1 Moving average models

Definition: $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a moving average of order $q(\operatorname{MA}(q))$ if

$$
\begin{aligned}
& X_{t}=\sum_{k=1}^{q} \theta_{k} \varepsilon_{t-k}+\varepsilon_{t}, t \in \mathbb{Z}, \\
& \left(\varepsilon_{t}\right)_{t \in \mathbb{Z}} \text { a sequence of i.i.d. variables, } \mathbb{E}\left[\varepsilon_{t}\right]=0 .
\end{aligned}
$$

Because an $\operatorname{MA}(q)$ is of the form $X_{t}=f c t .\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{t-q}\right)$, the process is always stationary and causal.

We can represent an MA (q) with the backshift operator as follows.

$$
\begin{aligned}
& X_{t}=(\Theta(B) \varepsilon)_{t}, t \in \mathbb{Z}, \\
& \Theta(z)=1+\sum_{k=1}^{q} \theta_{k} z^{k}(z \in \mathbb{C}) .
\end{aligned}
$$

Analogously to $\operatorname{AR}(p)$ models, we can invert $\Theta(\cdot)$ if its roots are outside the unit circle in the plane of complex numbers. That is, we have the following result.

Theorem 1. Consider an $M A(q)$ process and assume that $\Theta(z) \neq 0$ for $|z| \leq 1$ and $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$. Then,

$$
\begin{aligned}
& \varepsilon_{t}=\sum_{j=0}^{\infty} \gamma_{j} X_{t-j}, \quad \gamma_{0}=1, t \in \mathbb{Z} \\
& \Gamma(z)=\Theta^{-1}(z)=1 / \Theta(z)=\sum_{j=0}^{\infty} \gamma_{j} z^{j}, \gamma_{0}=1
\end{aligned}
$$

Sketch of a proof: Analogously to the sufficient conditions for stationarity and causality of an $\operatorname{AR}(p)$, we can invert

$$
\left(\Theta^{-1}(B) X\right)_{t}=\varepsilon_{t}, t \in \mathbb{Z}
$$

Thereby, we use that $\Theta(z) \neq 0$ for $|z| \leq 1$.
Implication: we can model an infinite conditional dependence with 1 or a few parameters. For example, in an $\operatorname{AR}(p)$ model, we have that

$$
\mathbb{E}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]=\mathbb{E}\left[X_{t} \mid X_{t-1}, \ldots, X_{t-p}\right]=\sum_{j=1}^{p} \phi_{j} X_{t-j} .
$$

But with an MA (q) model,

$$
\mathbb{E}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]
$$

depends on the infinite past. As a concrete example, consider an MA(1) model

$$
X_{t}=\theta \varepsilon_{t-1}+\varepsilon_{t} .
$$

Then,

$$
\Theta(z)=1+\theta z, \quad \Gamma(z)=1 / \Theta(z)=1+\sum_{j=1}^{\infty}(-\theta)^{j} z^{j}
$$

For $|\theta|<1, \Gamma(z)$ is well-defined for $|z| \leq 1$ and thus, for $|\theta|<1$ and $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$, we can represent

$$
X_{t}=\sum_{j=1}^{\infty}(-\theta)^{j} X_{t-j}+\varepsilon_{t}, t \in \mathbb{Z}
$$

which is an $\operatorname{AR}(\infty)$ process, i.e. a non-Markovian process whose conditional distribution depends on an infinite past.

We say that an $\mathrm{MA}(q)$ is invertible if it can be represented as an $\mathrm{AR}(\infty)$ model.

2 Moving average autoregressive models

A combination of $\operatorname{AR}(p)$ and $\mathrm{MA}(q)$ provides a flexible modeling framework.
Definition: $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a moving average autoregressive of orders p and $q(\operatorname{ARMA}(p, q))$ if

$$
X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+\sum_{k=1}^{q} \theta_{k} \varepsilon_{t-k}+\varepsilon_{t}, t \in \mathbb{Z}
$$

With the backshift operator, the model can be represented as

$$
\begin{aligned}
& (\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}, t \in \mathbb{Z}, \\
& \Phi(z)=1-\sum_{j=1}^{p} \phi_{j} z^{j}, \quad \Theta(z)=1+\sum_{k=1}^{q} \theta_{k} z^{k}, \quad z \in \mathbb{C} .
\end{aligned}
$$

The model can be over-parameterized if we do not restrict $\Phi(\cdot)$ and $\Theta(\cdot)$. For example, consider the (seemingly) $\operatorname{ARMA}(1,1)$ equation

$$
\begin{aligned}
& X_{t}=0.8 X_{t-1}-0.8 \varepsilon_{t-1}+\varepsilon_{t} \\
& \text { i.e. }(\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}, \quad \Phi(z)=\Theta(z)=1-0.8 z .
\end{aligned}
$$

We note that the i.i.d. sequence $(\varepsilon)_{t \in \mathbb{Z}}$ satisfies the equation above (just use $X_{t}=\varepsilon_{t}$) and hence, the equation above is satisfied by an i.i.d. sequence (which we usually do not represent as an ARMA(1,1) process). The problem occurs because $\Phi(\cdot)$ and $\Theta(\cdot)$ have common roots (i.e. $z_{0}=1 / 0.8$) and hence, we can factor out some terms on both sides of $(\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}$. The problem disappears and $\operatorname{ARMA}(p, q)$ models become identifiable if we assume that the set of roots of $\Phi(\cdot)$ and the set of roots of $\Theta(\cdot)$ have no common element, i.e. the polynomials $\Phi(\cdot)$ and $\Theta \cdot)$ have no common factors.

Using the analogous arguments as before, we can invert $\Phi(\cdot)$ and/or $\Theta(\cdot)$ if the corresponding roots are outside the unit circle. We then obtain the following result.

Theorem 2. Consider an $\operatorname{ARMA}(p, q)$ with $\Phi(z) \neq 0(|z| \leq 1), \Theta(z) \neq 0(|z| \leq 1)$ and assume that the roots of $\Phi(\cdot)$ and $\Theta(\cdot)$ are distinct. Then, the $M A(\infty)$ representation

$$
\begin{aligned}
& X_{t}=\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}+\varepsilon_{t}, t \in \mathbb{Z} \\
& \Psi(z)=\frac{\Theta(z)}{\Phi(z)}=\sum_{j=0}^{\infty} \psi_{j} z^{j}, \psi_{0}=1 \quad(|z| \leq 1)
\end{aligned}
$$

holds, and the $A R(\infty)$ representation

$$
\begin{aligned}
& \varepsilon_{t}=\sum_{j=0}^{\infty} \gamma_{j} X_{t-j}, \gamma_{0}=1, t \in \mathbb{Z} \\
& \text { i.e. } X_{t}=\sum_{j=1}^{\infty}-\gamma_{j} X_{t-j}+\varepsilon_{t}, t \in \mathbb{Z} \\
& \Gamma(z)=\frac{\Phi(z)}{\Theta(z)}=\sum_{j=0}^{\infty} \gamma_{j} z^{j}(|z| \leq 1)
\end{aligned}
$$

holds as well.
Note that the condition $\Phi(z) \neq(|z| \leq 1)$ implies stationarity and causality of the $\operatorname{ARMA}(p, q)$ process since we can represent it as $X_{t}=\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}+\varepsilon_{t}$ which is a function of infinitely many $\varepsilon_{t}, \varepsilon_{t-1}, \ldots$

3 Autocorrelation function and Partial autocorrelation function

The autocorrelation function (ACF) of a weakly stationary process is defined as

$$
\rho(k)=\frac{R(k)}{R(0)}
$$

Definition: The partial autocorrelation function (PACF) of a weakly stationary process is defined as

$$
\alpha(k)=\operatorname{Parcorr}\left(X_{0}, X_{k} \mid X_{1}, \ldots, X_{k-1}\right), \quad k \in \mathbb{N}(k \geq 1)
$$

The partial autocorrelation is defined as

$$
\begin{equation*}
\alpha(k) \frac{\operatorname{Cov}\left(X_{0}-\hat{X}_{0 \mid 1, \ldots, k-1}, X_{k}-\hat{X}_{k \mid 1, \ldots, k-1}\right)}{\sqrt{\operatorname{Var}\left(X_{0}-\hat{X}_{0 \mid 1, \ldots, k-1}\right) \operatorname{Var}\left(X_{k}-\hat{X}_{k \mid 1, \ldots, k-1}\right)}} \tag{1}
\end{equation*}
$$

where $\hat{X}_{t \mid 1, \ldots, k-1}$ is the best linear prediction of X_{t} based on X_{1}, \ldots, X_{k-1}. Note that all the quantities involved in (1) involve only first and second moments and hence, weak stationarity is sufficient to define $\alpha(\cdot)$ as a function of the lag k only.

3.1 Qualitative behavior of ACF and PACF

For an $\operatorname{MA}(q)$ model, it is easy to see that $\rho(k)=0$ for all $k \geq q+1$ (because X_{t} ad X_{t+k} are independent for $k \geq q+1$).

For an $\operatorname{AR}(p)$ model, we note that for $k \geq p+1$

$$
\hat{X}_{k \mid 1, \ldots k-1}=\sum_{j=1}^{p} \phi_{j} X_{k-j},
$$

and hence

$$
X_{k}-\hat{X}_{k \mid 1, \ldots k-1}=\varepsilon_{k} .
$$

Therefore, the numerator in (1) equals zero if $k \geq p+1$ and if the $\operatorname{AR}(p)$ model is causal (since then ε_{k} is independent from $\left\{X_{t} ; t \leq k-1\right\}$). In summary, for a stationary and causal $\operatorname{AR}(p)$,

$$
\alpha(k)=0 \text { for } k \geq p+1 .
$$

The following "duality" scheme holds in general.

model	ACF	PACF
$\operatorname{AR}(p)$	$\rho(k)$ decays exp. fast as $k \rightarrow \infty$	$\alpha(k)=0$ for $k \geq p+1$
$\operatorname{MA}(q)$	$\rho(k)=0$ for $k \geq q+1$	$\alpha(k)$ decays exp. fast as $k \rightarrow \infty$
$\operatorname{ARMA}(p, q)$	$\rho(k)$ decays exp. fast as $k \rightarrow \infty$	$\alpha(k)$ decays exp. fast as $k \rightarrow \infty$

