
1 Moving average models

Definition: (Xt)t∈Z is a moving average of order q (MA(q)) if

Xt =

q∑
k=1

θkεt−k + εt, t ∈ Z,

(εt)t∈Z a sequence of i.i.d. variables, E[εt] = 0.

Because an MA(q) is of the form Xt = fct.(εt, εt−1, . . . , εt−q), the process is always sta-
tionary and causal.

We can represent an MA(q) with the backshift operator as follows.

Xt = (Θ(B)ε)t, t ∈ Z,

Θ(z) = 1 +

q∑
k=1

θkz
k (z ∈ C).

Analogously to AR(p) models, we can invert Θ(·) if its roots are outside the unit circle in
the plane of complex numbers. That is, we have the following result.

Theorem 1. Consider an MA(q) process and assume that Θ(z) 6= 0 for |z| ≤ 1 and
E|εt| <∞. Then,

εt =

∞∑
j=0

γjXt−j , γ0 = 1, t ∈ Z,

Γ(z) = Θ−1(z) = 1/Θ(z) =
∞∑
j=0

γjz
j , γ0 = 1.

Sketch of a proof: Analogously to the sufficient conditions for stationarity and causality
of an AR(p), we can invert

(Θ−1(B)X)t = εt, t ∈ Z.

Thereby, we use that Θ(z) 6= 0 for |z| ≤ 1. 2

Implication: we can model an infinite conditional dependence with 1 or a few param-
eters. For example, in an AR(p) model, we have that

E[Xt|Xt−1, Xt−2, . . .] = E[Xt|Xt−1, . . . , Xt−p] =

p∑
j=1

φjXt−j .

But with an MA(q) model,

E[Xt|Xt−1, Xt−2, . . .]

depends on the infinite past. As a concrete example, consider an MA(1) model

Xt = θεt−1 + εt.
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Then,

Θ(z) = 1 + θz, Γ(z) = 1/Θ(z) = 1 +

∞∑
j=1

(−θ)jzj .

For |θ| < 1, Γ(z) is well-defined for |z| ≤ 1 and thus, for |θ| < 1 and E|εt| < ∞, we can
represent

Xt =

∞∑
j=1

(−θ)jXt−j + εt, t ∈ Z,

which is an AR(∞) process, i.e. a non-Markovian process whose conditional distribution
depends on an infinite past.

We say that an MA(q) is invertible if it can be represented as an AR(∞) model.

2 Moving average autoregressive models

A combination of AR(p) and MA(q) provides a flexible modeling framework.

Definition: (Xt)t∈Z is a moving average autoregressive of orders p and q (ARMA(p, q))
if

Xt =

p∑
j=1

φjXt−j +

q∑
k=1

θkεt−k + εt, t ∈ Z.

With the backshift operator, the model can be represented as

(Φ(B)X)t = (Θ(B)ε)t, t ∈ Z,

Φ(z) = 1−
p∑

j=1

φjz
j , Θ(z) = 1 +

q∑
k=1

θkz
k, z ∈ C.

The model can be over-parameterized if we do not restrict Φ(·) and Θ(·). For example,
consider the (seemingly) ARMA(1, 1) equation

Xt = 0.8Xt−1 − 0.8εt−1 + εt,

i.e. (Φ(B)X)t = (Θ(B)ε)t, Φ(z) = Θ(z) = 1− 0.8z.

We note that the i.i.d. sequence (ε)t∈Z satisfies the equation above (just use Xt = εt)
and hence, the equation above is satisfied by an i.i.d. sequence (which we usually do
not represent as an ARMA(1,1) process). The problem occurs because Φ(·) and Θ(·)
have common roots (i.e. z0 = 1/0.8) and hence, we can factor out some terms on both
sides of (Φ(B)X)t = (Θ(B)ε)t. The problem disappears and ARMA(p, q) models become
identifiable if we assume that the set of roots of Φ(·) and the set of roots of Θ(·) have no
common element, i.e. the polynomials Φ(·) and Θ·) have no common factors.

Using the analogous arguments as before, we can invert Φ(·) and/or Θ(·) if the corre-
sponding roots are outside the unit circle. We then obtain the following result.
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Theorem 2. Consider an ARMA(p, q) with Φ(z) 6= 0 (|z| ≤ 1), Θ(z) 6= 0 (|z| ≤ 1) and
assume that the roots of Φ(·) and Θ(·) are distinct. Then, the MA(∞) representation

Xt =

∞∑
j=1

ψjεt−j + εt, t ∈ Z,

Ψ(z) =
Θ(z)

Φ(z)
=
∞∑
j=0

ψjz
j , ψ0 = 1 (|z| ≤ 1),

holds, and the AR(∞) representation

εt =

∞∑
j=0

γjXt−j , γ0 = 1, t ∈ Z,

i.e. Xt =

∞∑
j=1

−γjXt−j + εt, t ∈ Z,

Γ(z) =
Φ(z)

Θ(z)
=
∞∑
j=0

γjz
j (|z| ≤ 1)

holds as well.

Note that the condition Φ(z) 6= (|z| ≤ 1) implies stationarity and causality of the
ARMA(p, q) process since we can represent it as Xt =

∑∞
j=1 ψjεt−j +εt which is a function

of infinitely many εt, εt−1, . . .

3 Autocorrelation function and Partial autocorrelation func-
tion

The autocorrelation function (ACF) of a weakly stationary process is defined as

ρ(k) =
R(k)

R(0)
.

Definition: The partial autocorrelation function (PACF) of a weakly stationary process
is defined as

α(k) = Parcorr(X0, Xk|X1, . . . , Xk−1), k ∈ N (k ≥ 1).

The partial autocorrelation is defined as

α(k)
Cov(X0 − X̂0|1,...,k−1, Xk − X̂k|1,...,k−1)√

Var(X0 − X̂0|1,...,k−1)Var(Xk − X̂k|1,...,k−1)
, (1)

where X̂t|1,...,k−1 is the best linear prediction of Xt based on X1, . . . , Xk−1. Note that
all the quantities involved in (1) involve only first and second moments and hence, weak
stationarity is sufficient to define α(·) as a function of the lag k only.
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3.1 Qualitative behavior of ACF and PACF

For an MA(q) model, it is easy to see that ρ(k) = 0 for all k ≥ q+ 1 (because Xt ad Xt+k

are independent for k ≥ q + 1).
For an AR(p) model, we note that for k ≥ p+ 1

X̂k|1,...k−1 =

p∑
j=1

φjXk−j ,

and hence

Xk − X̂k|1,...k−1 = εk.

Therefore, the numerator in (1) equals zero if k ≥ p+ 1 and if the AR(p) model is causal
(since then εk is independent from {Xt; t ≤ k − 1}). In summary, for a stationary and
causal AR(p),

α(k) = 0 for k ≥ p+ 1.

The following “duality” scheme holds in general.

model ACF PACF

AR(p) ρ(k) decays exp. fast as k →∞ α(k) = 0 for k ≥ p+ 1
MA(q) ρ(k) = 0 for k ≥ q + 1 α(k) decays exp. fast as k →∞
ARMA(p, q) ρ(k) decays exp. fast as k →∞ α(k) decays exp. fast as k →∞
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