Skeleton of $\operatorname{AR}(p)$ models
without innovations

$$
\begin{equation*}
x_{t}=\sum_{j=1}^{p} \phi_{j} x_{t-j}, \quad \phi_{p} \neq 0 . \tag{1}
\end{equation*}
$$

Theorem 1. All solutions of (1) build a vector space of dimension p. The basis vectors correspond to the roots of

$$
\Phi(z)=1-\sum_{j=1}^{p} \phi_{j} z^{j}(z \in \mathbb{C}):
$$

1. $z_{0} \in \mathbb{R}$ a root with multiplicity 1 :
$x_{t}=z_{o}^{-t}$;
2. $z_{0}=r e^{i \mu}, \bar{z}_{0}=r e^{-i \mu}$ complex conjugate roots:
$x_{t}=\cos (\mu t) r^{-t}, \quad x_{t}=\sin (\mu t) r^{-t} ;$
3. $z_{0} \in \mathbb{R}$ a root with multiplicity k :

$$
x_{t}=z_{o}^{-t} t^{j}(j=0, \ldots, k-1)
$$

4. $z_{0}=r e^{i \mu}, \bar{z}_{0}=r e^{-i \mu}$ each with moltiplicity k :
$x_{t}=\cos (\mu t) r^{-t} t^{j}$,
$x_{t}=\sin (\mu t) r^{-t} t^{j} \quad(j=0, \ldots, k-1)$.

Sketch of proof.
The assertion that the solutions build a vector space holds because (1) is a homogeneous equation.
Regarding the dimensionality: consider x_{1}, \ldots, x_{p} fixed: then, x_{t} is determined for all $t \in \mathbb{Z}$ since:

$$
x_{p+1}=f c t .\left(x_{p}, x_{p-1}, \ldots, x_{1}\right)
$$

and we can then continue iteratively for all $x_{t}, t \geq p+1$; on the other hand,

$$
x_{0}=\frac{x_{p}-\sum_{j=1}^{p-1} \phi_{j} x_{p-j}}{\phi_{p}}
$$

and we can continue iteratively for $x_{t} t \leq 0$.
The form of the basis vectors: if we plug them into (1) one can see that the equation holds.
Finally, it is "easy" to show that the basis vectors are linearly independent.

Corollary 1. Consider a causal, stationary $A R(p)$ model. Then, every solution of the corresponding deterministic skeleton as in (1) converges exponentially fast to zero as $t \rightarrow \infty$.
Proof.

A causal and stationary $\operatorname{AR}(p)$ must necessarily have its root of $\Phi(\cdot)$ outside the unit circle $\{z \in \mathbb{C} ;|z| \leq 1\}$. Therefore, the assertion holds since all roots have absolute value $\left|z_{0}\right|>1$ and the solutions of (1) then decay exponentially fast, see Theorem 1. \square

