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Figure 2.3: Simulated AR(2) model, n = 144 with ¢; = 1.5 and ¢ = —0.75.
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for the 1)-weights is much more complicated, as was demonstrated in
Example 2.6. The use of the theory of homogeneous difference equations
can help here. To solve for the i-weights in general, we must match the
coefficients in 9(2)¢(z) = 0(z):
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where we would take ¢; = 0 for j > p, and 0; = 0 for j > q. The
Y-weights satisfy the homogeneous difference equation given by

~ M $kvi—k =0, j > max(p,q+1), (2.37)

with initial conditions

The associated polynomial is

L ., and z, with multiplicity m,, such that m; + Eu s
Mmumwm_ solution to the difference equation (2.35) is

ma, . --my, = p. The

Un = z; "FPi(n) + 2, "Py(n) + - - + 2. " Pr(n), (2.36)

where P;(n), for j = 1,2,...,r, is a polynomial in n, of degree m; — 1. Given p
initial conditions uy, ..., 4p_1, we can solve for the P;(n) explicitly.
Example 2.10 Determining the ¢-weights for a Causal ARMA (p,q)

For a causal ARMA(p, q) model, ¢(B)z; = 6(B)w;, where the zeros of
$(z) are outside the unit circle, recall that we may write

o0
Iy = .w. ﬁ.ET?
=0

where the 1/-weights are determined using Property P2.1.

For the pure MA(g) model, o =1, ¥; = 8;, for j = 1,...,q, and ¢; = 0,
otherwise. For the general case of ARMA (p, ¢) models, the task of solving

7
V=) bethj—k =0;, 0<j<max(p,q+1). (2.38)
k=1
The general solution depends on the H.ocnw of 25 >w UOJ:SE_& &NV
I —¢yz == ¢, 2P, as seen from
course, depend on the initial conditions.

Consider the ARMA process given in (2.27), z; = 0.9z;_; +0.5w;_; +w;.
Because max(p,q + 1) = 2, using (2.38), we have o = 1 and v; = 0.9 +
0.5=14. By (2.37), for j = 2, 3, ..., the y-weights satisfy P;—0.9¢%;_; =
0. The general solution is 9; = ¢0.97. To find the specific solution, use
the initial condition ¢; = 1.4, so 1.4 = 0.9¢c or ¢ = 1.4/0.9. Finally,
¥; = 1.4(0.9)771, for j > 1, as we saw in Example 2.6.

2.4 Autocorrelation and Partial Autocorrelation
Functions
We begin by exhibiting the ACF of an MA(q) process, z; = 6(B)w;, where

0(B) = 1460,B+---+60,B9. Because z; is a finite linear combination of white
noise terms, the process is stationary with mean

q
E(z) =) 6;E(w;—;) =0,

i=0

e
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where we have written 6y = 1, and with autocovariance function
q q
¥(h) = cov (zern, @) = E || D Oiwepn—j | | D Oiwer
=0 k=0

w

= (2.39)
0, h>gq.

02 3025 0i054h, 0<h<g

Recall that v(h) = v(—h), so we will only display the values for h > 0. The
cutting off of «y(h) after q lags is the signature of the MA(q) model. Dividing
(2.39) by v(0) yields the ACF of an MA (q):
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From (2.42), we can write a general homogeneous equation:

¥(h) —ry(h=1) =+ = dpy(h —p) =0, h>max(p,q+1), (2.43)
with initial conditions
P q
y(h) =Y bivth—3) =02 > Oij—n, O0<h<max(pg+1). (244)
=1 i=h

Dividing (2.43) and (2.44) through by ~(0) will allow us to solve for the ACF,
p(h) = ~(h)/~(0).
Example 2.11 The ACF of an ARMA(1,1)

ﬂw 0565 4n 1<h< Consider the causal ARMA(1,1) process z; = ¢z;_1 +6w;_; +w;, where
p(h) ={ 14624402 ~ = 7 ¢ (2.40) |¢| < 1. Based on (2.43), the autocovariance function satisfies
0, h>q. v(h) = ¢y(h—1) =0, h=2,3,..,
For m..nm.cmm._ LPWHSWP?“ q) Goamr #(B)z¢ = 6(B)w,, where the zeros of ¢(z) s s peneal adltion Sapli)= o for fi =1, ... T solveor o, we
are outside the unit circle, write i
use (2.44):
d..UlOJ " 2 r i A21 —
T —= ) LTIRXTINS Fl —
£= Q) Wil =pllrellte+ef ..
i=0 (1) = ¢v(0) +o28.

It follows immediately that E(z;) = 0. Also, the autocovariance function of z;
can be written as:

o0
(k) = cov(Te4n, Tt) = 02, MAP_.,__F.._,? h >0. (2.41)
=0

We could then use (2.37) and (2.38) to solve for the 1-weights. In turn, we
could solve for y(h), and the ACF p(h) = y(h)/v(0). As in Example 2.8, it is
also possible to obtain a homogeneous difference equation directly in terms of
~(h). First, we write

P q
v(h) = cov(Tern,7) = E M&Hiai + Mum...é“ii. Ty
i=1 =0
P q
= Y ¢ivlh—35)+ 0% Oi%in, h=0, (2.42)
i=1 j=h

where we have used the fact that for h > 0,

o0
E(zernw) = E || Y jwein—j | we| = ¢noy,.
=0

Solving for 4(0) and (1), we obtain:

} 2
¥(0) = Sw|H Hmwwwm

14 04)(¢+6
1) = qw|A Hv% !

Because (1) = c¢, we have ¢ = (1) /¢, so the general solution is

1+0 0
oty = o LEAELD

Finally, dividing through by «(0) yields the ACF

_ (14098 +6)
o) = e g A2l (2.45)

ﬂ?lw.

Example 2.12 The ACF of an AR(p)

For a causal AR(p), it follows immediately from (2.43) that

p(h) = g1p(h —1) = --- — dpp(h —p) =0, h>p. (2.46)
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Let z1,..., 2z, denote the roots of ¢(z), each with multiplicity my, ..., m,,
respectively, where m; + --- + m, = p. Then, from (2.37), the general
solution is

p(h) = z7"Pi(h) + z; "Py(h) +--- + 27" P.(R), h>p,  (247)

where P;(h) is a polynomial in h of degree m; — 1.

Recall that for a causal model, all of the roots are outside the unit circle,
|zi] > 1, for i = 1,..,r. If all the roots are real, then p(h) dampens
exponentially fast to zero as h — co. If some of the roots are complex,
then they will be in conjugate pairs and p(h) will dampen, in a sinusoidal
fashion, exponentially fast to zero as h — oo. In the case of complex roots,
the time series will appear to be cyclic in nature. This, of course, is also
true for ARMA models in which the AR part has complex roots.

THE PARTIAL AUTOCORRELATION FuncTiON (PACF)

We have seen in (2.40) that, for MA(¢) models, the ACF will be zero for lags
greater than q. Moreover, because 8, # 0, the ACF will not be zero at lag
q- Thus, the ACF provides a considerable amount of information about the
order of the dependence when the process is a moving average process. If the
process, however, is ARMA or AR, the ACF alone tells us little about the

orders of dependence. Hence, it is worthwhile pursuing a function that will
behave like the ACF for AR models, namely, the partial autocorrelation
function (PACF).

To motivate the idea, consider a causal AR(1) model, 7; = ¢z;_; + w;.
Then,

Y(2) = cov(xy, z4—2) = cov(pzi—1 + we, Te_2)
= cov(¢®Ti—2 + dwe—1 + wr, T1_2) = $2y(0).

This result follows from causality because ;_, involves {w;—_z, w;_3, ...}, which
are all uncorrelated with w; and w;_;. The correlation between z; and z;_» is
not zero, as it would be for an MA(1), because z; is dependent on z;_» through
zt—1. Suppose we break this chain of dependence by removing (partial out)
z;_1. That is, we consider the correlation between z; —¢z;_, and z_ — pzs_1,
because it is the correlation between z; and z;_, with the linear dependence
of each on z;_; removed. In this way, we have broken the dependence chain
between z; and z;_5. In fact,

no<A§ — PTi_1,Ty—g — PT4—1) = ooiérﬁﬁlu —¢z1) =0.

To formally define the PACF for mean-zero stationary time series, let H“_.L
denote the best linear predictor of z; based on {zy,2,...,zp_1}. We will dis-
cuss prediction in detail in the next section, but for now, we note @._wv_ has the

form:

HNIH =Bizh_1+ Bozpo+ -+ Bh_111, Aw.ﬁmv
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where the 3’s are chosen to minimize the mean square linear prediction error,
E(zn —zp~1)%. In addition, let 2§~ denote the minimum mean square linear
predictor of o based on {z;,%s,...,z5—1 }. As will be seen in the next section,

HM.T_ can be written as

zg "' = P31 + fazz + -+ + Pro1Th-1. (2.49)

Equation (2.48) can be thought of as the linear regression of =5 on the past,
Th_1,...,T1, and (2.49) can be thought of as the linear regression of zo on the
future, xi,...,z5_1. The coefficients, f;,..., 4_1 are the same in (2.48) and
(2.49), which means that, for stationary processes, linear prediction backward
in time is equivalent to linear prediction forward in time. We will discuss this
result further in the next section.

Formally, for a stationary time series, x;, we define the partial autocor-
relation function (PACF), ¢pp, h=1,2,.., by

$11 = corr(z1,z0) = p(1) (2.50)

and

¢nn = corr(zy — zh L, g —2P7Y), R>2. (2.51)

Both (zp — leJ and (zo — zg~ ') are uncorrelated with {z1,2,...,Zn—1}-
By stationarity, the PACF, ¢y, is the correlation between z; and z;_, with
the linear effect o - ; On-eac emoved.If the process x4
is Gaussian, then ¢xn = corr(z¢, T¢—n| Te—1, .-, Te—(n—1))- That is, Pnn is the
correlation coefficient between z; and z;_; in the bivariate distribution of
(z¢,¢—p) conditional on {z¢—1,..., Te—(p—1)}-

Example 2.13 The PACF of a Causal AR(1)

Consider the PACF of the AR(1) process given by z; = ¢x¢—1 +w;, with
|¢| < 1. By definition, ¢1; = p(1) = ¢. To calculate ¢22, consider the
prediction of z2 based on a linear function of z,, say, r3 = az;. We
choose a to minimize

E(z2 — az1)? = 7(0) — 2a(1) + o®(0).

Taking derivatives and setting the result equal to zero, we have a =
v(1)/4(0) = p(1) = ¢. Thus, 21 = ¢z;. Next, consider the prediction of
o based on a linear function of z;: =}, = az;. We choose a to minimize

E(zo — az;)? = y(0) — 2av(1) + a®(0).

Analogously, we have z3 = ¢z, which agrees with the claim that predic-
tion forward in time is equivalent to prediction backward in time. Hence,
a2 = corr(ze — ¢px1, T — pz1). But, note

cov(zy — ¢z1, 20 — dz1) = Y(2) — 2¢7(1) + ¢°7(0) =0

since y(h) = ¥(0)¢". Thus, ¢22 = 0. In the next example, we will see
that in this case ¢pp = 0, for all h > 1.
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Table 2.1 Behavior of the ACF and PACF for Causal and
Invertible ARMA Models

) _ | AR(p) MA(g)  ARMA(p,q)
3 2
" : ACF  Tails off Cuts off Tails off
: 3 after lag ¢
5 I Ui Wu_ PACF  Cutsoff  Tailsoff  Tails off
s _ ‘___ B s after lag p
3 i
: 3 For an MA(1), z; = w¢ + fw_q, with |f] < 1, calculations similar to
) ) Example 2.13 will yield ¢ = (—6)%/(1 + 6% + 6*). For the MA(1) in
' et T ke T general, we can show that
: . (=0)(1 - 62)
Figure 2.4: The ACF and PACF, to lag 24, of an AR(2) model, with ¢; = 1.5 Onp = g h>1.
and ¢ = —0.75. N

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because an
invertible ARMA model has an infinite AR representation, the PACF will not
cut off. We may summarize these results in Table 2.1.

Example 2.14 The PACF of a Causal AR(p)

Let z; = Mwnp ¢jxe_j + we, where the roots of ¢(z) are outside the unit
circle. When h > p, then

Example 2.16 Preliminary Analysis of the Recruitment Series

P
H._.'H. Sm— . .
Ty = Muﬁ..__.d?lu.
=1

We consider the problem of modeling the Recruitment series (number
of new fish) shown in Figure 1.4. There are 453 months of observed
recruitment ranging over the years 1950-1987. The ACF and the PACF
given in Figure 2.5 are consistent with the behavior of an AR(2). The
corr(zp — H_._.HIH_ Tg — HwiJ ACF has cycles corresponding roughly to a 12-month period, and the
PACF has large values for h = 1,2 and then is essentially zero for higher
order lags. Based on Table 2.1, these results suggest that a second-order

We have not proven this obvious result yet, but we will prove it in the
next section. Thus, when h > p,

Ohh

= corr(wp,zo — awlv = ()

since, by causality, ¢ — HWLH depends only on {wp—1,wh—2,...}; recall
equation (2.49). When h < p, ¢, is not zero, and ¢11, ..., Pp—1,-1 are
not necessarily zero. Figure 2.4 shows the ACF and the PACF of the
AR(2) model presented in Example 2.9.

Example 2.15 The PACF of an invertible MA(q)

For an invertible MA(q), we can write z; = ) ;- | 7;%¢j +w¢. Moreover,
no finite representation exists. From this result, it should be apparent
that the PACF will never cut off, as in the case of an AR(p).

(p = 2) autoregressive model might provide a good fit. Although we will
discuss estimation in detail in Section 2.6, we ran a regression (see Section
1.8) using the data triplets {(z3, z2, 1), (T4, 23, Z2), ..., (T453, Tas2, Tas1) }
to fit a model of the form

Ty = o + pr1T¢-1 + oz +wy

for t = 3,4,...,453. The values of the estimates were mwc = 6.74(1.11),

$1 = 1.35(.04), 4, = —.46(.04), and 32 = 90.31, where the estimated
standard errors are in parentheses.
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2.5 Forecasting

In forecasting, the goal is to predict future values of a time series, |,
m = 1,2,..., based on the data collected to the present, z = {zn,Zp_1,...,21}.
Throughout this section, we will assume z; is stationary and the model pa-
rameters are known. The problem of forecasting when the model parame-
ters are unknown will be discussed in the next section; also, see Problem
2.25. The minimum mean square error predictor of T, is z] m =
E(Znim|Tn,Tn—1,...,21) because the conditional expectation minimizes the
mean Square error
E{@nim — 9(@)}2, (2.52)

where g(z) is a (measurable) function of the observations z. This result follows
by iterating the expectation, E{Znim — 9(z)}* = E[E{[Zntm — 9(z)] | =},
and then observing that the inner expectation is minimized when 27, . =
E(Zpim | z); see Problem 2.13.

First, we will restrict attention to predictors that are linear functions of
the data, that is, predictors of the form

n
HM..TS =ap + M QETik, (2.53)
k=1

where ap, @, ...,an are real numbers. Linear predictors of the form (2.53)
that minimize the mean square prediction error (2.52) are called best linear
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Figure 2.5: ACF and PACF of the Recruitment series.
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predictors. As we shall see, linear prediction depends only on the second-order
moments of the process, which are easy to estimate from the data. Much of
the material in this section is enhanced by the theoretical material presented in
Section T2.15. For example, Theorem 2.3 states that if the process is Gaussian,
minimum mean square error predictors and best linear predictors are the same.
The following property, which is based on the projection theorem, Theorem
2.1 of Section T2.15, is a key result.

Property P2.3: Best Linear Prediction for Stationary Processes
Given data x1,...,%,, the best linear predictor, Tpym = Qo + MuwuH apTg, of
Tnim, for m > 1, is found by solving

E HH3+1= = H”+3§“_ = {;
E[(Tnim — Zim) 3] =0, k=1,..,n. (2.54)

The equations specified in (2.54) are called the prediction equations,
and they are used to solve for the coefficients {ag, a1, ...,an}. If E(z:) = p,
the first equation of (2.54) is E(z%,,.) = E(Tn+m) = p, which implies ap =
p(1— 34—, o). Hence, the form of the BLP is 27, = pu+ S r_; ax(zx — p).-
Thus, until we discuss estimation, there is no loss of generality in considering
the case that g = 0, in which case, ag = 0.

Consider, first, one-step-ahead prediction. That is, given {z1,...,z,},
we wish to forecast the value of the time series at the next time point, Zp.41-
The BLP of z,4; is

HM+.~ = ¢n1Tn + PrnoZn_1 +--- + PnnT1, Awmmu

where, for purposes that will become clear shortly, we have written oy, in (2.54),
a8 Ppnii—k in (2.55), for k = 1,...,n. Using Property P2.3, the coefficients
Tw:u ) %:w. weey &nav mm.ﬂmm%

n

E || zn - M OniTnti—f | Tnti-k| =0, k=1,..,n,
Sl

or
> btk =3) =1(K), k=1,.,n. )
i=1

The prediction equations (2.56) can be written in matrix notation as

H;?Qﬂ = 43 ] ANM'.NV

where I', = {y(k—j)}7,_, is an n x n matrix, ¢, = (¢n1, .., Pnn)’ isann x 1
vector, and 7,, = (y(1), ...,7(n))" is an n x 1 vector.



