ARMA models

Peter Bühlmann

Autoregressive models (recap)

$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is autoregressive of order $q(\operatorname{AR}(p))$ if

$$
\begin{aligned}
& X_{t}=\sum_{j=1}^{p} \varphi_{j} X_{t-j}+\varepsilon_{t}, t \in \mathbb{Z}, \\
& \left(\varepsilon_{t}\right)_{t \in \mathbb{Z}} \text { a sequence of i.i.d. variables, } \mathbb{E}\left[\varepsilon_{t}\right]=0 .
\end{aligned}
$$

with backshift operator B and corresponding $\operatorname{AR}(\mathrm{p})$-polynomial:

$$
\Phi(z)=1-\sum_{j=1}^{p} \varphi_{j} z^{j}(z \in \mathbb{C})
$$

rewrite the model as

$$
(\Phi(B) X)_{t}=\varepsilon_{t}, t \in \mathbb{Z} .
$$

Stationarity and causality

Assume

$$
\text { (A) : } \quad \Phi(z) \neq 0 \text { for }|z| \leq 1
$$

Then:

$$
\begin{aligned}
& X_{t}=(\Psi(B) \varepsilon)_{t}, \Psi(z)=\frac{1}{\Phi(z)}=1+\sum_{j=1}^{\infty} \psi_{j} z^{j} \\
& \text { and thus } X_{t}=\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}+\varepsilon_{t}
\end{aligned}
$$

Conclusion:
Assume (A) and $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$: then, $\left(X_{t}\right)_{t \in \mathbb{Z}}$ is stationary and causal
in fact: assume $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$
$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is stationary $\Leftrightarrow(\mathrm{A})$

Moving average (MA(q))

$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a moving average of order $q(\operatorname{MA}(q))$ if

$$
\begin{aligned}
& X_{t}=\sum_{k=1}^{q} \theta_{k} \varepsilon_{t-k}+\varepsilon_{t}, t \in \mathbb{Z}, \\
& \left(\varepsilon_{t}\right)_{t \in \mathbb{Z}} \text { sequence of i.i.d. variables, } \mathbb{E}\left[\varepsilon_{t}\right]=0 .
\end{aligned}
$$

Because an MA(q) is of the form $X_{t}=f c t .\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{t-q}\right)$:
\leadsto it is always stationary and causal
Representation with the backshift operator:

$$
\begin{aligned}
& X_{t}=(\Theta(B) \varepsilon)_{t}, t \in \mathbb{Z}, \\
& \Theta(z)=1+\sum_{k=1}^{q} \theta_{k} z^{k}(z \in \mathbb{C}) .
\end{aligned}
$$

Invertibility

Analogously to $\operatorname{AR}(p)$ models, we can invert $\Theta(\cdot)$ if its roots are outside the unit circle.

Theorem
Consider an $M A(q)$ process and assume that $\Theta(z) \neq 0$ for $|z| \leq 1$ and $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$. Then,

$$
\begin{aligned}
& \varepsilon_{t}=\sum_{j=0}^{\infty} \gamma_{j} X_{t-j}, \gamma_{0}=1, t \in \mathbb{Z}, \\
& \Gamma(z)=\Theta^{-1}(z)=\frac{1}{\Theta(z)}=\sum_{j=0}^{\infty} \gamma_{j} z^{j}, \gamma_{0}=1 .
\end{aligned}
$$

That is, we have an $\mathrm{AR}(\infty)$ process:

$$
X_{t}=\sum_{j=1}^{\infty}-\gamma_{j} X_{t-j}+\varepsilon_{t}
$$

Implication: can model an infinite conditional dependence with 1 or a few parameters
For example: in $\mathrm{AR}(p)$ model, we have that

$$
\mathbb{E}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]=\mathbb{E}\left[X_{t} \mid X_{t-1}, \ldots, X_{t-p}\right]=\sum_{j=1}^{p} \phi_{j} X_{t-j}
$$

But with an MA(q) model,

$$
\mathbb{E}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]
$$

depends on the infinite past

As a concrete example: consider an MA(1)

$$
X_{t}=\theta \varepsilon_{t-1}+\varepsilon_{t}
$$

Then:

$$
\Theta(z)=1+\theta z, \quad \Gamma(z)=1 / \Theta(z)=1+\sum_{j=1}^{\infty}(-\theta)^{j} z^{j}
$$

For $|\theta|<1: \Gamma(z)$ is well-defined for $|z| \leq 1$
\leadsto for $|\theta|<1$ and $\mathbb{E}\left|\varepsilon_{t}\right|<\infty$: can represent

$$
X_{t}=\sum_{j=1}^{\infty}(-\theta)^{j} X_{t-j}+\varepsilon_{t}, t \in \mathbb{Z}
$$

which is an $A R(\infty)$ process,
i.e., a non-Markovian process whose conditional distribution depends on an infinite past.

Autoregressive moving average of orders p and q (ARMA (p, q))

Combination of $\operatorname{AR}(p)$ and $\mathrm{MA}(q)$ provides a flexible modeling framework!
$\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a autoregressive moving average of orders p and q $(\operatorname{ARMA}(p, q))$ if

$$
X_{t}=\sum_{j=1}^{p} \phi_{j} X_{t-j}+\sum_{k=1}^{q} \theta_{k} \varepsilon_{t-k}+\varepsilon_{t}, t \in \mathbb{Z} .
$$

With the backshift operator: representation

$$
\begin{aligned}
& (\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}, t \in \mathbb{Z}, \\
& \Phi(z)=1-\sum_{j=1}^{p} \phi_{j} z^{j}, \quad \Theta(z)=1+\sum_{k=1}^{q} \theta_{k} z^{k}, \quad z \in \mathbb{C} .
\end{aligned}
$$

model can be over-parameterized
Example: consider the (seemingly) ARMA $(1,1)$ equation

$$
\begin{aligned}
& X_{t}=0.8 X_{t-1}-0.8 \varepsilon_{t-1}+\varepsilon_{t}, \\
& \text { i.e. }(\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}, \quad \Phi(z)=\Theta(z)=1-0.8 z .
\end{aligned}
$$

Note that the i.i.d. sequence $(\varepsilon)_{t \in \mathbb{Z}}$ satisfies the equation above (just use $X_{t}=\varepsilon_{t}$)
i.e., equation above is satisfied by an i.i.d. sequence (which we usually do not represent as an $\operatorname{ARMA}(1,1)$ process)
problem occurs because $\Phi(\cdot)$ and $\Theta(\cdot)$ have common roots (i.e. $z_{0}=1 / 0.8$)
\leadsto can factor out terms on both sides of $(\Phi(B) X)_{t}=(\Theta(B) \varepsilon)_{t}$
problem disappears and $\operatorname{ARMA}(p, q)$ model is identifiable if the set of roots of $\Phi(\cdot)$ and the set of roots of $\Theta(\cdot)$ have no common element
i.e., polynomials $\Phi(\cdot)$ and $\Theta(\cdot)$ have no common factors

Stationarity and causality

with analogous arguments as before: can invert $\Phi(\cdot)$ and/or $\Theta(\cdot)$ if the corresponding roots are outside the unit circle

Theorem

Consider an $\operatorname{ARMA}(p, q)$ with $\Phi(z) \neq 0(|z| \leq 1)$, $\Theta(z) \neq 0(|z| \leq 1)$ and assume that the roots of $\Phi(\cdot)$ and $\Theta(\cdot)$ are distinct. Then we have: $M A(\infty)$ representation

$$
\begin{aligned}
& X_{t}=\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}+\varepsilon_{t}, t \in \mathbb{Z} \\
& \Psi(z)=\frac{\Theta(z)}{\Phi(z)}=\sum_{j=0}^{\infty} \psi_{j} z^{j}, \psi_{0}=1(|z| \leq 1),
\end{aligned}
$$

and the $A R(\infty)$ representation

$$
\varepsilon_{t}=\sum_{j=0}^{\infty} \gamma_{j} X_{t-j}, \gamma_{0}=1, t \in \mathbb{Z}
$$

Condition $\Phi(z) \neq 0(|z| \leq 1)$ implies stationarity and causality of the $\operatorname{ARMA}(p, q)$ process since $X_{t}=\sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}+\varepsilon_{t}$ is then a function of infinitely many $\varepsilon_{t}, \varepsilon_{t-1}, \ldots$

Brief illustration

set.seed(22)
$x 1 \leftarrow \operatorname{arima} . \operatorname{sim}(\mathrm{n}=500$, model=list(ar=0.9))
$\operatorname{acf}(x 1)$
plot(x1)
set.seed(22)
$x 2 \leftarrow \operatorname{arima} . \operatorname{sim}(\mathrm{n}=500$, model=list(ma=0.9))
acf(x2)
plot(x2)
set.seed(22)
$x 3 \leftarrow \operatorname{arima} . \operatorname{sim}(n=500$, model=list(ar=0.9,ma=0.9))
$\operatorname{acf}(x 3)$
plot(x3)

Series $\mathbf{x 1}$

Series x2

Series $\times 3$

