1 Moving average models
Definition: (X¢)iez is a moving average of order ¢ (MA(q)) if
q
X = ngEt_k +é&, tE Z,

k=1
(e¢)tez a sequence of i.i.d. variables, Ele;] = 0.

Because an MA(q) is of the form X; = fct.(e4,e4—1,...,64—4), the process is always sta-
tionary and causal.
We can represent an MA(q) with the backshift operator as follows.

X = (O(B)e), t €2,

O(z) =1+ Zq:szk (z € C).
k=1

Analogously to AR(p) models, we can invert O(-) if its roots are outside the unit circle in
the plane of complex numbers. That is, we have the following result.

Theorem 1. Consider an MA(q) process and assume that ©(z) # 0 for |z|] < 1 and
Elet| < co. Then,

0o
St:Z’Yth,j, Yo = 1, teZ,

=0
I(2) =07'(2) = 1/6( Z% =1

Sketch of a proof: Analogously to the sufficient conditions for stationarity and causality
of an AR(p), we can invert

(@71(B)X)t =¢e, t € 7.
Thereby, we use that O(z) # 0 for |z| < 1. O

Implication: we can model an infinite conditional dependence with 1 or a few param-
eters. For example, in an AR(p) model, we have that

p
E[Xe|Xe1, X0, ] =E[Xi| Xo1, ... Xop] = > 65 X4

But with an MA(g) model,
E[X¢| X¢—1, Xi—2,...]
depends on the infinite past. As a concrete example, consider an MA(1) model

Xy =0c1_1 + &4,



Then,
O(z)=1+06z T(2)=1/0(2)=1+ i(—&)jzj.
j=1

For || < 1, T'(2) is well-defined for |z| < 1 and thus, for |0] < 1 and E|g;| < oo, we can
represent

0o
X = Z(—G)th_j + e, t € Z,
j=1

which is an AR(oo) process, i.e. a non-Markovian process whose conditional distribution
depends on an infinite past.

We say that an MA(q) is invertible if it can be represented as an AR(co) model.

2 Moving average autoregressive models
A combination of AR(p) and MA(q) provides a flexible modeling framework.

Definition: (Xy)tez is a moving average autoregressive of orders p and ¢ (ARMA(p, q))
if

p q
Xy = Z¢th_j + Zaké‘t,k + &4, t € Z.
=1 k=1

With the backshift operator, the model can be represented as

(®(B)X): = (B(B)e), t € Z,
@(z)zl—qujzj, @(z):1+29kzk, z € C.
=1 k=1

J

The model can be over-parameterized if we do not restrict ®(-) and ©(-). For example,
consider the (seemingly) ARMA(1,1) equation

Xt = 0.8Xt_1 — 0.8€t_1 + &4,
ie. (B(B)X) = (O(B)e);, ®(z)=0(z)=1-0.8z.

We note that the i.i.d. sequence (¢)icz satisfies the equation above (just use Xy = &)
and hence, the equation above is satisfied by an i.i.d. sequence (which we usually do
not represent as an ARMA(1,1) process). The problem occurs because ®(-) and O(-)
have common roots (i.e. zp = 1/0.8) and hence, we can factor out some terms on both
sides of (®(B)X): = (©(B)e)¢. The problem disappears and ARMA(p, ¢) models become
identifiable if we assume that the set of roots of ®(-) and the set of roots of () have no
common element, i.e. the polynomials ®(-) and ©-) have no common factors.

Using the analogous arguments as before, we can invert ®(-) and/or ©(:) if the corre-
sponding roots are outside the unit circle. We then obtain the following result.



Theorem 2. Consider an ARMA(p,q) with ®(z) #0 (|z| < 1), O(2) #0 (]z] < 1) and
assume that the roots of ®(-) and O(-) are distinct. Then, the MA (o) representation

o
X = Z%‘Et—j +é¢, t € Z,

Jj=1

(e j ij Yo =1 (|2 < 1),

holds, and the AR (co0) representation

[e.e]
&t = Z’Ythfja Y0 = ]-a te Za
j=0

o0
t.e. Xy = Z —v; Xi—j + e, t € Z,

Jj=1
[e9)

Z 2 (2] < 1)

holds as well.

Note that the condition ®(z) # (|z| < 1) implies stationarity and causality of the
ARMA (p, q) process since we can represent it as X; = Z;’il ;e +e¢ which is a function
of infinitely many e, 6,1, ...

3 Autocorrelation function and Partial autocorrelation func-
tion
The autocorrelation function (ACF) of a weakly stationary process is defined as

p(k) = ];Eg;-

Definition: The partial autocorrelation function (PACF) of a weakly stationary process
is defined as

a(k) = Parcorr(Xg, Xg| X1, ..., Xx—1), keN (k>1).
The partial autocorrelation is defined as
Cov(Xo — Xopt,.j—1, X — Xpj1,.. k1)
\/Val" (Xo — Xop1,... 1) Var(Xy — Xk:|1 1)

a(k) : (1)

where Xt|1,‘..,k71 is the best linear prediction of X; based on Xi,...,Xp_1. Note that
all the quantities involved in (1) involve only first and second moments and hence, weak
stationarity is sufficient to define «a(-) as a function of the lag k only.



3.1 Qualitative behavior of ACF and PACF

For an MA(q) model, it is easy to see that p(k) = 0 for all k > ¢+ 1 (because X; ad Xy
are independent for k > ¢ + 1).
For an AR(p) model, we note that for k > p+1

P
Xkt k-1 = E ¢ Xk—j,
i=1
and hence
Xk — Xpj1,..k—1 = Ek-

Therefore, the numerator in (1) equals zero if £ > p+ 1 and if the AR(p) model is causal
(since then ey is independent from {X;;t < k — 1}). In summary, for a stationary and
causal AR(p),

ak)=0for k>p+1.

The following “duality” scheme holds in general.

model ‘ ACF ‘ ACF

AR(p) p(k) decays exp. fast as k — oo | a(k) =0for k >p+1

MA(q) p(k)y=0for k>qg+1 a(k) decays exp. fast as k — oo
ARMA(p,q) | p(k) decays exp. fast as k — oo | a(k) decays exp. fast as k — oo



