

Y

P(Y ,X (1),X (2),X (3),X (4)) =
P(Y |X (1),X (3))×
P(X (1)|X (2))×
P(X (2)|X (3),X (4))×
P(X (3))×
P(X (4))

P(Y ,X (1),X (3),X (4)|do(X (2) = x)) =
P(Y |X (1),X (3))×
P(X (1)|X (2) = x)×
P(X (3))×
P(X (4))



truncated factorization for do(X (2) = x):

P(Y ,X (1),X (3),X (4)|do(X (2) = x))

= P(Y |X (1),X (3))P(X (1)|X (2) = x)P(X (3))P(X (4))

P(Y |do(X (2) = x))

=

∫
P(Y ,X (1),X (3),X (4)|do(X (2) = x))dX (1)dX (3)dX (4)



the truncated factorization is a mathematical consequence of
the Markov condition (with respect to the causal DAG) for the
observational probability distribution P



the intervention distribution P(Y |do(X (2) = x)) can be
calculated from

I observational data distribution
; need to estimate conditional distributions

I an influence diagram (causal DAG)
; need to estimate structure of a graph/influence diagram

intervention effect:

E[Y |do(X (2) = x)] =

∫
yP(y |do(X (2) = x))dy

intervention effect at x0 :
∂

∂x
E[Y |do(X (2) = x)]|x=x0

in the Gaussian case: Y ,X (1), . . . ,X (p) ∼ Np+1(µ,Σ),

∂

∂x
E[Y |do(X (2) = x)]≡ θ2 for all x



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

recap:
causal effect = effect from a randomized trial

(but we want to infer it without a randomized study...
because often we cannot do it, or it is too expensive)
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Inferring intervention effects from observational
distribution

main problem: inferring DAG from observational data

impossible! can only infer equivalence class of DAGs
(several DAGs can encode exactly the same conditional
independence relationships)

Example:

X XY Y

X causes Y Y causes X



and we cannot estimate causal/intervention effects from
observational distribution

but we will be able to estimate lower bounds of causal effects

conceptual “procedure”:
I probability distribution P from a DAG, generating the data

; true underlying equivalence class of DAGs (CPDAG)
I find all DAG-members of true equivalence class (CPDAG):

D1, . . . ,Dm

I for every DAG-member Dr , and every variable X (j):
single intervention effect θr ,j
summarize them by

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}︸ ︷︷ ︸
identifiable parameter
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IDA (oracle version)

17

oracle CPDAG

PC-algorithm

DAG 1

DAG 2

...

...

DAG m

do-calculus

effect 1

effect 2

...

...

effect m

multi-set Θ



If you want a single number for every variable ...

instead of the multi-set

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}

minimal absolute value

αj = min
r
|θr ,j | (j = 1, . . . ,p),

|θtrue,j | ≥ αj

minimal absolute effect αj is a lower bound for true absolute
intervention effect



“Optimization” I: ∃ Computationally tractable algorithm

searching all DAGs is computationally infeasible if p is large
(we actually can do this up to p ≈ 15− 20)

instead of finding all m DAGs within an equivalence class ;

compute all intervention effects without finding all DAGs
(Maathuis, Kalisch & PB, 2009)

key idea: exploring local aspects of the graph is sufficient



IDA (local sample version)

33

data CPDAG

PC-algorithm do-calculus

effect 1

effect 2

...

...

effect q

multi-set ΘL

the local ΘL = Θ up to multiplicities
(Maathuis, Kalisch & PB, 2009)



Estimation from finitely many observational data

difficult part: estimation of CPDAG (equivalence class of DAGs)
; estimation of structure

P ⇒ CPDAG︸ ︷︷ ︸
equiv. class of DAGs

pcAlgo(dm = d, alpha = 0.05)
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Two different approaches

I multiple statistical testing for conditional independencies
PC-algorithm (Spirtes et al., 2000)

I score-based methods for penalized maximum likelihood
estimator
; challenging issues in optimization

from now on:

absorb Y notationally into X (e.g. Y = X1)
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Statistical theory (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2009)
n i.i.d. observational data points; p variables
high-dimensional setting where p � n

assumptions:
I X (1), . . . ,X (p) ∼ Np(0,Σ) Markov and faithful to true DAG
I high-dimensionality: log(p)� n
I sparsity: maximal degree d = maxj |ne(j)| � n
I signal strength: non-zero (partial) correlations suff. large

min{|ρi,j|S |; ρi,j|S 6= 0, i 6= j , |S| ≤ d} �
√

d log(p)/n

I “coherence”: maximal (partial) correlations ≤ C < 1
max{|ρi,j|S |; i 6= j , |S| ≤ d} ≤ C < 1

Then:

P[ĈPDAG = true CPDAG] = 1−O(exp(−Cn1−δ))

P[Θ̂L as set
= Θ] = 1−O(exp(−Cn1−δ))

(i.e. consistency of lower bounds for causal effects)



The role of “sparsity” in causal inference
as usual: sparsity is necessary for accurate estimation in
presence of noise

but here: “sparsity” (so-called protectedness) is crucial for
identifiability as well

X XY Y

X causes Y Y causes X

cannot tell from observational data the direction of the arrow

the same situation arises with a full graph with more than 2
nodes
;

causal identification really needs “sparsity”
the better the “sparsity” the tighter the bounds for causal effects



Penalized maximum likelihood estimator and
Optimization II

why another approach than multiple testing?
; can be used for more general problems of inferring causal
effects based on observational and (“a few”) interventional data

n i.i.d. observational data points from Np(0,Σ) which is Markov
w.r.t. DAG D
; write down the negative log-likelihood

−`(Σ,D; data) = . . .

unknown quantities are Σ and D
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Gaussian DAG is Gaussian linear structural equation model:

1

2 3

X (1) ← ε(1)

X (2) ← β21X (1) + ε(2)

X (3) ← β31X (1) + β32X (2) + ε(3)

in general:

X (j) ←
p∑

k=1

βjkX (k) + ε(j) (j = 1, . . . ,p), βjk 6= 0⇔ edge k → j

X = BX + ε, ε ∼ Np(0, diag(σ2
1, . . . , σ

2
p)) in matrix notation

; reparametrization

(Σ,D)↔ (B, {σ2
j ; j = 1, . . . ,p})



; explicit form of likelihood

−`(Σ,D; data) = −`(B, {σ2
j ; j}; data)

where non-zeroes of B do not lead to directed cycles



Challenges in optimization

Σ̂, D̂ = argmin
Σ;D a DAG − `(Σ,D; data) + λ|D|

= argminB; {σ2
j ;j} − `(B, {σ

2
j ; j}; data) + λ ‖B‖0︸ ︷︷ ︸∑

ij I(Bij 6=0)

under the non-convex constraint that B corresponds to “no
directed cycles”

severe non-convex problem due to the “no directed cycle”
constraint
(‖ · ‖0-penalty rather than e.g. ‖ · ‖1 doesn’t make the problem
much harder)



Toy-example X (1) ← β1X (2) + ε1

X (2) ← β2X (1) + ε2

X1 X2

(0,0)

beta1

beta2

non-convex parameter space!
(no straightforward way to do convex relaxation, etc.)



Our computation: Greedy Interventional Equivalence Search

(Hauser & PB, 2011)
do greedy search over equivalent classes (cf. Chickering, 2002)
forward and backward and turning phase

forward:
I current Markov equivalence class E
I go to the next equivalence class E+ such that:

there exist DAG D in E and D+ ∈ E+ where D+ has one
more directed edge than D;
E+ is such that the objective function is reduced most in
one step (greedy)

this can be done efficiently without enumerating all members in
the equivalence classes (Hauser & PB, 2011) – but it’s non-trivial

backward: ... by deleting one edge...
turning: ... by turning one edge...
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greedy equivalent (class) search is
• much better than greedy search (over DAGs)
• and for small dimension as good as exhaustive search



Successes in biology

Effects of single gene knock-downs on all other genes in yeast
(Maathuis, Colombo, Kalisch & PB, 2010)

n = 63
observational data
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Arabidopsis thaliana (Stekhoven, Maathuis, Hennig & PB, 2011)

response Y : days to bolting (flowering) of the plant
(aim: fast flowering plants)
covariates X : gene-expression profile

observational data with n = 47 and p = 21′326
; lower bound estimates α̂j for causal effect of every
gene/variable on Y (using the PC-algorithm)

apply stability selection (Meinshausen & PB, 2010)
; assigning uncertainties via control of PCER (per comparison
error rate)



Causal gene ranking

summary median error
Gene rank effect expression (PCER) name

1 AT2G45660 1 0.60 5.07 0.0017 AGL20 (SOC1)
2 AT4G24010 2 0.61 5.69 0.0021 ATCSLG1
3 AT1G15520 2 0.58 5.42 0.0017 PDR12
4 AT3G02920 5 0.58 7.44 0.0024 replication protein-related
5 AT5G43610 5 0.41 4.98 0.0101 ATSUC6
6 AT4G00650 7 0.48 5.56 0.0020 FRI
7 AT1G24070 8 0.57 6.13 0.0026 ATCSLA10
8 AT1G19940 9 0.53 5.13 0.0019 AtGH9B5
9 AT3G61170 9 0.51 5.12 0.0034 protein coding

10 AT1G32375 10 0.54 5.21 0.0031 protein coding
11 AT2G15320 10 0.50 5.57 0.0027 protein coding
12 AT2G28120 10 0.49 6.45 0.0026 protein coding
13 AT2G16510 13 0.50 10.7 0.0023 AVAP5
14 AT3G14630 13 0.48 4.87 0.0039 CYP72A9
15 AT1G11800 15 0.51 6.97 0.0028 protein coding
16 AT5G44800 16 0.32 6.55 0.0704 CHR4
17 AT3G50660 17 0.40 7.60 0.0059 DWF4
18 AT5G10140 19 0.30 10.3 0.0064 FLC
19 AT1G24110 20 0.49 4.66 0.0059 peroxidase, putative
20 AT1G27030 20 0.45 10.1 0.0059 unknown protein

• biological validation by gene knockout experiments in progress.

red: biologically known genes responsible for flowering



in collaboration with Hennig and Gruissem lab, ETH Zurich:
performed validation experiment with mutants corresponding to
these top 20 - 3 = 17 genes

I 14 mutants easily available ; only test for 14 genes
I more than usual: mutants showed low germination or

survival...
I 9 among the 14 mutants survived (sufficiently strongly), i.e.

9 mutants for which we have an outcome
I 3 among the 9 mutants (genes) showed a significant effect

for Y relative to the wildtype (non-mutated plant)

; that is: besides the three known genes, we find three
additional genes which exhibit a significant difference in terms
of “time to flowering”



in short:

bounds on causal effects (α̂j ’s) based on observational data
lead to interesting predictions for interventions in genomics
(i.e. which genes would exhibit a large intervention effect)

and these predictions have been validated using experiments



Conclusions

1. 1. Beware of over-interpretation!

so far, based on current data:
we can not reliably infer a causal network

1

despite theorems...
(perturbation of the data yields unstable networks)

2. Causal inference relies on subtle uncheckable(!)
assumptions
; experimental validations are important (simple organisms in
biology are great for pursuing this!)

3. many technical issues in identifiability, high-dimensional
statistical inference and optimization



4. but there is a clear potential:

for stable ranking/prediction of intervention/causal effects

... “causal inference from purely observed data could have
practical value in the prioritization and design of perturbation
experiments”
Editorial in Nature Methods (April 2010)

this is extremely useful in computational biology

and in this sense:
“causal inference from observational data is much further
developed than 30 years ago when it was thought to be
impossible”



Thank you!

R-package: pcalg
(Kalisch, Mächler, Colombo, Maathuis & PB, 2010)
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