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Figure 1.17. The differenced series {VV,,x,,t = 14,.._, 72} derived from the monthly
accidental deaths {x,,t =1,...,72}. ,

Proposition 1.5.1 (Elementary Properties). If y(-) is the autocovariance Sfunction
of a stationary process {X,,te Z}, then

y(0) = 0, (1.5.1)

ly(h)] < y(0) forall heZ, (1.5.2)
and

y(h)y=y(—h) forallheZ. (1.5.3)

PRrOOF. The first property is a statement of the obvious fact that Var(X,) > 0,
the second is an immediate consequence of the Cauchy—Schwarz inequality,

|Cov(X,ip X)| < (Var(X,,,))"*(Var(X,))"?
and the third is established by observing that
y(—h) = OO«.AN‘_L_., X)) = ﬁOeAktuﬂ::w = y(h). O

Autocovariance functions also have the more subtle property of non-
negative definiteness.

Definition 1.5.1 (Non-Negative Definiteness). A real-valued function on the
integers, x : Z — R, is said to be non-negative definite if and only if
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Y a(t; — t)a; = 0 (1.5.4)

i, j=1
for all positive integers n and for all vectors a = (a,,...,a,) € R" and t =

(tyse..st,) €2

Theorem 1.5.1 (Characterization of Autocovariance Functions). A real-valued
even function defined on the set Z of all integers is non-negative definite if and
only if it is the autocovariance function of a stationary time series.

PRrOOF. To show that the autocovariance function y(-) of any stationary time
series { X, } is non-negative definite, we simply observe that ifa = (ay,...,a,) e
R, t=(ty,....,t,)€Z" and Z; = (X,, — EX, s--y X, —EX, ¥, then

0 < Var(a'Z,)

=a'EZZ;a
=a'l,a
= M ay(t; — &.V@.,
i,j=1
where I, = [y(t; — ¢;)17 =, is the covariance matrix of ¢ ST, )

To establish the converse, let x: Z — R be an even non-negative definite
function. We need to show that there exists a stationary process with ()
as its autocovariance function, and for this we shall use Kolmogorov’s
theorem. For each positive integer n and each t = (t,,...,t,)e Z" such that
ty <t < <t,let F be the distribution function on R" with characteristic
function

fu(u) = exp(—w'Ku)2),

where u = (u,,...,u,Y € R" and K = [«(t,— ;)17 ;=1 . Since k is non-negative
definite, the matrix K is also non-negative definite and consequently ¢, is
the characteristic function of an n-variate normal distribution with mean
zero and covariance matrix K (see Section 1.6). Clearly, in the notation of
Theorem 1.2.1,

Sup(u(i)) = lim ¢y(u) for cach te 7,

u;—0

i.e. the distribution functions F, are consistent, and so by Kolmogorov’s
theorem there exists a time series {X,} with distribution functions F, and
characteristic functions ¢, t € 7. In particular the joint distribution of X;and
X; is bivariate normal with mean 0 and covariance matrix

k(0)  x(i—))
x(i—j)  x(0) [

which shows that Cov(X, X;) = x(i — j) as required. O



28 1. Stationary Time Series

Remark 1. As shown in the proof of Theorem 1.5.1, for every autocovariance
function y(+), there exists a stationary Gaussian time series with y(-) as its
autocovariance function.

Remark 2. To verify that a given function is non-negative definite it is sometimes
simpler to specify a stationary process with the given autocovariance function
than to check Definition 1.4.1. For example the function k(h) = cos(6h), he Z,
is the autocovariance function of the process in Example 1.3.1 and is therefore
non-negative definite. Direct verification by means of Definition 1.4.1 however
is more difficult. Another simple criterion for checking non- negative definite-
ness is Herglotz’s theorem, which will be proved in Section 4.2.

Remark 3. An auiocorrelation function p(-) has all the properties of an
autocovariance function and satisfies the additional condition p(0) = 1.

ExaMmPLE 1.5.1. Let us show that the real-valued function on Z,

1 ifh=0,
k(hy=<p ifh=+1,
0 otherwise,

is an autocovariance function if and only if [p| < 4.

If |p| < 4 then (+) is the autocovariance function of the process defined in
Example 1.3.2 with 62 = (1 + 02) "' and 0 = (2p) (1 £ /1 — 4p?).

If p>4, K=[k(i—j)]i;-y and a is the n-component vector a =
(1, —1,1,—1,...), then

aKa=n—2n—1)p<0 forn>2p/2p—1),

which shows that x(+) is not non-negative definite and therefore, by Theorem
1.5.1 is not an autocovariance function.

If p < —1, the same argument using the n-component vector a = (1, 1,1,.. )
again shows that (-) is not non-negative definite.

The Sample Autocovariance Function of an Observed Series

From the observations {x;,x,,...,x,} of a stationary time series {X,} we
frequently wish to estimate the autocovariance function y(-) of the underlying
process { X, } in order to gain information concerning its dependence structure.
This is an important step towards constructing an appropriate mathematical
model for the data. The estimate of y(-) which we shall use is the sample
autocovariance function.

Definition 1.5.2. The sample autocovariance function of {x,,...,x,} is defined
by
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n—h
Fh) :i=n"1 Y (X4 — X)(x;— %), O0<h<n,
=1
and §(h) = J(—h), —n < h <0, where X is the sample mean X = n"' Y 1_, x;.

zmn_m:.r 4. The divisor n is used rather than (n — h) since this ensures that the
matrix [, := [$(i — j) i j=1 15 non-negative definite (see Section 7.2).

Remark 5. The sample autocorrelation function is defined in terms of the
sample autocovariance function as

ph) == 9(0)/7(0), |kl <n.

The corresponding matrix R, := [p(i — )i j=1 is then also non-negative
definite.

Remark 6. The large-sample propertics of the estimators (k) and j(h) are
discussed in Chapter 7.

ExampLE 1.5.2. Figure 1.18(a) shows 300 simulated observations of the series
X, =Z +0Z_, of Example 1.3.2 with 6 = 0.95 and Z, ~ N(0,1). Figure
1.18(b) shows the corresponding sample autocorrelation function at lags
0, ..., 40. Notice the similarity between j(-) and the function p(-) computed
as described in Example 1.3.2(p(h) = 1forh = 0,.4993 for h = + 1,0 otherwise).

ExaMpPLE 1.5.3. Figures 1.19(a) and 1.19(b) show simulated observations and
the corresponding sample autocorrelation function for the process X, =
Z,+ 0Z,_,, this time with § = —0.95and Z, ~ N(0, 1). The similarity between
p(-) and p(-) is again apparent.

Remark 7. Notice that the realization of Example 1.5.2 is less rapidly fluctuating
than that of Example 1.5.3. This is to be expected from the two autocorrelation
functions. Positive autocorrelation at lag | reflects a tendency for successive
observations to lie on the same side of the mean, while negative autocorrelation
at lag | reflects a tendency for successive observations to lie on opposite sides
of the mean. Other properties of the sample-paths are also reflected in the
autocorrelation (and sample autocorrelation) functions. For example the
sample autocorrelation function of the Wélfer sunspot series (Figure 1.20)
reflects the roughly periodic behaviour of the data (Figure 1.5).

Remark 8. The sample autocovariance and autocorrelation functions can be
computed for any data set {x,,...,x,} and are not restricted to realizations
of a stationary process. For data containing a trend, |j(h)| will exhibit slow
decay as h increases, and for data with a substantial deterministic periodic
component, 4(h) will exhibit similar behaviour with the same periodicity. Thus
£(-) can be useful as an indicator of non-stationarity (see also Section 9.1).
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Figure 1.18. (a) 300 observations of the series X, = Z, + .95Z,_,, Example 1.5.2. Figure 1.19. (a) 300 observations of the series X, = Z, — 957, ,, Example 1.5.3.
(b) The sample autocorrelation function g(h), 0 < h < 40. (b) The sample autocorrelation function p(h), 0 < h < 40.




