BOOTSTRAPS FOR TIME SERIES
by

PETER BUHLMANN

Research Report No. 87
July 1999

Seminar fiir Statistik
Eidgenossische Technische Hochschule (ETH)
CH-8092 Ziirich

Switzerland



BOOTSTRAPS FOR TIME SERIES

PETER BUHLMANN

Seminar fir Statistik
ETH Zentrum
CH-8092 Ziirich, Switzerland

July 1999

Abstract

We compare and review block, sieve and local bootstraps for time series and thereby
illuminate theoretical facts as well as performance on finite-sample data. Our (re-)
view is selective with the intention to get a new and fair picture about some particular
aspects of bootstrapping time series.

The generality of the block bootstrap is contrasted by sieve bootstraps. We discuss
implementational dis-/advantages and argue that two types of sieves outperform the
block method, each of them in its own important niche, namely linear and categori-
cal processes, respectively. Local bootstraps, designed for nonparametric smoothing
problems, are easy to use and implement but exhibit in some cases low performance.

Key words and phrases. Autoregression, block bootstrap, categorical time series, context al-
gorithm, double bootstrap, linear process, local bootstrap, Markov chain, sieve bootstrap,
stationary process.

1 Introduction

Bootstrapping can be viewed as simulating a statistic or statistical procedure from an es-
timated distribution ﬁn of observed data X1,...,X,,. Under dependence, the construction
of P, is more complicated and far less ‘natural’ than Efron’s (1979) breakthrough in the
independent set-up. We discuss here mainly block, sieve and local bootstraps, which are
all in a certain sense nonparametric and model-free: the purpose is to get a fair picture
about strengths and weaknesses of such different time series bootstraps. To do so, we focus
on theoretical aspects as well as on real performance for finite sample data. So far, only
little attention was paid to an overall perspective when comparing different schemes; and
in that respect, our selective (re-) view offers also valuable new insights. Our access to the
topic and point of view is rather different from Léger, Politis and Romano (1992), Efron



and Tibshirani (1993, Chs.8.5-8.6), Shao and Tu (1995, Ch.9), Li and Maddala (1996) or
Davison and Hinkley (1997, Ch.8), which are all discussing some aspects of bootstrapping
time series. Particularly, we include the recently developed sieve and local bootstraps, the
latter being suitable for nonparametric smoothing problems.

Extracting information from data is here formalized with a scalar-, vector- or curve-
valued estimator §. Estimation of the sampling distribution of é, or pivotized/studentized
versions thereof, is essential for various tasks: drawing statistical inference, comparison of
competing estimators and improving them; this includes constructing confidence intervals
and tests, measuring efficiency of estimators, estimation of risks for selecting a model
or tuning parameters, and bagging [Breiman, 1996] for improving prediction in highly
complex models.

With time series data, the task of estimating the distribution of 6 is much more difficult
than for independent observations and methods based on analytic derivations become very
soon extremely unpracticle. Still as a relatively simple example, consider an estimator 0
which is asymptotically normally distributed around a finite-dimensional parameter 6 of
interest: under suitable conditions for the stationary data Xi,..., X,

V(0 —0) = N(0,0%) as n — co. (1.1)

But different from the i.i.d. set-up, the asymptotic variance o2, is an infinite-dimensional

object which is generally not estimable with convergence rate 1/y/n. For example,

o2 = > Cov(Xo, Xp), ifO=n") Xy,
k=—o00 t=1
sign(z — 0)

if § = med(X1,..., X,
2f(9) , 1 me( 1, 3 )7

02, = Y Cov(IF(X,),IF(Xy)), IF(z) =

k=—o0

where for the latter, # = F~1(1/2) is the median of the cumulative marginal distribution F'
of X having density f. In case of the mean, the asymptotic variance is the spectral density
of the data-generating process at zero [normalized by the factor 27]; in case of the sample
median, the spectral density of the process (IF(X;))iez is involved, i.e., a complicated
instantaneous unknown transform of the process (X;)icz. Particularly in the latter case,
it would be very awkward to estimate the unknown density f and hence IF(-) and finally its
spectral density. Bootstraps are able to consistently estimate the distribution of \/ﬁ(é—e),
and also its limiting normal distribution, in an automatic way. Of course, as in the case
with independent data, time series bootstraps also offer the advantage of higher order
accuracy than estimated normal approximations based on (1.1).

We say that a bootstrap scheme is consistent, or first order accurate, for an R%-valued
estimator é, if

sup P*[a, (6" — 0") < x] — Plan (0 — 0) < z] = op(1) (n — o0), (1.2)
z€eRY
for some normalizing sequence (ay,)nen. In parametric problems of finite dimension, often
an = v/n and \/n(6 — @) converges to a normal distribution. The centering value 6*, which
is a constant conditional on the original observations Xi, ..., X, is typically not chosen
as 0 like in Efron’s i.i.d. bootstrap: details are given later when specifying particular time



series bootstraps. Besides approximating the distribution of é, the aim of interest could
also be the bootstrap variance Var*(6*) aiming for a good variance estimate such that

Var*(6*)/ Var() £ 1. Or the task of interest may be estimation of bias b, = E[f] — 0
by bf = E*[6*] — 6*; the value 6* is here the same as in (1.2). Of course, bootstrap
variance and bias together give then an estimate of the mean squared error E[(d — 6)2] ,
say for comparing different estimators 0 including the choice of tuning parameters, e.g.
bandwidths, and model selection; note that the latter is just a problem about choosing
a discrete valued tuning parameter. The consistency in (1.2) or consistent bias, variance
and MSE estimation are of course not always true. Bootstrap consistency usually holds
when in (1.2), 6 is asymptotically normal, often with a, = /n. Then, the accuracy is
driven by the accuracy of bootstrap variance estimation

a2 Var*(6*) — a2 Var(6).

Some of the time series bootstraps do a very good job on this task.

As mentioned already, bootstrap techniques in the independent but also the time series
case have the potential for higher order accuracy which is not reflected in (1.2): although
not directly for the quantity a,(f — 0) in (1.2), but for studentized versions or when
adjusting a confidence interval with BC, or a double bootstrap calibration.

Accuracy of time series bootstraps can thus be examined on two levels: goodness of
first order accuracy in (1.2) which is usually driven by the quality of bootstrap variance,
and goodness of second order accuracy for studentized statistics or calibrated confidence
intervals. Already the first order approach is challenging when dealing with time series:
the limiting variance is generally not estimable with 1/y/n convergence rate, see e.g. the
formulae for o2, in the discussion of (1.1), indicating the infinite dimension of the problem.
For some finite samples in practice, first order schemes might become equally important
as their second order counterpart. A substantial effort is given here to the discussion of
first order accuracy, but we include also aspects of second order accuracy.

2 Bootstraps for time series: general remarks

2.1 Model based resampling

A straightforward approach is model based: the dependence structure is modeled explicitly
and the resample is drawn from the fitted model. This has been pursued in numerous
examples and cases; we only mention Freedman (1984) and Bose (1988) for autoregressive
models, Rajarshi (1990) for Markov models and Kreiss and Franke (1992) for ARMA
models. Such approaches are, of course, inconsistent if the model used for resampling is
misspecified.

2.2 Sieve bootstraps

Sieve bootstraps, based on the idea of sieve approximation [Grenander, 1981], should be
viewed as nonparametric schemes: a general process (X;)icz ~ P is approximated by a
family of (semi-) parametric models

{./\/lj;j S N}



such that U2, M; contains [in some sense] the original process P. The question is of
course, Wthh parametric model-family {M};j € N} one should choose. For the purpose
of bootstrapping time series, there are at least two particularly interesting families which
we discuss in sections 4 and 6.

The sieve bootstrap in general is as follows. Given is the data X7,..., X,, and a family
of models equipped with a model selection rule

X X HMEUmlM],

is specified. To be more precise, a model should be understood as a set of probability
measures

M; = {P,,;n; in some parameter space ©;}. (2.1)

Denoting by M = ./\/l for some ; € N, we estimate in a second step the unknown

parameter 7; in M Jas 1f M would be fixed] so that the estimate for the data generating
process is

P, = Pﬁj.
In a third step, we sample from Pn,
X9 X35 XS ~ By, (2.2)

which is the sieve bootstrap sample. Finally, sieve bootstrapping an estimator § =
hn(X1,...,Xy), which is a measurable function of the original data Xi,...,X,, is de-
fined with the plug-in rule

0% = ho (X739, ..., X15). (2.3)

Sieve bootstrap schemes are from a practical point of view not too different from the
model based approach. The renaming of the bootstrap scheme is primarily due to the
fact that the theoretical justification is entirely different, allowing for finite-sample model-
misspecification. All what is required is that in the asymptotic limit, as sample size tends
to infinity, a correct nonparametric model-specification is obtained. In that sense, sieve
bootstraps are robust against model-misspecification.

2.3 Block bootstrap

The block bootstrap tries to mimic the behavior of an estimator 6 by i.i.d. resampling
of blocks Xy¢y1,..., X¢1e of consecutive observations: the blocking is used so that within
a block, the original time series structure is preserved. Such an idea appears in Hall
(1985), but the real birth of the block bootstrap is given by Kiinsch’s (1989) seminal
paper, explaining in details how and why such a bootstrap works.

As we will see in section 3, the procedure does not yield a reasonable estimate of the
distribution of the data-generating stochastic process (X;)icz. Consequently, the block
bootstrapped estimator is not defined by the plug-in rule as in (2.3), an issue which
makes the procedure in some cases user-unfriendly. On the other hand, the generation



of block-type resamples is very easy and the methodology is general to cope with any
suitably regular stationary data-generating process and with many estimators 6. The
scheme has some similarities to block subsampling, with the important difference that the
block bootstrapped estimator 0*B is again evaluated with n bootstrap observations; and
not with m < n as in subsampling.

2.4 Local bootstraps based on independent resampling

So far, we have not said anything about the statistic 6 to be bootstrapped, whose distribu-
tion is of interest. The previous procedures, i.e., model-based, sieve- and block bootstrap,
all give reasonable answers to a large variety of estimators 6 whenever the true data-
generating process is an element of the specified model, of the asymptotically specified
model or just a general stationary process, respectively. At first sight a bit surprisingly,
some bootstraps based on independent resampling can be used for nonparametric esti-
mators 6 having slower rate of convergence than 1/y/n, e.g., 0 a [kernel] smoother of the
conditional expectation §(z) =E[X;|X;_1 = ] of a stationary process. The reason for the
consistency of such local bootstraps is the ‘whitening by windowing principle’, cf. Hart
(1995), saying that the distribution of 0 remains in first order asymptotics the same as for
independent samples.

3 Block bootstrap

3.1 The block bootstrap procedure

Proper application of the block bootstrap scheme involves first an adaptation to the prob-
lem. Assume that the statistic § estimates a functional 0, depending on the m-dimensional
marginal distribution of the time series. For example, the lag(1)-correlation Corr(Xp, X1)
in a stationary time series is a functional of the distribution of (Xy, X;41), corresponding
to m = 2. Now, build vectors of consecutive observations

}/t:(Xt—m+17"'7Xt)7 t:m,...,n. (31)

Then construct the block-resampling on the basis of the vectorized observations in

(3.1). Build overlapping blocks of consecutive vectors (Yo, ..., Yinte—1)s Ym+1,- -+, Yinte),

ooy (Ynps1,...,Yy), where £ € N is the blocklength parameter. For simplicity, assume
first that n — m + 1 = k€ with k € N. Then, resample k blocks independently,

Y51+17 s 7Y51+€7 YS2+17 s 7Y52+f’ s 7Y5k+17 s 7Y5k+€? (32)

where the block-starting points Si, ..., Sk are i.i.d. Uniform({m — 1,...,n — £}). These
resampled blocks of m-vectors could be referred to the block bootstrap sample. However,
as we will see, the block bootstrapped estimator is not just simply defined by the plug-in
rule and the notion of a bootstrap sample is not clear. If n —m + 1 is not a multiple of £,
we resample k = [(n —m+1)/¢] + 1 blocks but use only a portion of the k-th block to get
n —m + 1 resampled vectors in total.

The ‘good’ definition of the block bootstrapped estimator is not entirely straightfor-
ward. The vectorization in (3.1) is typically linked to the estimator in that

0 is symmetric in the vectorized observations Y, ..., Y.



It is often assumed that
0 = T(F™) (3.3)

where Fém)() =(n-m+1)"1Yr 1{y,< is the empirical cumulative distribution func-
tion of the m-dimensional marginal distribution of (X¢):cz, and T is a smooth functional.

~ Ezample A. For the lag(1)-correlation ¢ = Corr(Xy, Xy41), consider the estimator
§ = R(/R(0) with R(K) = n" S0 (X, — i) (Xepk— fix) (K > 0), i =n" 30y Xo.
This estimator 6 is symmetric in Ys, ..., Y, with ¥; = (X;—1, Xy), i.e., m = 2, and it is of
the form (3.3).

Ezample B. The GM-estimators in an AR(p) model can be written in the form (3.3)
with m = p+ 1. Besides the Gaussian-MLE, this includes estimators being robust against
innovation and lagged-value outliers.

The block bootstrapped estimator is defined as

é*B _ T(Fém)*B),
k Si+4

FMB)=mn-m+1)7Y " > 1<y (3.4)

i=1t=5;+1

Generally E*P[6*B] + 6, and the choice for 8* in (1.2) is often E*P[0*5] [say if 6 is asymp-
totically unbiased for 6.

This definition of the block bootstrapped estimator, given by Kiinsch (1989), can be
interpreted as

nxB
0* == gn—m+1(Y51+17 o 7YS1+£7 YSQ+17 cee 7YSQ+E7 cee 7YSk+17 o 7YSk+f)7

é = gnferl(Ym’ . 7Yn)a

saying that it employs a plug-in rule based on the vectorized observations. In particular,
the block bootstrapped estimator is defined with values occurring only in the set of the
original vectorized observations. This would not be the case without the vectorization
step in (3.1). Figure 3.1 illustrates the artifact of the naive bootstrap using m = 1 instead
of the correct m = 2, say in Example A. The most striking defects with the naive block
bootstrap sample are the newly created scatter plot points within the rectangles in the
upper left and the lower right corner. A naively block bootstrapped estimator which
uses the plug-in rule in conjunction with the naive block bootstrap sample [e.g., for the
autocorrelation in Example A] is then quite strongly affected by these newly created and
bad points. As mentioned already, this artifact is not present with the block bootstrap
definition in (3.4) based on the vectorized observations.

For the block bootstrap procedure, at least two difficulties remain to be answered in a
case by case manner.

(1) Redesigning the computation of 6B , which can become practically very inconvenient.

(2) Vectorization as in (3.1) is not always appropriate. For example, the MA-parameter
in an MA(1) model or the spectral density of a stationary process depend on the
entire distribution of the process, corresponding to m = oco.



Original sample Vectorized block Naive block

Figure 3.1: Lag(1) scatter plots of re-/samples of size n = 512. Left panel: original sample
(X¢-1,X¢), t = 2,...,n. Middle panel: block bootstrap sample Yg,1;, i = 1,...,k =
64,7 = 1,...,£ = 8 from (3.2) with m = 2. Right panel: naive block bootstrap sample
(X8 X;mB) t =2,...,n, where X;"P is the sequentially ¢-th value in (3.2) with m =
1,k = 64,¢ = 8; the points within the rectangles [and others| are not in the plot of the left
panel.

Whenever problems (1) and/or (2) become too awkward, an ad-hoc solution is to neglect
the vectorization step in (3.1) and work with the naive-block bootstrap [using m = 1].
Then, a substantial efficiency loss of the method has generally to paid. Proposals for
solving problem (2), mainly in case of spectral density estimation, have been given by
Politis and Romano (1992) and Bithlmann and Kiinsch (1995).

3.2 Accuracy

We consider first estimation of the asymptotic variance of by the block bootstrap. Kiinsch
(1989) showed that

E[(n Var*B(6*B) — nVar(0))?] ~ const.n=2/3, (3.5)

achieved with the rate-optimal blocklength ¢ = const.n'/3. The essential assumptions for
this are that n Var(f) converges to a non-degenerate limiting variance, that 7 in (3.3) is
sufficiently smooth and some mixing conditions on the stationary data-generating process
(Xt)tez. A bit surprisingly, the rate n~2/3 does not depend on the ‘degree of dependence’,
say how fast autocorrelations, or more general mixing coefficients, decay as separation
lags increase. In particular, even when autocovariances and mixing coefficients decay
exponentially fast, the MSE-rate is still n=2/3. Thus, the block bootstrap variance estimate
is not rate-adaptive with respect to dependence properties of the underlying process.
An explanation of this non-adaptivity was already given by Kiinsch (1989): the block

bootstrap variance estimate is asymptotically equivalent to a lag-window spectral density



estimator at the origin with triangular window,

)4
n Var*B(0*8) ~ Z (1
k=—¢

- %)RIF(/‘?% (3.6)

where Ryp(k) is the empirical covariance of (IF(Yy; F™))2_  at lag k with IF(-; F(™)) the
influence function of the estimator at the true underlying m-dimensional marginal distri-
bution F(™). But the triangular form of the window makes it impossible to improve upon
the n=2/3 MSE-rate, except when the underlying process would be i.i.d. and blocklength
¢ =1 [or any fixed, non-increasing number] would be chosen.

For constructing confidence regions, Gotze and Kiinsch (1996) showed that the distri-
bution of a suitably defined studentized version of 0 can be approximated by the block
bootstrap with accuracy close to Op(n=2/3), using a blocklength ¢ = const.n!/3. 1 As
in variance estimation, the rate of accuracy cannot be improved for time series having
geometrically fast dependence properties. For finite samples, the method often behaves
erratically and causes problems due to inaccuracy of finite sample variance estimates.
Gotze and Kiinsch (1996) also justify a modification of Efron’s (1987) BC, correction.
Double block bootstrapping for say a correction of a first order bootstrap confidence re-
gion is not easily [if not even im-] possible.

3.3 Choosing a blocklength /¢

An optimal blocklength depends on at least three things: the data-generating process, the
statistic to be bootstrapped and the purpose for which the bootstrap is used, e.g., bias,
variance or distribution estimation.

Consider first block bootstrap variance estimation for an estimator § of the form (3.3).
Then,

O~ (n—m+1)"" > IF(Y;F™), (3.7)
t=m

where IF(-; F("™)) is the influence function as in (3.8). Based on this linearization, formula
(3.6) follows and can be rewritten as

n Var*B(0*P) ~ 27 fir (0), (3.8)

where fIF()\) (0 < X\ <) is a triangular window spectral density estimator at frequency A
with bandwidth £~1, based on the influence functions (IF(Y;; F("™))~_ . The blocklength
has thus the interesting interpretation as an inverse bandwidth in spectral density estima-
tion. It implies that the asymptotically MSE optimal blocklength for variance estimation
is

lopt = const.n'/3.

!This rate can be improved to come close to Op(n73/4) by using a variance estimate for studentizing
which takes negative values with positive probability.



Bithlmann and Kiinsch (1999) propose estimation of ¢, [i.e., for the constant in the
expression above] by an iterative plug-in scheme for optimal local bandwidth choice in
spectral density estimation, using the asymptotic equivalence in (3.8).

Regarding block bootstrap bias estimation, consider the case where

0=H(uy), pr =E[f(X1,...,Xm)], f: R - R? X, € R?
é:H(ﬂf), ﬂf: (n—m+1)712f(Xt_m+1,,Xt)
t=m

A~

with H : R? — R a smooth function. Then, the bias E[f] — 6 can be estimated by
B[ (357)] - HOEP (")

Due to block edge effects, this is better than subtracting H(ji). Lahiri (1999) shows that
the asymptotic MSE optimal blocklength for bias and variance estimation is the same;
estimated blocklengths for variance estimation can thus be used for bias estimation as
well.

A method which is more general, and also applicable for choosing an optimal block-
length ¢ for distribution estimation, was proposed by Hall, Horowitz and Jing (1995).
They consider the performance of the block bootstrap with different blocklengths for sub-
samples of size m < n yielding an optimal blocklength for subsample size m. The optimal
estimated blocklength is then derived with a Richardson extrapolation adjusting to the
original sample size n. The method needs a specification of the subsample size m which
appears to be less critical than selecting a blocklength. Such subsampling techniques are
very general but may not be very efficient; in particular, when the estimator 0 is highly
nonlinear so that performance on a subsample can be very poor.

Lahiri (1996b) proposes a block-jackknife method for estimating the variance and an
extrapolation for estimating the bias of the block bootstrap estimate. The method is again
very general.

Automatic choice of the blocklength is at least as difficult as selection of a bandwidth-
type tuning parameter in the context of time series. Even worse, consider formula (3.8)
which exhibits an equivalence to a bandwidth selection problem: but this is only asymp-
totically true, since the linearization in (3.7) can have a substantial effect for finite sample
size. Furthermore, the blocklength ¢ has no practically relevant interpretation and diag-
nostic tools are so far undeveloped.

3.4 Range of applicability

The block bootstrap is designed to work for general stationary data generating processes
(X¢)tez, typically with X; € R? (d > 1) or also taking values in a categorical space. When
restricting to short range dependent processes, the block bootstrap has been theoretically
justified in many circumstances: for example for estimators as in (3.3) with smooth T.
Some references are given in section 9. In case where the observations have a heavy tailed
marginal distribution, Lahiri (1995) shows that block bootstrapping with resampling size
m < n works for § = X,

Under long-range dependence, some theory and modifications are worked out in case
where 0 = X,,. Lahiri (1993) shows that the block bootstrap is consistent whenever



X, has a normal limiting distribution and the bootstrapped statistic is corrected with a
factor depending on the typically unknown rate of convergence, e.g. on the self-similarity
parameter in self-similar processes. In case where X, has a non-normal limit due to
long-range dependence, Hall, Jing and Lahiri (1998) show consistency of a modified block-
subsampling procedure.

4 AR-sieve bootstrap for stationary linear time series.

We refer to a linear, invertible time series if it allows an autoregressive representation of

order infinity [AR(00)],

Xi—px =Y 0j(Xej— px) + e (t €2), (4.1)
=1

where ux = E[Xy], (g¢)icz is an innovation sequence of ii.d. random variables with
E[e:] = 0 and ¢; independent of {X; s < t}; additional regularity conditions for moments
of ¢, and summability of (¢;);en have to be made for a proper definition of an AR(c0).

4.1 The bootstrap procedure

The AR-sieve approximation is as follows. An autoregressive order p is chosen, for example
with the AIC criterion. The remaining parameter of interest n; in the AR(p) model is
semiparametric [see also formula (2.1)],

nﬁ:(ﬂxa(¢17---a¢ﬁ)7F€)u

with F; the distribution of the i.i.d. innovations &;. The parameter estimate 7, is chosen
as follows,

n
l[j’X = nil Z Xta
t=1
(qgl, . ,qgﬁ) by the Yule Walker method,

n D
Fo(z) =Pleg <] = (n —13)71 Z 1[Rt—§_§x}7 Ry = X; — Z%‘Xt—j,
t=p+1 =1

with R, the mean of the available residuals Rj.
The estimated autoregressive process of order p having distribution Ppar = P, in
the notation of section 2.2, is given by

P
XPARS iy = (XA — fix) + €f (€ 2), (4.2)
=1

with (¢f)iez an ii.d. innovation sequence having marginal distribution &f ~ E.. The
AR-sieve bootstrap sample is then a finite sample of size n from the process in (4.2). The
AR-sieve bootstrapped estimator 6*47~5 is constructed as in (2.3). This kind of bootstrap

10



was introduced by Kreiss (1992) and further analyzed by Bithlmann (1997), Bickel and
Bithlmann (1999) and Choi and Hall (1999).

In (1.2), the parameter of interest # is a functional of the true underlylng process
(Xt)tez ~ P and 6*AR=5 {5 the same functional evaluated at the estimated Pn AR = Pm3

which generates the bootstrapped process in (4.2).
Ezample A [continued]. For the lag(1)-correlation estimator, §*Af~5 = Corr* AR5 (X AR-S
X400,

i

Note that in general E*AF—S[g*AR=S] £ g*AR=S5  The computation of *48~5 can be
done with a fast Monte Carlo evaluation as follows.

(1) Generate one very long realization X fAR*S, ooy XFAR=S with m much bigger than
n.
(2) Use éEARfs = hm(XfAR_S, ..., XAE=5) a5 a Monte Carlo approximation of §*4%=5,

The justification of the approximation in step (2) is given by formula (1.2) saying that
GrAR=S converges to 6*A%~9 with rate a;! < a;' [assuming an(On — ) converges to a
non-degenerate distribution)].

4.2 Accuracy

Within the class of linear invertible time series as defined in (4.1), the AR-sieve bootstrap
is known to have high accuracy: theoretical and practical studies show that it usually
outperforms the more general block bootstrap from section 3. In Biithlmann (1997) it is
shown that for = X,, = n~! > i1 X; and when using an approximating autoregressive
order p given by the AIC criterion,
n Var*AR=S(X A5 var(X,) = Op(n~ =2/ (0)

if the true autoregressive parameters (¢;);en decay like ¢; < const.j™" (v > 2). In
particular, if the ¢;’s decay exponentially fast, then

nVar*AR_S(YZAR_S) —nVar(X,) = Op(n~ ) for any x > 0. (4.3)
The two results show that the method adapts automatically to the decay of the underlying
dependence structure, a very desirable feature which is not present with the block boot-
strap, see (3.5). These adaptivity results are not only asymptotically relevant but can be
well seen in finite sample simulations, see section 5.2.

The AR-sieve bootstrap is not only very accurate for variance estimation: Choi and
Hall (1999) show some second order property for constructing confidence regions. They
propose to calibrate an obtained first order region by double bootstrapping, based on
ideas dating back to Hall (1986), Beran (1987) and Loh (1987). Consider construction of
a two-sided confidence interval which covers 6 with probability 1 —«a. A first order interval
is given by [0 — fl_a/g,é — Ta/2), where

GrAR—S _ grAR-S

T is the a-quantile of conditional on Xi,..., X,.

11



Now consider an additive correction of the original nominal coverage level by using the

double bootstrap. Based on XTAR_S, e ,X;';AR_S, run the AR-sieve bootstrap to obtain
XT*ARfS X**AR—S Now
e, X . ,
fZAR*S is the a-quantile of 8**4F=5 _ g=*AR=S5 . nditional on XfAR_S, o, XARSS,
Put
a(1 — q) = PHAR-S[§*AR=S _ falﬂixéz/;s < g*AR=S < GrAR=S _ 7@(»1742}2—5]7 (4.4)

measuring actual coverage on nominal level 1 — ¢ [for the second level bootstrap based on
the first level bootstrapped data; #*4%~9 is a constant depending only on X1,...,X,].
Then define

51_o = a '(1 — ), the (1 — a)-quantile of & viewed as a cdf,

which corrects the nominal coverage level 1 — a: to §;_,. See also Figure 6.4. Now use

A~

[0 — 72{1—(1—51_&)/2}7é - f{(l—sl_a)/z}] (4.5)

as a two-sided, double bootstrap confidence interval for § with nominal coverage level
1—a. As shown by Choi and Hall(1999), this interval is second order correct. Importantly,
studentization which can be very inefficient in practice, isn’t necessary. Instead, second
order accuracy is achieved with the double bootstrap, a methodology which generally
makes sense with any reasonable sieve-bootstrap scheme. Choi and Hall (1999) report from
a simulation study that this second order interval can bring very substantial improvement
in some cases and is ‘never’ significantly worse than the first order construction.

4.3 Choosing the approximating autoregressive order

We propose the AR-sieve approximation in conjunction with the minimum AIC model
selection procedure. Shibata (1980) has shown optimality of the AIC for prediction in
AR(0c0) models. Moreover, (4.3) and its preceding formula which are both based on AIC
explain why the criterion is a good choice for variance estimation of § = X,,. Since the
true model from (4.1) is of infinite autoregressive order, consistency of a model selection
scheme does not make much sense.

The optimal autoregressive order generally depends, similar to the optimal blocklength
¢ for the block bootstrap, on the true underlying process, the statistic to be bootstrapped
and the purpose for what the bootstrap is used. The AIC criterion automatically selects
higher orders for more strongly dependent models; nothing is known how to adapt the
order in the AR-sieve approximation to the statistic to be bootstrapped or to the different
cases of bootstrap variance- or distribution-estimation.

The tuning element of the AR-sieve bootstrap, namely the selection of an AR-model,
has a nice interpretation and allows for diagnostic checks, including graphical procedures.
This is in contrast to bandwidth-type tuning parameters, as the blocklength in section
3.3, which have no good interpretation and are not easy to ‘back-test’ on the data. Last,
our experience is that the choice of an approximating autoregressive order, and thus of a
model, is quite insensitive with respect to the performance of the AR-sieve bootstrap, as
long as the chosen order is reasonably good.

12



4.4 Range of applicability

The AR-sieve bootstrap heavily relies on the crucial assumption that the data Xy,..., X,
comes from an AR(co)-process as in (4.1). Consistency as in (1.2) for  being a smooth
function of means is given in Biithlmann (1997). The AR(oco) representation includes as
the most interesting class the ARMA-models

p q
Xt = Z%’thj + Z%‘Et—k +e (t€7),

j=1 k=1

with invertible generating MA-polynomial, i.e., ¥(z) = 1+ 7_, ¢y2" (2 € C) has its root
outside the unit disk {z € C;|z| < 1}; here (g;)¢ez is an i.i.d. innovation sequence and a
few additional regularity conditions, being standard in ARMA model theory, have to be
made.

Interestingly, as discussed in Bickel and Bithlmann (1996, 1997), the closure [with
respect to certain metrics] of the class of linear stationary processes, and also of the class
of AR(00) processes as in (4.1), is surprisingly large. Roughly speaking, to any possibly
nonlinear stationary process, there is another process in the closure of linear processes
having ezactly the same sample path with probability greater than 1/e ~ 0.36. In some
sense, this is good news for AR-sieve bootstrapping, saying that the method should also
work reasonably good, even if the data is not coming from an AR(co) source. On the
other hand, the fact that the closure is large makes it very delicate or impossible, even
when using an infinite sample of data, to test the hypothesis about linearity or AR(oc0)
representation of the generating process.

5 Block and AR-sieve bootstrap in action

5.1 Total ozone series from Arosa

We study here the world’s longest series of total ozone monthly measurements from Arosa,
Switzerland, during the period 1926-1997. It is an important source to assess the ozone
depletion in the northern mid-latitude hemisphere. The measurements are currently per-
formed by the Swiss Meteorological Institute. The homogenized data set is available from
http://www.lapeth.ethz.ch/doc/totozon.html. The raw monthly measurements {O;}; ex-
hibit big seasonal effects, which can be explained very well. Assuming fixed monthly effects
Bi (i=1,...,12) with Z,}il ; = 0, we remove them by preliminary smoothing with a run-
ning mean X; = Zf:_ﬁ ¢iO¢—; with ¢; = 1/12 (i = —=5,...,5) and ¢; = 1/24 (i = —6,6).
Figure 5.1 displays the filtered data {X;}}"; with n = 814 on the Dobson scale. One main
interest is the study of a possibly varying mean trend: an estimate thereof is shown in
Figure 5.1. An additional question is about the ozone variability around a varying trend
whose estimate is also given in Figure 5.1. We use here time series bootstraps to assess
statistical accuracy of these trend and variability smoothers and to answer the questions
whether trend and/or variability change significantly over time.
We consider the ‘basis’ model

Xe =m(t/n) +s(t/n)Zy, t=1,...,n =814,
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Total ozone in Arosa
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Figure 5.1: Total ozone measurements given by the solid line, mean trend smoother given
by the dotted line; magnitude of smoother for changing variability given by the dashed
line at the bottom. Time from January 1927 to June 1997 is rescaled to (0, 1].

where m(-) and s(-) are smooth mean and scale functions from [0, 1] — R and R, respec-
tively. Moreover, (Z;)icz is a stationary process with E[Z;] = 0 and Var(Z;) = 1. What
is shown in Figure 5.1 are estimates of m(-) and s(-), defined as follows. For the mean
function,

u —t
m(x):ZK(x h/n)Xt, 0<xz<l,
t=1

where K is the standard Gaussian kernel and bandwidth is A = 0.024. For the scale
function, build the transformed values

log((X; — m(t/n))?) ~E[log(Z7)] +log(s*(t/n)) + Vi, t =1,...,n,

where V; = log(Z2) —E[log(Z?)]. Now use the same kernel estimator as above applied to
log((X; — m(t/n))?), estimating E[log(Z?)] + log(s?(t/n)). Transforming back by expo-
nentiating and estimating exp(E[log(Z2)]) by matching estimated second moments [using
that Var(Z;) = 1] yields the curve estimate 5(-).

In the sequel we test the two hypotheses Hy: m(-) is constant, and Hs: s(-) is constant.
To do so, we apply some bootstraps to the residual process Z; = (X, — m(t/n))/4(t/n)
yielding Z; (t = 1,...,n). Bootstrapping from the null-distribution is then done as

Xt*Hl =a+3(t/n)Z; (t=1,...,n) for Hy,
where i = n~! >y Xy, and

X;*H2 =m(t/n)+6Z; (t=1,...,n) for Ho,
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where 62 = n1 Y"1 | (X; — 7(t/n))?. Using the plug-in principle for bootstrapping m(-)
and §(-), inference under the hypotheses can then be done with

m* 1 (2) based on X7H1 . X for Hy, (5.1)
§*H2(.) based on X2 . X2 for Hy.
The construction of the resampled noise process Z; (t = 1,...,n), being the same

for either hypotheses, is done with the AR-sieve and block bootstrap: the former with
AIC estimated order 29, the latter with the blocklengths £ = 9 ~ n'/3 and ¢ = 25 which
is the estimate from Biihlmann and Kiinsch (1999) when the statistic of interest would
be the arithmetic mean, see section 3.3. Figures 5.2 and 5.3 show the estimates m(-)
and §(-) together with 19 bootstrap replicates each from the estimates in (5.1) and (5.2),
respectively.
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Trend: AR-sieve Trend: Block, I=9 Trend: Block, estimated =25
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Figure 5.2: Mean trend estimates. 19 bootstrapped estimators 1m*1(-) under the hypoth-
esis Hy with constant trend are displayed by the fine lines, the estimator 7m(-) based on
original data is indicated with the bold points. AR-sieve bootstrap with AIC estimated

order 29, block bootstrap with ¢ = 9 and estimated ¢ = 25.
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Scale: AR-sieve Scale: Block, I=9 Scale: Block, estimated =25

12
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Dobson
Dobson
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Figure 5.3: Estimates for scale. 19 bootstrapped estimators §*/2

Hj with constant scale are displayed by the fine lines, the estimator §(-) based on original
data is indicated with the bold points. AR-sieve bootstrap with AIC estimated order 29,
block bootstrap with ¢ = 9 and estimated £ = 25.

(-) under the hypothesis

They display the ‘1 out of 19 graphical rule’ from Brillinger (1997), asking whether the
original estimates m(-) and §(-) are the most extreme among a set of twenty curves,
corresponding to a 5% significance level for testing. Of course, a more formal construction
of pointwise or even simultaneous acceptance regions for say two-sided testing of H; and
Hj could be given.

All three bootstrap methods lead to similar conclusions which increases confidence
about the appropriateness of the graphics in Figures 5.2 and 5.3: it is very valuable to
have both, the AR-sieve and block bootstrap as a tool in a practical example. Regarding
the mean trend, there is clear evidence that it is changing, actually decreasing, with
progressing time. Looking at the scale or variability around the mean trend, there is
weak evidence of changing scale, particularly at x = 0.176, corresponding in real time to
October 1940, and secondary also at © = 0.923, corresponding to March 1992.

5.2 AR-sieve versus block bootstrap for simulated series

For comparison of the two bootstraps we consider simulation experiments with two differ-
ent processes but the statistic being in both cases the sample median 6 = med (X1, ..., Xp).
The sample sizes are n = 512. Furthermore, the tuning parameters are chosen by the mini-
mal AIC criterion for the AR-sieve; and £ = 8 = n!/3, according to the optimal asymptotic
rate for variance estimation, and ¢ from Biihlmann and Kiinsch (1999) for the block boot-
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strap as indicated in section 3.3.
For the first experiment, consider the linear ARMA(1,1) process

Xt = —O.8Xt_1 — 0.5575_1 + &4, (53)

where (g;)1cz is an i.i.d sequence, g, ~ tg independent from {Xg;s < t}. This model is
representable as an AR(co) process as in (4.1).

AR-sieve Block, 1=8 Block, estimated | Variance estimation

e )

Sorted bootstrap values
Sorted bootstrap values

3 2 10 1 2 3 3 2 10 1 2 3 3 2 1 0 1 2 3 AR B8 Best|
Quanties of true distribution Quantiles of true distribution Quanties of true distribution

Figure 5.4: Linear model (5.3), n = 512: bootstrap distribution and variance estimation
of (8 —E[0])/on by (0* —E*[0*]) /0, for § = med(X1,...,X,) [0, = (Var(d))'/2]. Three
left panels: QQ-plots with target indicated by the line. Right panel: boxplots with tar-
get indicated by the horizontal line. 100 simulation runs, 500 bootstrap replicates per
simulation run.

Figure 5.4 displays the quality of bootstrap approximations in model (5.3). The AR-
sieve bootstrap outperforms the block bootstrap very clearly. Estimation of the block-
length improves a bit on the fixed blocklength £ = 8 = n!/3. The fact about the better
performance of the AR-sieve bootstrap is not so surprising: Bithlmann (1997) and Hall
and Choi(1999) report a general better performance of the AR-sieve method whenever
the true underlying process is representable as an AR(oco) as in (4.1). The result here
indicates quantitatively the gain in case of a true underlying process which is not a fi-
nite order AR-model and hence not an element of the approximating sieve [for any finite
sample size]. As noted already in Biithlmann (1997), the gain of the AR-sieve bootstrap
is usually more substantial if the autocovariances of the process exhibit some damped
pseudo-periodic decay, which is true for the model in (5.3): note that this is a feature
which can be graphically diagnosed by looking at estimated autocovariances.

The second experiment is with a nonlinear exponential AR(2) process with heteroscedas-
tic innovations,

X = (0.5+09exp(—X2 1) X1 — (0.8 — 1.8exp(—X?2 1)) X¢_o + o4es,
07 =0.5+0.1X7 | +0.0507 1 11x, ;<] + 0.5exp(—07 1)1[x, ;>0 (5.4)
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AR-sieve Block, 1=8 Block, estimated | Variance estimation

Sorted bootstrap values
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Quanties of true distribution Quantiles of true distribution Quanties of true distribution

Figure 5.5: Nonlinear model (5.4), n = 512: bootstrap distribution and variance estima-
tion of ( —E[A])/o, by (0* —E*[6*])/0, for = med(Xy,...,X,) [0, = (Var())/2].
Three left panels: QQ-plots with target indicated by the line. Right panel: boxplots with
target indicated by the horizontal line. 100 simulation runs, 500 bootstrap replicates per
simulation run.

where (£¢);ez is an i.i.d sequence, &; ~ tg/+/1.5 independent from {X,; s < t}. This process
is not representable as an AR(c0) as in (4.1).

Figure 5.5 displays the quality of bootstrap approximations in model (5.4). The AR-
sieve bootstrap, which is not asymptotically consistent due to the nonlinearity of the model
in (5.4) exhibits a clear bias; and the block bootstrap is superior. As in the linear case
(5.3) from above, using the estimated blocklength 1 improves upon the fixed blocklength
¢ = 8 = n'/3. The value of the results in Figure 5.5 is again to get a quantitative idea of
the gain when using the block bootstrap.

For other [‘weakly’] nonlinear models, the AR-sieve scheme was found to be competitive
or even better than the block bootstrap. But the difficulty is to check from data the
strength of nonlinearity or the closeness to an AR(c0) representation of the underlying
process.

6 VLMC-sieve bootstrap for stationary categorical time se-
ries.

Sieve approximation is also successful for general stationary categorical processes (X;)icz
with values X; in a categorical, finite space X. The difficulty is the construction of
a sieve being flexible enough to cover general processes, but allowing a parsimonious
parameterization so that reasonable statistical accuracy can be maintained. We propose
the sieve of so-called variable length Markov chains [VLMC] for approximating the X-
valued time series (X¢)ez.

An X-valued, stationary VLMC (X}):cz is characterized as a Markov chain of high
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order whose time-homogeneous transition probabilities are depending on a variable number
¢ of lagged values,

PX; =2 Xy 1 =21, Xy o =242, | =PXy = 0| Xy 1 =21, .., Xy 0 = 744

for all z;, where ¢ = {(z;_1,24—9,...) is itself a function of the past. If {(x¢—_1,24_2,...) =p
for all x4_1, 242, ..., we obtain the full Markov chain model of order p. For variable ¢(-)
with sup{(x¢—1,21—2,...); Tt—1,%i—2,...} = p, we have an embedding [full] Markov chain
of order p, but with an additional structure of a wvariable length memory, implying that
some transition probabilities of the embedding Markov chain are lumped together. A
VLMC can be displayed as a graphical tree model.

Ezample C. X = {0, 1}, variable length memory bounded by p = 3.
The function

1, ifzg=0, ac:io arbitrary
(2%, )={3, ifeg=12_1 = 0,z"% arbitrary
2 ifxg=1,2_1= 1,:0:30 arbitrary

can be represented by the tree 7y on the left hand side in Figure 6.1. A ‘growing to the
left” sub-branch represents the symbol 0 and vice versa for the symbol 1. The state space
is given by the terminal nodes {0,100, 101, 11} of the tree [read top down].

Ezample D. X = {0, 1,2, 3}, variable length memory bounded by p = 2.
The function

1, if z9 € {0,1, 2},37:(1)0 arbitrary
02 ) =141, ifxg=3, 21 €{0,1,2},z"% arbitrary
2 ifxyg=3,2_1=3, x:io arbitrary

can be represented by the tree 7, on the right hand side in Figure 6.1. The state space

0,1,2) 3

0 1

Figure 6.1: Tree representations of the variable length memories in Examples C and D.

{0,1,2,3,33} is again given by the tree: note that the state 3 is an internal node. An
alternative representation of the state 3 is given by the round-edged rectangle symbolizing
the absent nodes 0,1 and 2 in depth 2, which can be thought as a completion of the tree
with nodes lumped together to the state 3.

Fitting a VLMC involves a version of the tree structured context algorithm [Rissanen,
1983] for estimating the variable length memory, described by the function ¢ : X*° —
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Up—oX™, and the set of transition probabilities 7,.) in the VLMC with memory given
by £(-). The exact description of the algorithm as used here can be found in Biihlmann
and Wyner (1999). In the notation of section 2.2, the semiparametric model is M.y with
elements P, [which are VLMC’s]. Estimation of £(-) is a highly complex model selection
problem; due to the extremely large number of possible models, a natural tree hierarchy
is employed. The context algorithm yields a consistent estimate Pn;V LMC = Pﬁg(A) for the
distribution of suitably regular processes which are not necessarily a VLMC, see Bithlmann
and Wyner (1999) and Ferrari (1999).
The construction of the VLMC-sieve bootstrap is as follows. Resample

VLMC-S VLMC-S D
Xr X ~ Puy e (6.1)

We then proceed as in (2.3).

6.1 Accuracy and range of applicability

For variance estimation, rate adaptivity with respect to the decay of dependence holds for
the VLMC-sieve bootstrap: if the mixing coefficients decay exponentially fast as separation
lags increase, and if the data generating process is suitably regular,

n Var*VEMC=S (g*VIMC=5y _ p yar() = Op(log(n)®/v/n), (6.2)

where = (n —m +1)"' 30 F(Xi—meit1, .., Xy) with f: X™ — R (m € N). The result
describes an adaptation in a fully data-driven way to the case of exponential decaying
covariances. Note that the process (X;)iez is generally not a VLMC.

Double VLMC bootstrapping is potentially possible and construction of a calibrated
confidence interval can be done analogously to (4.5), aiming for higher order coverage
properties.

The VLMC-sieve bootstrap is designed to be consistent for data-generating stationary
categorical processes which are short range dependent, e.g. with ‘reasonable’ decay of
mixing coefficients. Consistency as in (1.2) then holds for general estimators of the form
(3.3) defined in section 3.1. More details are given in Bithlmann and Wyner (1999).

6.2 Tuning parameter selection

The tuning parameter of the VLMC-sieve bootstrap is a so-called cutoff value which has to
be specified in the tree structured context algorithm for fitting a VLMC. It characterizes
a specific tree pruning procedure which is used for computationally efficient selection
of a VLMC model-structure. Data-driven selection of this cutoff aiming for minimizing
Kullback-Leibler distance or other prediction risks is proposed in Bithlmann (1999) with
resampling from a ‘hyper’~-VLMC model. The method can be adapted to estimate an
optimal cutoff for bootstrapping.

6.3 VLMUC-sieve versus block bootstrap for simulated series

The differences in variance estimation between (3.5) and (6.2) can be well seen in finite-
sample problems, and the gain of the VLMC-sieve bootstrap is often substantial.
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We consider a simulated example, where
Xy =1py,s0p Yi =0.8Yi 1 +e4, (t€Z),

where (g¢)iez is an i.i.d. innovation sequence, ; ~ tg independent from {Yy;s < t}. Of
interest is the stationary binary process (X¢)icz whose memory, describing the structure
of X; given X;_1, X¢_o,... is non-sparse and infinitely long: thus, a priori, we do not give
any advantage to the method of VLMC-sieve approximation.

We consider two different estimators

(S1) =n"'30 Xy,
(S2) 6 = VLMC-estimator for the probability of the five-tuple (1,1,1,1,1).

The estimator (S1) is linear and structurally very simple, whereas (S2) is a complicated
function of the data, involving a tree-structured model. VLMC-sieve bootstrapping for
(S1) and (S2) is according to the plug-in rule in (2.3). Block bootstrapping for (S1) requires
no vectorization step. The estimator (S2) is an example where vectorization with p > 5
would be appropriate, but redesigning the computation with p > 5 is merely impossible:
the VLMC-estimator, whose input is a categorical time series, involves a complicated tree
model selection explaining also why p > 5 is typically unknown; and the probability esti-
mate for the 5-tuple of 1’s is a complicated function of parsimoniously estimated transition
probabilities. The only feasible way, which we follow, for block bootstrapping (S2) is to
neglect the vectorization step and work with p = 1. The sample sizes are n = 128 for (S1)
and n = 512 for (S2).

The VLMC-sieve bootstrap is run with different cutoff tuning parameters, the block
bootstrap with the blocklength ¢ = 5 ~ n!/3 for n = 128 and £ = 8 = n!/3 for n = 512,
and for (S1) also with the estimated ¢ from Biihlmann and Kiinsch (1999) as indicated
in section 3.3. Figure 6.2 displays the quality of distribution estimation for the estimator
(S1). For a whole range of cutoff tuning parameters, the VLMC-sieve bootstrap is better
than the block bootstrap, and for the latter using the estimated blocklength / improves a
bit upon the fixed blocklength ¢ = 5 ~ n!/3. Figure 6.3 displays the quality of distribution
and variance estimation for (S2). Due to computational expenses when bootstrapping the
complicated estimator (S2) we only ran the procedures with one ‘standard’ tuning param-
eter, each: cutoff X%;0,95/2 = 1.92 and ¢ = 8 [estimation of ¢ for the complicated estimator
(S2) is very difficult]. Also here, the VLMC-sieve is better than the block bootstrap;
the VLMC method shows a few large outliers for variance estimation which indicates a
small chance that the VLMC-sieve approximation can be bad for the complicated and
thus potentially ‘unstable’ estimator (S2).

Figures 6.2 and 6.3 are representative for other situations with exponentially decay-
ing dependence structure: generally, the VLMC sieve-bootstrap is superior to the block-
bootstrap, the latter being also more sensible to the specification of the blocklength pa-
rameter. In practice, an insensitive procedure to the choice of tuning parameters is highly
desirable.

We also examined construction of two-sided confidence interval with the estimator (S1)
for # =E[X;] = 1/2 on nominal coverage level 0.9 for sample size n = 128. We considered
first order accurate block and VLMC-sieve bootstraps and higher order accurate intervals
with a version of BC, for the block bootstrap [see Gotze and Kiinsch, 1996] and the
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Figure 6.2: Bootstrap distribution estimation of (X,, —E[X;])/oy by (X, —E*[X,])/0 for
n =128 [0, = (Var(X,,))'/?]. The target is indicated by the line. VLMC-sieve bootstrap
with cutoffs as Xia/Z with o = 0.95,0.97,0.99; block bootstrap with ¢ = 5 and estimated

¢. 100 simulation runs, 500 bootstrap replicates per simulation run.
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Figure 6.3: Bootstrap distribution and variance estimation of (6 — E[0])/o, by (0* —
E*[0*]) /o, for 0 from (S2) and n = 512 [0, = (Var(6))/2]. Two left panels: QQ-plots
with target indicated by the line. Right panel: boxplots with target indicated by the
horizontal line. 50 simulation runs, 200 bootstrap replicates per simulation run.
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double bootstrap for the VLMC method, analogously to the AR-sieve scheme in section
4.2, formula (4.5) [with the same tuning parameter for the second level bootstrap as in the
first level]. The tuning parameters of the methods correspond to the upper left and lower
right picture in Figure 6.2. Coverage probabilities of confidence intervals with median and
mean absolute deviation of their lengths are given in Table 6.1. For the block bootstrap,

| Block, ¢ | VLMC, 95% | Block BC,, { | Double VLMC, 95%

coverage 0.71 0.74 0.75 0.84
median(length) | 0.262 0.276 0.258 0.368
MAD(length) 0.041 0.063 0.041 0.122

Table 6.1: Coverage probabilities for two-sided confidence interval on nominal 90% level
with median and mean absolute deviation (MAD) of their lengths. Sample size n = 128.
Based on 100 simulations, 500 first level bootstrap replicates; double VLMC bootstrap
calibration with 100 first and 100 second level bootstrap replicates.

the asymptotically second order BC, method increases performance with weak significance
compared to the first order block interval. Compared to the first order VLMC and to any
of the block methods, the double VLMC bootstrap improves with strong significance
upon coverage. On average, it corrects the nominal 90% to the 97.3% coverage level; a
calibration for one typical sample is shown in Figure 6.4, yielding the corrected coverage
level 96.7%.

Double bootstrap calibration

1.00

0.95

actual coverage for double bootstrap
0.85 0.90

0.80

0.88 0.90 092 0.94 0.96 098 1.00
nominal coverage for double bootstrap

Figure 6.4: Double VLMC bootstrap calibration for one typical sample of size n = 128.
On the x-axis: nominal coverage level for second level bootstrap based on first level boot-
strapped data; on the y-axis, corresponding actual coverage level. [These are the quantities
1— g and a(1 — q) in (4.4); the solid and dotted lines indicate the function a(1 — ¢) and
the corrected value §p99 = 0.967, respectively]. Based on 500 first and 500 second level
bootstrap replicates.

7 A local bootstrap for conditional mean estimates
We focus on interval estimation with a local bootstrap for the conditional expectation

O(z) = E[Xy|X¢—1 = z] (x € R) of a stationary real-valued process (X;);cz. This case,
which we choose for reasons of expository simplicity, can be easily extended to the more
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general parameter E[f(X)|X;—;; = x1,..., Xy, = x| for a chosen set of p lagged indices
t—i1,...,t —ip and f : R — R. Given data X1,..., X, consider the kernel estimate

_ Z?:2 Wi n(z) Xt

bn () v X
P S Win(x)

)

) Wt,h(x) = K(

with bandwidth h.
For bootstrapping 0y, (z) one can resort to resampling in a local regression framework,

X;E~Fx, , (t=2,...,n), independently from XL (s # 1),

where Fx,b() = > o Wip(2)1x,<1/ Do1eg Wip(w) is an estimate of the conditional cumu-
lative distribution of X; given X;_1 = z; b is a [pilot-] bandwidth and W_(-) as above.
Thus, the resampling is driven independently by the estimated {FLI,; x € R} which are
allowed to change locally.

The bootstrapped kernel estimator éh(:v) is then given from the regression-type data
(X1, XSL)7 (X2, XE’:L)’ ooy (X1, X;L)ﬂ

é*L(x) _ Z?:2 Wt,h(x)X:L ]
" > teo Win(x)

Such an approach was initiated by Neumann and Kreiss (1998) and Paparoditis and Politis
(1999b).

A way to see why the local bootstrap works is to consider the asymptotic distribution
of the kernel estimator 9h(x) which depends only on the marginal distribution of X;, the
conditional distribution of X; given X;_; and the known form of the kernel. The local
bootstrap is able to estimate all these features.

This is only asymptotically true and for any finite sample size n, the variance of éh(m)
depends on the n-dimensional distribution of (X;):cz, in a specific way. By construction,
the local bootstrap is not able to pick-up dependencies beyond the conditional distribution
of Xy given X;_1. On the other hand, the block bootstrap estimates consistently the ¢-
dimensional distribution of (X;)iez and it is shown in Accola (1998) that it achieves a
better rate for estimating Var(f),(z)) than the local bootstrap.

Neumann and Kreiss (1998) and Neumann (1998) show the consistency for confidence
regions for 6(x) which are simultaneous over x, constructed with a related local bootstrap
scheme. The corresponding rate of convergence is 1/v/nh as for the pointwise case. This
is a very important result since analytical simultaneous approximations tend to a limiting
extreme value distribution with the extremely slow rate of 1/log(n). Thus, the analytic
approach via the limiting distribution is far inferior than the local bootstrap construction.

7.1 Tuning parameter and range of applicability

The tuning parameter of the local bootstrap is the pilot bandwidth b. A simple approach
is to choose b = h, where h is the pre-chosen bandwidth of the estimator 05, (). When b
is chosen of larger order than h, an asymptotically non-negligible bias E[0}, ()] — 6(x) can
be estimated with the local bootstrap, see Paparoditis and Politis (1999b). The role of
the pilot-bandwidth is for estimating the conditional distribution of X; given X;_1: this
is relatively easy due to the restriction to a two-dimensional marginal problem, and the
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procedure is not very sensitive to specification of this pilot-bandwidth. The local bootstrap
does not require any tuning parameter for estimating more complicated dependencies. This
is an important practical advantage of the method.

The local bootstrap is proven to be consistent whenever (X;)cz is a short-range depen-
dent process, see Paparoditis and Politis (1999b) and Ango Nze, Bithlmann and Doukhan
(1999).

7.2 Local versus block bootstrap for simulated series

From a practical point of view it is interesting to see whether a bootstrap taking time
series effects into account, say the block bootstrap, is advantageous. We consider here a
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®e ’l....

ﬂ'... "'. ~® #%S o0 o

2.0

. 1.0
00051015

[
o /
o
-1.0 -05 00 05 10 15 20 -10 -05 00 05 10 15
t-1 t-1

Variance estimation: (M1)  Variance estimation: (M2)

\
AN

=

0608101214

TEEER

L.25L,5 B,1 B,3 B55 B,8 L,.25L,5 B,1 B,3 B,5 B8

0.6

Figure 7.1: Top row: Lag(l) scatter-plot of X; versus X; 1 with the line indicating
the curve estimator éh() with A = 0.25. Bottom row: Bootstrap variance estimates
Var*(é}i(w))/Var(éh(x)) at x = 1.60 and x = 0.76 for (M1) and (M2), respectively [the
target is indicated by the horizontal line]; ‘L’ for local bootstrap with pilot bandwidths
0.25 and 0.5, ‘B’ for block bootstrap with blocklengths 1, 3,5 and 8. Everything for sample
size n = 512.

simulation experiment which deals with a bilinear model,
Xy = 0.5e4-1 X1 + &, (7.1)

where (g;)1ez is an i.i.d. innovation sequence with &; independent from {Xg;s < t}. We
consider here the cases, where

(M1) & ii.d. ~ Rademacher, i.e., Ple; =1] = Ple; = —1] =1/2,
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(M2) & i.i.d. ~ Uniform([—1,1]).

Maybe due to the discreteness of the innovations, we found empirically that estimation of
Var(0y,(z)) is harder in (M1) than (M2). Figure 7.1 shows for sample size n = 512 the lag(1)
scatter-plot of X; versus X;_1 with the estimator éh() with the standard Gaussian kernel
for bandwidth h = 0.25. Expressing the bottom row of Figure 7.1 more quantitatively is
as follows. In (M1) the block bootstrap with ¢ = 5 (‘B,5’) performs best, with respect
to MSE: it has about 40% lower MSE than the best local bootstrap with b = 0.5 (‘L,.5")
and the two-sided paired Wilcoxon test yields a p-value of 0.002 for the null-hypothesis
of equal MSE for ‘L,.5’ and ‘B,5’, in favor of ‘B,5’. Comparing any of the local with any
of the other block bootstraps with ¢ = 1,3,8 shows no significant difference. In (M2),
the block bootstrap with ¢ = 1 [which is a regression bootstrap under independence]
performs best having about 9% lower MSE than the best local bootstrap with b = 0.5,
but which turns out to be a non-significant difference. Excluding ‘B,8’ with unreasonably
large blocklength [having a significant disadvantage against local bootstraps|, any of the
local compared with any of the other block bootstraps with ¢ = 1, 3,5 shows no significant
difference. We conclude for this specific bilinear model that in the easier case (M2), local
and block bootstrap are equally good [when excluding the unreasonable blocklength ¢ = 8].
This is contrasted a bit by the hard case (M1) where the block bootstrap is always as good
as local bootstraps and better, would we have known the good blocklength ¢ = 3.

8 Conclusions

We summarize here our view and empirical results for the block, two types of sieve and a
local bootstrap.

The block bootstrap is the most general method. From theory, it is able to cope with
very many situations. A further advantage is the simple implementation of resampling,
which is no more difficult than in Efron’s i.i.d. bootstrap. Disadvantages of the method
include the following. The block bootstrap sample should not be viewed as a reasonable
copy of a stochastic process: it isn’t stationary and exhibits artifacts where resampled
blocks are linked together. This implies that the plug-in rule for bootstrapping an estima-
tor 6 is not appropriate: the bootstrapped estimator and its computing routine might have
to be redesigned, since a pre-vectorization of the data is highly recommended, provided
that it is possible or feasible. As a general nonparametric scheme, the block bootstrap
can be outperformed in various niches of stationary time series, e.g. for linear time series
[see section 4] and for categorical processes [see section 6]. Second order accuracy for a
confidence interval has been justified with the approach of studentizing and BC, correc-
tion; particularly the first seems to cause notorious difficulties for finite samples, the latter
was found to yield marginal improvement in a simulated example. Double bootstrapping
seems not promising since the block bootstrap in the first iteration is not an appropriate
time series sample mimicking the underlying data generating process.

Sieve bootstraps in general construct resamples which are sampled from a reasonable
time series model. This implies two advantages: the plug-in rule is employed for defining
and computing the bootstrapped estimator, and the double bootstrap potentially leads to
higher order accuracy. Good sieve bootstraps, as the AR- or VLMC-sieve schemes, are
adapting to the degree of dependence: their accuracy improves with decreasing depen-
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dence, see formulae (4.3) and (6.2). This is not the case with the block bootstrap, as seen
from formula (3.5). Also, sieve bootstraps seem generally less sensitive to selection of a
model in the sieve than the block bootstrap to the blocklength.

The AR-sieve bootstrap is clearly best if the data-generating process is a linear time
series, representable as an AR(oc0) as in (4.1). The method is easy to implement, due to
the simplicity of fitting an AR model.

The VLMC-sieve bootstrap is best for categorical processes, particularly when depen-
dence decays exponentially with increasing lags. The disadvantage is the difficulty to
construct the resample: the context algorithm which is used for this task is computation-
ally quite efficient needing only O(nlog(n)) essential operations, but the algorithm is not
easily available yet. Double bootstrapping was successful in a simulated example.

The local bootstrap from section 7 is restricted to nonparametric estimation procedures
having slower rate of convergence than 1/y/n. Its advantage is simplicity, since no tuning
parameter, governing strength of dependence of the data generating process, has to be
specified. On the other hand, this also indicates its weakness and lack of ability to mimic
dependence properly. Although designed as a regression bootstrap in the independent
set-up, it is consistent and hence robust against some form of dependence. In the latter
case, it can be outperformed [with the block bootstrap].

9 Other results and notes to references

We complement our selective exposition by briefly pointing to some additional references.
Viewed from a different angle than our review and comparison, Efron and Tibshirani
(1993, Chs.8.5-8.6), Shao and Tu (1995, Ch.9), Li and Maddala (1996), Davison and
Hinkley (1997, Ch.8), discuss bootstrap methods for dependent data.

Literature about the block bootstrap is quite extensive. A review from the earlier area
of the field can be found in Léger, Politis and Romano (1992). Refinement of Kiinsch’s
(1989) results, aiming for minimal assumptions, is given in Radulovi¢ (1996a). Various
results in empirical processes include Bithlmann (1994, 1995), Radulovi¢ (1996b, 1998) and
Peligrad (1998). Lahiri (1996a) proves second order correctness of the block bootstrap for
the case where 0 is an M-estimator in a linear regression model with dependent noise.
The block bootstrap technique is also applicable for spatial processes, see Politis and
Romano (1993). A version of the block bootstrap achieving stationarity for the bootstrap
sample, the so-called stationary bootstrap, was given by Politis and Romano (1994). Lahiri
(1999) shows rigorously that the block bootstrap is better than the stationary bootstrap.
Carlstein, Do, Hall, Hesterberg and Kiinsch (1998) propose a linking scheme for blocks to
be resampled: they argue in case of 6 = X, that such a procedure has lower mean square
error for variance estimation.

Related to the block bootstrap are subsampling methods. The work by Carlstein
(1986) can be viewed as a predecessor of the block bootstrap for variance estimation:
Kiinsch (1989) argues that in case where the statistic g is asymptotically normal, the block
bootstrap is better than subsampling. In a remarkable paper, Politis and Romano (1994)
show that subsampling is much more generally applicable than block bootstraps methods:
namely in essentially all cases where 6 has some non-degenerated limiting distribution.
Again, in case of a normal limit, subsampling is inferior to block bootstrapping. Other
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results about subsampling can be found in the book by Politis, Romano and Wolf (1999).

Model based bootstrapping with a nonparametric AR(1)-model with heteroscedas-
tic innovations is discussed in Franke, Kreiss and Mammen (1997) and Franke, Kreiss,
Mammen and Neumann (1998). The latter discusses that such a bootstrap can be used
for accurate construction of simultaneous confidence bands of the autoregression function
m(z) = E[X;|X;—1 = z]; note that the same can be achieved [in first order| by a local
bootstrap as in section 7. Bootstrapping based on a finite order Markov model, similarly
as Rajarshi’s (1990) scheme, is also studied by Paparoditis and Politis (1997).

For the AR-sieve bootstrap, empirical process results are given in Bickel and Biihlmann
(1999) by establishing a weak notion of mixing for the bootstrapped process. The nonsta-
tionary case where Xy = m;+ Z; (t € Z) with (my)ez a slowly varying deterministic trend
and (Z;)iez an AR(oco) noise-process is studied in Bithlmann (1998) with an AR-sieve
bootstrap for the trend estimate.

Combining model or sieve based methods with the block bootstrap was suggested,
and named as ‘post-blackening’, by Davison and Hinkley (1997, Ch.8.2). The idea is to
pre-whiten the time series with a model or sieve based approach and then apply the block
bootstrap to the hopefully less dependent, whitened residuals: block resampling of these
residuals and inverting the whitening operation then yields the post-blackened resample
mimicking the original observations.

Another way of bootstrapping stationary linear time series was proposed by Dahlhaus
and Janas (1996): they resample independently periodogram values in the frequency do-
main according to a spectral density estimate. By construction, the resampling only
considers the autocovariance structure and is thus restricted to linear time series. The
idea of independent resampling in the frequency domain already appeared in Franke and
Hardle (1992) for bootstrapping a spectral density estimator; a modification thereof with
a bootstrap scheme of local type was given by Paparoditis and Politis (1999a).

Breiman’s (1996) strategy of bagging [‘bootstrap aggregating’] an unstable predictor
based on independent observations has been found empirically successful when applied to
a time series version of MARS for prediction, see Ray and Chen (1998) : they apply a
local bootstrap version, similarly as in section 7.
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