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Characteristics of Time Series

If the sequence of L? random variables z,, is such that E(z,) — s and

E[(zn — Ezn)?*] = 0,

Tn D p.

Show that, if z, L4 T, s 5 y, with z,, and y,, independent, then z, +
Un S24 y, with = and y independent.

T1.12
Suppose
z¢ = Bo + Bit,
where 3y and B, are constants. Prove as n — oo,
s pz(h) =1

for fixed h, where p.(h) is the ACF (1.32).

Suppose z; is a weakly stationary time series with mean zero and with
absolutely summable autocovariance function, y(h), such that

oo

> k) =o.

h=—c0
Prove that /n Z 5 0, where Z is the sample mean (1.30).

Let z; be a linear process of the form (1.26), satisfying (1.27). If we
define

() =11 (@ern — pz)(@e — p2),
. t=1
show that
n'/2(5(h) —F(h)) = 0p(1).

Hint: The Markov Inequality
Elz]

€
can be helpful for the cross-product terms.

Pflz| > €} <

For a linear process of the form

o0 .
ze =) Hlwj,
=0
with |#;1| < 1, show that

A)HAC = HACV
/\m;m}/\q.% 4 N(0,1),

and construct a 95% confidence interval for ¢, when p,(1) = .64.

CHAPTER 2

Time Series Regression and ARIMA
Models

2.1 Introduction

In Chapter 1, we introduced autocorrelation and cross-correlation functions
(ACF’s and CCF’s) as tools for clarifying relations that may occur within and
between time series at various lags. In addition, we have explained how to
build linear models based on classical regression theory for exploiting the as-
sociations indicated by large values of the ACF or CCF. The time domain
methods of this chapter, contrasted with the frequency domain methods in-
troduced in later chapters, are appropriate when we are dealing with possibly
nonstationary, shorter time series; these series are the rule rather than the
exception in applications arising in economics and the social sciences. In addi-
tion, the emphasis in these fields is usually on forecasting future values, which
is easily treated as a regression problem. This chapter develops a number of
regression techniques for time series that are all related to classical ordinary
and weighted or correlated least squares.

Classical regression is often insufficient for explaining all of the interesting
dynamics of a time series. For example, the ACF of the residuals of the sim-
ple linear regression fit to the global temperature data (see Example 1.22 of
Chapter 1) reveals additional structure in the data that the regression did not
capture. Instead, the introduction of correlation as a phenomenon that may
be generated through lagged linear relations leads to proposing the autore-
gressive (AR) and autoregressive moving average (ARMA) models.
Adding nonstationary models to the mix leads to the autoregressive in-
tegrated moving average (ARIMA ) model popularized in the landmark
work by Box and Jenkins (1970). The Boz—Jenkins method for identifying a




90 Time Series Regression and ARIMA Models

plausible ARIMA model is given in this chapter along with techniques for pa-
rameter estimation and forecasting for these models. In the later sections,
we present long memory ARMA, threshold autoregressive models, re-
gression with ARMA errors, and an extension of the Box—Jenkins method
for predicting a single output from a collection of possible input series is con-
sidered where the inputs themselves may follow ARIMA models, commonly
referred to as transfer function models. Finally, we present A RCH mod-
els and the analysis of volatility.

2.2 Autoregressive Moving Average Models

The classical regression model in Section 1.8 of Chapter 1 was developed for
the static case, namely, vve only allow the dependent variable to be influenced
by current values of thé independent variables. In the time series case, it is
desirable to allow the dependent variable to be influenced by the past values of
the independent variables and possibly by its own past values. If the present
can be plausibly modeled in terms of only the past values of the independent
inputs, we have the enticing prospect that forecasting will be possible.

INTRODUCTION TO AUTOREGRESSIVE MODELS

Autoregressive models are created with the idea that the present value of the
series, z¢, can be explained as a function of p past values, z;_1,z¢_2,...,%t—p,
where p determines the number of steps into the past needed to forecast the
current value. As a typical case, recall Example 1.9 in which data were gener-
ated using the model

Tt = Tp—1 — 90342 + wy,

where w; is white Gaussian noise with 0% = 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.8 gives an indication that forecasting for such a model
might be a distinct possibility, say, through some version such as

| P
Tipg = Tt — .@OHnluu

where the quantity on the left-hand side denotes the forecast at the next period
t + 1 based on current and past observed values x;,zs,...,z;. We will make
this notion more precise in our discussion of forecasting (Section 2.5).

The extent to which it might be possible to forecast a real data series from
its own past values can be assessed by looking at the autocorrelation function
and the lagged scatterplot matrices discussed in Chapter 1. For example, the
lagged scatterplot matrix for the Southern Oscillation Index (SOI), shown in
Figure 1.18, gives a distinct indication that lags 1 and 2, for example, are
linearly associated with the present value. The ACF shown in Figure 1.13
shows relatively large positive values at lags 1, 2, 12, 24, and 36 and large
negative values at 18, 30, and 42. We note also the possible relation between
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the SOI and Recruitment series indicated in the scatterplot matrix shown in
Figure 1.19. We will indicate in later sections on transfer function and vector
AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the definition of an autoregressive
model of order p, abbreviated as AR (p), of the form

Ty = P1T—1 + Pai—2 + ... + PpTi_p + W, (2.1)

where ¢;,¢2,...,¢$, are constants and w; is a white noise series with mean
zero and variance o2,. We assume for simplicity in notation that the mean of
1, is zero. If the mean, p, of z; is not zero, we can replace z; by z; — p in
(2.1), or write

T =oa+ d1T—1 + P2+ ...+ ﬁuﬂﬁlv + wy, ﬁwwv

where a = p(l — ¢y — -+ — ¢p). We note several different ways (2.1) can be
written that will be used in the sequel. First, define ¢ = (¢, ¢2,...,¢p)" and
L1 = Auﬁnlwuuﬂnlu. S anlﬂv__ so that

T =@'zp1 +we (2.3)

and the AR(p) model becomes the regression model of Section 1.8. Some
technical difficulties, however, develop from applying that model because z;_;
has random components, whereas z; was assumed to be fixed. A second useful
form follows by using the backshift operator (1.41) to write the AR(p) model,
(2.1), as

(1=¢1B—¢2B? — ... — $,BP)zy = wy, (2.4)
or even more concisely as . \
¢(B)zy = we, (2.5)

where the autoregressive operator
$(B) =1~ $:B ~ $oB% — ... — 4, B (2:6)

is an operator whose properties are important in solving (2.5) for ;.
We initiate the investigation of AR models by considering the first-order
model, AR(1), given by z; = ¢z;_1 + wy. Iterating backwards k times, we get

Ty = ¢xio +wp = P(PTe_g +we_1) +we
= ¢’z 2+ dwe_y + wy

k—1
Pz + M ¢ we—j.

=0
This method suggests that, by continuing to iterate backwards, and provided
that |¢| < 1 and the variance of z; is bounded, we can represent an AR(1)
model by

oo

T =) P wiy, (2.7)

=0
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in the mean square sense (see Section T1.10). This conclusion follows from the
fact that

2
k-1
lim E |z, -y ¢we; | = lim ¢**E (z2_,) = 0.

k—o00 , k—o00
j=0

Alternately, we could simply have defined an AR(1) model to be the sta-
tionary process given in equation (2.7), because, with |¢| < 1,

Ty = MU&.‘.ET.,_..HAM%é“Ib+\En

=0 =1

J\,. QAMU ﬁ.u.,ETHIuV +wi = ¢z + wy. (2.8)

j=0

The AR(1) process defined by (2.7) is stationary with mean

mﬁ.ﬂuv = M&umﬁenluv = O.

=0

and autocovariance function,

YR = cov(@en ) =E || D Fwepn—j | [ D Hwes
j=0 k=0
_ Noo ..+__~Iur8 u.d.lqw&.; B> 2.9
= QEW%% =ond" D ¢ =125 h20 (2.9)

i=0

Recall that «y(h) = «y(—h), so we will only exhibit the autocovariance function
for h > 0. From (2.9), the ACF of an AR(1) is

b _

=00 =

", h>0, (2.10)

and p(h) satisfies the recursion

p(h) = gp(h —1), h>1. (2.11)

Well will discuss the ACF of a general AR(p) model in Section 2.4.
Example 2.1 The Sample Path of an AR(1) Process

Figure 2.1 shows a time plot of two AR(1) processes, one with ¢ = 0.9
and one with ¢ = —0.9; in both cases, o2 = 1. In the first case, p(h) =
9" for h > 0, so the observations close together in time are positively
correlated with each other. This result means that the observations at
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Time

4

Time

Figure 2.1: Simulated AR(1) models: ¢ = 0.9 (top); ¢ = —0.9 (bottom).

contiguous time points will tend be close in value to each other; this
fact shows up in top of Figure 2.1 as a very smooth sample path for
z;. Now, contrast this to the case in which ¢ = —0.9, so that p(h) =
(—.9)", for h > 0. This result means that observations at contiguous time
points are negatively correlated but observations two time points apart
are positively correlated. This fact shows up in the bottom of Figure 2.1,
where if an observation, z;, is positive [negative], the next observation,
Ty41, 18 typically negative [positive], and the next observation, z:42 is
typically positive [negative]. Thus, in this case, the sample path is very
choppy.

Example 2.2 Explosive AR Models and Causality

In Chapter 1, Problem 1.8, it was discovered that the random walk
T¢ = Ty4—1 + wg is not stationary. We might wonder whether there is
a stationary AR(1) process with |¢| > 1. Such processes are called ex-
plosive because the values of the time series quickly become large in
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magnitude. Clearly, M“.ﬂm @ w;—; will not converge in mean square as
k — o0, so the intuition used to get (2.7) will not work directly. We can,
however, modify that argument to obtain a stationary model as follows.
Write z:41 = ¢z + wyy, in which case,

1 - i g " -
Tt P o1 — @ W = @7 (¢ T2 — ¢ wega) — ¢ W

k-1

¢ Tin — M I wey 5, (2.12)

i=1

by iterating forward k steps. Because |¢~1| < 1, this result suggests the
stationary future dependent AR(1) model

F 4

o0
Ty = — M %Iuﬂcn.fu..
=1

The reader can verify that this is stationary and of the AR(1) form
Ty = ¢y +wi. Unfortunately, this model is useless because it requires
us to know the future to be able to predict the future. When a process
does not depend on the future, such as the AR(1) when |¢| < 1, we will
say the process is causal. In the explosive case of this example, the
process is stationary, but it is also future dependent, and not causal.

The technique of iterating backwards to get an idea of the stationary so-
lution of AR models works well when p = 1, but not for larger orders. A
general technique is that of matching coefficients. Consider the AR(1) model
in operator form

ﬁﬁmvnﬂn = W, AMHQV

where ¢(B) = 1 — ¢B, and |¢| < 1. Also, write the model in equation (2.7)
using operator form as

ze =y Yjwe—j = p(B)ur, (2.14)

=0

where @Qwv >ieo%iB’ and ¥; = ¢7. Suppose we did not know that
1 = ¢7. We could substitute ¢(B)z; from (2.13) for w; in (2.14) to obtain

o = P(B)wy = P(B)p(B)z:. (2.15)
Equating coefficients on the left- and right-hand sides of (2.15), we get

l=(1+y1B+ B>+ -+ 4B +...)(1 - ¢B). (2.16)

2.2: ARMA Models 95

Reorganizing the coeflicients in (2.16),

1=1+ 41— $)B+ (Y2 —¥19)B> + - + (¥ = j19) B’ + -,

we see that for each j = 1,2, ..., the coefficient of B7 on the right, must be zero
(because it is zero on the left). The coefficient of B on the right is (11 —¢), and
equating this to zero, 1); — ¢ = 0, leads to 1; = ¢. Continuing, the coefficient
of B? is (2 — 1), so ¥ = ¢%. In general, P; —1Pj—1¢ = 0, which leads to
the general solution 1; = ¢7.

This example makes it clear that 1 (B) is also the inverse of the operator
¢(B). In operator form, we took the following steps starting with the AR(1)
model, ¢(B)z; = we, where ¢(B) = (1 — ¢B).

(i) Multiply each side by the inverse operator (assuming it exists) ¢
¢~ (B)(B)x: = ¢~ (B)ws.

(ii) Write the result as z; = v/(B)w;, where we defined ¥(B) = ¢~1(B).
(iii) Solve for ¢~*(B) by matching the coefficients in 9(B)¢$(B) = 1.

The solution, of course, was ¢~*(B) = 1+ ¢B + ¢*B* + --- + ¢?'BI + ---.
Notice the operators behave like polynomials. That is, consider the polynomial
#(z) = 1 — ¢z, where z is a complex number and |¢| < 1. Then,
M) = s el e B Bt o e e, S 1.
(1-¢2) =
These results will be generalized in our discussion of ARMA models. We
will find the polynomials corresponding to the operators useful in exploring
the general properties of ARMA models.

INTRODUCTION TO MOVING AVERAGE MODELS

As an alternative to the autoregressive representation in which the z; on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order g, abbreviated as M A (g), assumes the white noise
w; on the right-hand side of the defining equation are combined linearly to
form the observed data. In such cases, we write

Iy = Wt + QF.E“I_ -+ %wgnln +...+ mnﬁcnlq AMH.NV

where there are ¢ lags in the moving average and 6,,0,...,0, are parameters
that determine the overall pattern of the process. The system is the same as
the infinite moving average defined as the linear process (2.14), where 9 = 1,
Y; = 05,5 = 1,...,q, and ¢; = 0 for other values. We may also write the
MA(q) process in the equivalent form

z: = 6(B)wy, (2.18)
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where the moving average operator
6(B)=1+6,B+6;B*> +...+0,B7 (2.19)

defines a linear combination of values in the shift operator B¥w; = w;_; as
before.

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters 6y, ...,8,; details of this result are provided in
Section 2.4.

Example 2.3 Autocorrelation and Sample Path of an MA(1) Process

Consider the ZLP\E model z; = wy + Owy_,. Then,
(1+6*02, h=0
v(h) = { 02, h=1
0, h>1,

and the autocorrelation function is

. k=1
= B3
0; h>1.

The ACF of a general MA(q) model will be presented in Section 2.4.

Note |p(1)] < 1/2 for all values of # (Problem 2.1). The time series
is “one-dependent;” that is, z; is correlated with z;_;, but not with
Ty_9,T¢_3,... . Contrast this with the case of the AR(1) model in which
the correlation between z; and z;_j is never zero. When 8 = 0.5, for
example, z; and z;_, are positively correlated, and p(1) = 0.4. When
0 = —0.5, z; and x;_; are negatively correlated, p(1) = —0.4. Figure 2.2
shows a time plot of these two processes with o2 = 1. The series in
Figure 2.2, where 8 = 0.5, is smoother than the series in Figure 2.2,
where § = —0.5.

Example 2.4 Non-uniqueness of MA Models and Invertibility

From Example 2.3, for an MA(1) model, p(h) is the same for & and w“ try
5 and , for example. In addition, the pair 07, =1 and 6 = 5 yield the
same autocovariance function as the pair o2 = 25 and 6 = 1/5, namely,

26, h=0

y(h)={5 h=1
0, h>1.
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Figure 2.2: Simulated MA(1) models: § = 0.5 (top); & = —0.5 ?zogogv.

Thus, the MA(1) processes

Ty =ug + W.Enlf wy ~ iid zﬁoummv
and

Ty = v + dvp—y, v ~ iid Zﬁo_ C

are the same. We can only observe the time series z; and not the noise, w;
or v, so we cannot distinguish between the models. Hence, we will have
to choose only one of them. For convenience, by mimicking the criterion
of causality for AR models, we will choose the model with an infinite AR
representation. Such a process is called an invertible process.

To discover which model is the invertible model, we can reverse the roles
of z; and w; (because we are mimicking the AR case) and write the
MA(1) model as wy = —6w;—; + 7. Following the steps that led to
(2.40), if |6] < 1, then wy = 332 (—0)Iz¢—;, which is the desired infinite
AR representation of the model. Hence, given a choice, we will choose
the model with o2 = 25 and 6 = 1/5 because it is invertible.

As in the AR case, the polynomials, #(z), corresponding to the moving
average operators, (B), will be useful in exploring general properties of MA
processes. For example, following the steps of equations (2.13)-(2.16), we can
write the MA(1) model as z;, = (B)w;, where 6(B) = 1+ 6B. If |f] < 1,
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then we can write the model as 7(B)z; = w,, where n(B) = §~1(B). Let
0(z) = 1+ 6z, for |2| < 1, then (z) = 8-1(2) = 1/(1+8z) = Y eo(—0) 24,
and we determine that n(B) = 3222, (—0)7 B,

AUTOREGRESSIVE MOVING AVERAGE MODELS

We now proceed with the general development of autoregressive, moving av-
erage, and mixed auloregressive moving average (ARMA ) models for
stationary time series. A time series z;, for ¢t = 0,+1,42, ..., is said to be
ARMA(p, q) if z; is stationary and

Tt = q1Te—1 + -+ GpTe—p + W + Orwp_y + -+ - + Opwy_g, (2.20)

with ¢, # 0, 6, # 0,.and 02, > 0. The parameters p and g are called the
autoregressive and tHe moving average orders, respectively. As before, if x;
has a nonzero mean pu, we set o = p(l1 — ¢y —--- — ¢p) and write the model as

T =a+ ﬂﬁ&nlw +--- ﬁﬁ.\hnlﬁ +we +Orwg_1 + - %n.Eﬂln. ANNHV

As previously noted, when ¢ = 0, the model is called an autoregressive model
of order p, AR(p), and when p = 0, the model is called a moving average
model of order ¢, MA(g). To aid in the investigation of ARMA models, it will
be useful to write them using the AR operator, (2.6), and the MA operator,
(2.19). In particular, the ARMA (p, ¢) model in (2.20) can then can be written
in concise form as

$(B)z: = 6(B)uw,. (2.22)

Before we discuss the conditions under which (2.20) is causal and invertible,
we point out a potential problem with the ARMA model.

Example 2.5 Parameter Redundancy

Consider a white noise process z; = wy. Equivalently, we can write this
as 0.5z¢_1 = 0.5w;_; by shifting back one unit of time and multiplying
by 0.5. Now, subtract the two representations to obtain

Ty — O.mHnIH = wg — O.msulr

or
Tt = O.M.Holw = D.mecnlh + we,

which looks like an ARMA(1,1) model. Of course, z; is still white
noise; nothing has changed in this regard, but we have hidden the fact
that z; is white noise because of the parameter redundancy or over-
parameterization. Write the parameter redundant model in operator
form:

(1-0.5B)z; = (1 - 0.5B)w;.
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Apply the operator (1 —0.58)~! to both sides to obtain
z¢ = (1—0.5B)"}(1 = 0.5B)z; = (1 - 0.5B)"*(1 — 0.5B)w; = wy,

which is the original model. We can easily detect the problem of over-
parameterization with the use of polynomials by writing the AR vo:ﬁo-
mial ¢(z) = (1—0.52), the MA polynomial #(z) = (1—0.52), and noting
that both polynomials have a common factor, namely (1 —0.5z). This
common factor immediately identifies the parameter redundancy. Dis-
carding the common factor in each leaves ¢(z) = 1 and 6(z) = 1, and
we deduce that the model is actually white noise. The consideration
of parameter redundancy will be crucial when we discuss mmﬂ.Em.Eou for
general ARMA models. As this example points out, we might fit an
ARMA(1,1) model to white noise data and find that the parameter esti-
mates are significant. If we were unaware of parameter redundancy, we
might claim the data are correlated when in fact they are not (Problem
2.19).

Examples 2.2, 2.4, and 2.5 point to a number of problems with the general
definition of ARMA (p, q) models, as given by (2.20), or, equivalently, by (2.22).
To summarize, we have seen the following problems: ~

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and

(iii) MA models that are not unique.

To overcome these problems, we will require some additional H.mmal.oﬂoum
on the model parameters. First, we define the AR and MA polynomials as

$(z)=1—drz— - — ¢p2?, ¢p#0, (2.23)

and
0(z) =1+61z+---+8429, 0,#0, (2.24)

respectively, where z is a complex number.

vHo waanmm the first ?.oEMEw we will henceforth refer to an' ARMA(p, q)
model to mean that it is in its simplest form. That is, in addition to the original
definition given in equation (2.20), we will also require that ¢(z) and 0(z)
have no common factors. So, the process, z; = 0.5z;_1 — 0.5wi—1 + Wy,
discussed in Example 2.5 is not referred to as an ARMA(1,1) process because,
in its reduced form, z; is white noise.

To address the problem of future-dependent models, we formally w.uﬁc.mcnm
the concept of causality. An ARMA(p, q) model, ¢(B)z: = 8(B)wy, is m.ﬁ.& to
be causal, if the time series z;, t = 0,+1,+2, ..., can be written as a one-sided
linear process:

Ty = M@mﬁcslu = \o_vﬁmveu; ﬁwwmv

i=0
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where ¢(B) = 372, ¢;B7, and 332 [1h;] < co; we set 9 = 1.

In Example 2.2, the AR(1) process, 7 = ¢z;_; + wy, is causal only when
[#| < 1. Equivalently, the process is causal only when the root of #(z) =1—¢2z
is bigger than one in absolute value. That is, the root, say, zp, of ¢(z) is
20 = 1/¢ [because ¢(z0) = 0] and |z| > 1 because |¢| < 1. In general, we have
the following property.

Property P2.1: Causality of an ARMA (p, q) Process

An ARMA(p, q) model is causal only when the roots of @(z) lie outside the
unit circle; that is, ¢(z) = 0 only when |z| > 1. The coefficients of the linear
process given in (2.25) can be determined by solving

8 2&
E&neiu_NAH.
W 2 QANV _ _ —
7
Finally, to address the problem of uniqueness discussed in Example 2.4,
we choose the model that allows an infinite autoregressive representation. In
particular, an ARMA (p, g) model, ¢(B)z; = 6(B)w, is said to be invertible,
if the time series z;, t = 0,41,+2, ..., can be written as

oo
qﬂﬁmvﬁn = MU.._.ﬂu.Hnl..._. = W, ﬁwwmv

j=0
where 7(B) = 3722, 7;B?, and > =0 Imj] < co; we set mp = 1. Analogous to
Property P2.1, we have the following property.

Property P2.2: Invertibility of an ARMA(p, q) Process
An ARMA (p,q) model is invertible only when the roots of 8(z) lie outside the

unit circle. The coefficients ; of 7(B) given in (2.26) can be determined by
solving

w(z) = Wﬁwu = Mm. lz| < 1.

The proof of Property P2.1 is given in Section T2.16 (the proof of Property
P2.2 is similar and, hence, is not provided). The following examples illustrate
these concepts.

Example 2.6 Parameter Redundancy, Causality, and Invertiblity
Consider the process
Ty =042y + 045z 5 +wpq + 0.25wy—_o + wy,
or, in operator form,

(1-04B - 0.45B%)z¢ = (1 + B + 0.25B%)w,.
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At first, z; appears to be an ARMA(2,2) process. But, the associated
polynomials ¢(z) = 1 — 0.4z — 0.452% = (1 +0.5z)(1 — 0.92), and, 8(z) =
(142+0.252%) = (1+0.52)%, have a common factor that can be cancelled.
After cancellation, the polynomials become ¢(z) = (1 —0.9z) and 6(z) =
(14 0.52), so the model is an ARMA(1,1) model, (1 —0.9B)z; = (1 +
0.5B)w;, or

T = 09z¢_1 + 0.5w;_; + wy. Awwd
The model is causal because ¢(z) = (1 —0.9z) = 0 when z = 10/9, which

is outside the unit circle. The model is also invertible because the root
of 6(z) = (1 + 0.5z2) is z = —2, which is outside the unit circle.

To write the model as a linear process, we can obtain the 1-weights using
Property P2.1:
8(z) (1+0.5z)

é(z)  (1-0.9z)
(140.52)(1+0.92+0.9%2 +0.9°2° +--) |z| < 1.

P(z) =

The coefficient of 27 in ¥(2) is 1; = (0.5+0.9)0.9~1, for j > 1, so (2.27)
can be written as

Iy = Wy + H&Muowulmsnlu

i=1

Similarly, to find the invertible representation using Property P2.2:

m(z) = mew =(1-09z)(1 - 0.5z + 0.5%22 - 0.5°2° +---) |z| < 1.

In this case, the m-weights are given by m; = (—1)7(0.9 + 0.5)0.57~, for
J =1, and hence, we can also write (2.27) as

o0
Iy = 1.4 MA|O.mvuinﬁlu + wy.
=1

Example 2.7 Causal Conditions for an AR(2) Process

For an AR(1) model, (1 — ¢B)z: = w;, to be causal, the root of ¢(z) =
1— ¢z must lie outside of the unit circle. In this case, the root is z = 1/¢,
so that it is easy to go from the causal requirement on the root, that is,
|1/¢| > 1, to a requirement on the parameter, that is, |¢| < 1. It is not
so easy to establish this relationship for higher order models.
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For example, the AR(2) model, (1— ¢, B — ¢2B?)z; = wy, is causal when
the two roots of ¢(z) = 1 — 12— ¢22? lie outside of the unit circle. Using
the quadratic formula, this requirement can be written as

¢1 £ /4] +4¢2 .y
—2¢,

The roots of ¢(z) may be real and distinct, real and equal, or a complex
conjugate pair. If we denote those roots by 2z; and z,, we can write
#(z) = (1—27'2)(1— 25 '2); note that ¢(z;) = ¢(22) = 0. The model can
be written in operator form as (1 — z; ' B)(1 — z; ' B)z; = w;. From this
representation, it follows that ¢, = (27" +2; ') and ¢o = —(2122)~". This
relationship can be used to establish the following equivalent condition
for causality:  /

dr1+¢2 <1, -1 <1, and |¢o] <1. (2.28)

This causality condition specifies a triangular region in the parameter
space. We leave the details of the equivalence to the reader (Problem 2.4).

2.3 Homogeneous Difference Equations

The study of the behavior of ARMA processes is greatly enhanced by the use
of homogeneous difference equations. This topic is also useful in the study of
time domain models and stochastic processes in general. We will give a brief
and heuristic account of the topic along with some examples of the usefulness
of the theory. For details, the reader is referred to Mickens (1987).

Suppose we have a sequence of numbers ug, uy, us, ... such that

Up—Up—1 =0, a#0, n=12.. (2.29)

For example, recall (2.11) in which we showed that the ACF of an AR(1)
process is a sequence, p(h), satisfying p(h) = ¢p(h — 1), for h = 1,2,.
Equation (2.29) represents a homogeneous difference equation of order
1. To solve the equation, we write:

U = aug

Ug = QU = Qm.:c
a7

Upn = QUp_-1 = Ug.

Given an initial condition up = ¢, we may solve (2.29), namely, u, = a™c.
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In operator notation, (2.29) can be written as (1 — aB)u, = 0. The poly-
nomial associated with (2.29) is a(z) = 1 — @z, and the root, say, zo, of this
polynomial is 2o = 1/a; that is a(zo) = 0. We know the solution to (2.29),
with initial condition ug = ¢, is

u, =a"c= AuolJzn.
That is, the solution to the difference equation (2.29) depends only on the

initial condition and the inverse of the root to the associated polynomial a(z).
Now suppose that the sequence satisfies

Up — QQln_1 — QUp—2 =0, a2 #0, n=23,.. (2.30)

This equation is a homogeneous difference equation of order 2. The
corresponding polynomial is

a(z) =1 - oz — az??,

which has two roots, say, z; and zp; that is, a(z1) = a(22) n.o. We will
consider two cases. First suppose z; # z2. Then the general solution to (2.30)

is
up=c12; " +an", (2.31)

where ¢; and ¢y depend on the initial conditions. This claim can be verified
by direct substitution of (2.31) into (2.30):

—(n— —(n— —(n—2 —(n—2)
azit+eznt —o AENM g I 225 { :v — g AENH (n=2) | 32, ( v

0 = 2
=: iciZi " ﬁ —ayz) — Qunw +caz3 " ﬁ — Q29 — QuNuv
= c1z; "a(z1) + c22z; "a(22)
= 10

Given two initial conditions ug and u;, we may solve for ¢; and ca:

U = c1+c2

- -1
EH EN~~+SNN,

where z; and z» can be solved for in terms of a; and ay using the quadratic
formula, for example. . .
When the roots are equal, z; = 23 (= zo), the general solution to (2.30) is

un = zg (€1 + c2n). (2.32)
This claim can also be verified by direct substitution of (2.32) into (2.30):
—{n— —(n—2
zg "(e1 +can) — ay Awo ( :?H + ca(n — HZV —az AN@ (n :D + c2(n — w:v

= z3™e1+c2n) (1 —aa20 — Qun.w + cp75 " (o1 + 2a220)

= nmNcI_a+~ AQ..H + MD_MNDV .



