
1 Introductory examples

Main feature of time series data: observations are interpreted as realization from depen-
dent random variables X1, . . . , Xn. This is in contrast to the classical setting where we
typically assume that X1, . . . , Xn are independent and identically distributed (i.i.d.).

Real data examples of time series are shown in Figure 1 and 2.

Figure 1: Example 3 is a bivariate time series.
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Figure 2: Daily log-returns from BMW share price.

1.1 Stochastic processes

As indicated above, we consider the following setting. The time series data is

xt, t = 1, . . . , n,

where each xt ∈ Rp. For univariate time series, p = 1. We assume that these values are
from one finite realization of a stochastic process in discrete time

{Xt : Ω→ Rp; t ∈ Z}.

From a probability point of view: we want to infer all finite-dimensional distributions

Fi,j(xi, xi+1, . . . , xj) = IP[Xt ≤ xt; i ≤ t ≤ j]

for all i < j. If we would know Fi,j(·) for all i < j, we would know the distribution of the
stochastic process (Xt)t∈Z. This fact is based on the following extension theorem.

Theorem 1 (Kolmogorov) There exists a unique probability measure on Ω = RZ such
that

IP[ ωt︸︷︷︸
coordinates of (ωt)t∈Z

≤ xt; i ≤ t ≤ j] = Fi,j(xi, . . . , xj).
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