1 Introductory examples

Main feature of time series data: observations are interpreted as realization from depen-

dent random variables Xi,...,X,,. This is in contrast to the classical setting where we

typically assume that Xi,...,X,, are independent and identically distributed (i.i.d.).
Real data examples of time series are shown in Figure 1 and 2.
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Figure 1.2: Yearly average global temperature deviations (1900-1997) in de-
grees Centigrade.
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Figure 1.3: Speech recording of the syllable aaa - - - hhh sampled at 10,000
points per second with n = 1020 points.
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Figure 1.4: Monthly SOI and Recruitment (Estimated new fish), 1950-1987.

Figure 1: Example 3 is a bivariate time series.
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Figure 2: Daily log-returns from BMW share price.

1.1 Stochastic processes
As indicated above, we consider the following setting. The time series data is
Ty, t=1,...,n,

where each z; € RP. For univariate time series, p = 1. We assume that these values are
from one finite realization of a stochastic process in discrete time

{Xi: Q- RP; teZ}.
From a probability point of view: we want to infer all finite-dimensional distributions
Fij(xi,wiqn, ..., 25) =PX; <y 1 <t < ]

for all ¢ < j. If we would know F; ;(-) for all ¢ < j, we would know the distribution of the
stochastic process (X¢)iez. This fact is based on the following extension theorem.

Theorem 1 (Kolmogorov) There exists a unique probability measure on Q = R” such
that
P| Wy <y i <t <jl=Fij(zi,...,x5).
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