
Using the reshape function

The R Core Team

June 10, 2025

1 Introduction

The reshape() function reshapes datasets in the so-called ‘wide’ format (with repeated
measurements in separate columns of the same row) to the ‘long’ format (with the repeated
measurements in separate rows), and vice versa.

reshape() is a somewhat complicated function, and this vignette gives a few examples of
how it can be used. Although reshape() can be used in a variety of contexts, the motivating
application is data from longitudinal studies, and the arguments of this function are named
and described in those terms. See the documentation (help(reshape)) for background and
detailed usage.

For our examples, we will simulate data from a study where individuals are measured at two
time points. Two of the measurements are time-varying: height and weight, and one of the
measurements is time-constant: sex.

2 Conversion from wide to long format

We first simulate data in the wide format. Data from each individual is contained in one
row, with one column for time-constant variables and multiple columns for time-varying
variables. Here there are two time points (before and after), so there are two columns for
each time-varying variable.

> set.seed(12345)

> n <- 5

> d1 <- data.frame(sex = sample(c("M", "F"), n, replace = TRUE),

ht.before = round(rnorm(n, 165, 6), 1),

ht.after = round(rnorm(n, 165, 6), 1),

wt.before = round(rnorm(n, 80, 6)),

wt.after = round(rnorm(n, 80, 6)))

> d1

sex ht.before ht.after wt.before wt.after

1 F 159.2 164.4 78 78

2 M 165.1 163.5 81 88

3 F 178.9 175.0 80 73

4 F 158.8 162.3 65 79

5 F 146.7 168.3 83 84

1

Suppose we want to convert this dataset into the long format, with two rows for each
individual, and one column for each variable (both time-constant and time-varying). Such
a representation will need two additional variables to distinguish between multiple rows
corresponding to the same individual (corresponding to one row in the wide format): a
time-variable and an id-variable. These will be automatically created when converting from
wide to long format.

However, we do need to specify which columns in the wide format correspond to the same
time-varying variable(s). This is easiest to do when we have only one time-varying variable.
Although we have two such in our example, let us pretend that only height is time-varying.
The corresponding columns can be specified as the varying argument. The two weight
variables will then be assumed to be different time-constant variables, similar to sex.

> reshape(d1, direction = "long",

varying = c("ht.before", "ht.after"))

sex wt.before wt.after time ht id

1.before F 78 78 before 159.2 1

2.before M 81 88 before 165.1 2

3.before F 80 73 before 178.9 3

4.before F 65 79 before 158.8 4

5.before F 83 84 before 146.7 5

1.after F 78 78 after 164.4 1

2.after M 81 88 after 163.5 2

3.after F 80 73 after 175.0 3

4.after F 65 79 after 162.3 4

5.after F 83 84 after 168.3 5

It is equivalent to specify the variables as column indices.

> reshape(d1, direction = "long",

varying = c(2, 3))

sex wt.before wt.after time ht id

1.before F 78 78 before 159.2 1

2.before M 81 88 before 165.1 2

3.before F 80 73 before 178.9 3

4.before F 65 79 before 158.8 4

5.before F 83 84 before 146.7 5

1.after F 78 78 after 164.4 1

2.after M 81 88 after 163.5 2

3.after F 80 73 after 175.0 3

4.after F 65 79 after 162.3 4

5.after F 83 84 after 168.3 5

Note that the names of the combined variable, as well as the values of the time variable,
are automatically detected because the names happen to be “nicely” formatted. Suppose we
instead had

> n <- 5

> d2 <- data.frame(sex = sample(c("M", "F"), n, replace = TRUE),

2

ht_before = round(rnorm(n, 165, 6), 1),

ht_after = round(rnorm(n, 165, 6), 1),

wt_before = round(rnorm(n, 80, 6)),

wt_after = round(rnorm(n, 80, 6)))

Modifying the previous call gives:

> try(

reshape(d2, direction = "long",

varying = c("wt_before", "wt_after")),

)

Error in guess(varying) :

failed to guess time-varying variables from their names

This is easy to “fix” in this case because the names are still nicely formatted, just not using
the separator that reshape() expects by default.

> reshape(d2, direction = "long",

varying = c("wt_before", "wt_after"), sep = "_")

sex ht_before ht_after time wt id

1.before F 175.8 169.9 before 83 1

2.before M 162.1 178.2 before 78 2

3.before F 168.7 177.3 before 70 3

4.before M 168.7 174.8 before 91 4

5.before F 164.0 166.5 before 80 5

1.after F 175.8 169.9 after 87 1

2.after M 162.1 178.2 after 66 2

3.after F 168.7 177.3 after 74 3

4.after M 168.7 174.8 after 86 4

5.after F 164.0 166.5 after 85 5

A more general solution is to specify the name of the new combined column explicitly as
the v.names argument.

> reshape(d2, direction = "long",

varying = c("wt_before", "wt_after"),

v.names = "weight")

sex ht_before ht_after time weight id

1.1 F 175.8 169.9 1 83 1

2.1 M 162.1 178.2 1 78 2

3.1 F 168.7 177.3 1 70 3

4.1 M 168.7 174.8 1 91 4

5.1 F 164.0 166.5 1 80 5

1.2 F 175.8 169.9 2 87 1

2.2 M 162.1 178.2 2 66 2

3.2 F 168.7 177.3 2 74 3

4.2 M 168.7 174.8 2 86 4

5.2 F 164.0 166.5 2 85 5

3

We can additionally specify the names and values of the id / time variables as well.

> reshape(d2, direction = "long",

varying = c("wt_before", "wt_after"),

v.names = "weight",

timevar = "when", times = c("pre", "post"),

idvar = "subject", ids = letters[1:n])

sex ht_before ht_after when weight subject

a.pre F 175.8 169.9 pre 83 a

b.pre M 162.1 178.2 pre 78 b

c.pre F 168.7 177.3 pre 70 c

d.pre M 168.7 174.8 pre 91 d

e.pre F 164.0 166.5 pre 80 e

a.post F 175.8 169.9 post 87 a

b.post M 162.1 178.2 post 66 b

c.post F 168.7 177.3 post 74 c

d.post M 168.7 174.8 post 86 d

e.post F 164.0 166.5 post 85 e

Note that the times argument is ignored when automatic guessing is performed, i.e., when
v.names is not explicitly specified.

> reshape(d2, direction = "long",

varying = c("wt_before", "wt_after"), sep = "_",

v.names = "wt", # without this, 'times' is unused

timevar = "when", times = c("pre", "post"))

sex ht_before ht_after when wt id

1.before F 175.8 169.9 before 83 1

2.before M 162.1 178.2 before 78 2

3.before F 168.7 177.3 before 70 3

4.before M 168.7 174.8 before 91 4

5.before F 164.0 166.5 before 80 5

1.after F 175.8 169.9 after 87 1

2.after M 162.1 178.2 after 66 2

3.after F 168.7 177.3 after 74 3

4.after M 168.7 174.8 after 86 4

5.after F 164.0 166.5 after 85 5

So far, we have only specified one time-varying variable, but our data actually has two. How
do we specify multiple time-varying variables? This depends on whether the variable names
are in a guessable format.

2.1 Explicitly specifying variables names

The general approach is to explicitly specify both varying and v.names as before. v.names
should be a vector of new variable names in the long format, and varying should either
be a list, with each component giving the corresponding wide format variable names, or a
matrix, with each row giving the corresponding wide format variable names.

4

> reshape(d2, direction = "long",

varying = list(c("ht_before", "ht_after"),

c("wt_before", "wt_after")), # list form

v.names = c("height", "weight"),

times = c("pre", "post"))

sex time height weight id

1.pre F pre 175.8 83 1

2.pre M pre 162.1 78 2

3.pre F pre 168.7 70 3

4.pre M pre 168.7 91 4

5.pre F pre 164.0 80 5

1.post F post 169.9 87 1

2.post M post 178.2 66 2

3.post F post 177.3 74 3

4.post M post 174.8 86 4

5.post F post 166.5 85 5

> reshape(d2, direction = "long",

varying = rbind(c("ht_before", "ht_after"),

c("wt_before", "wt_after")), # matrix form

v.names = c("height", "weight"))

sex time height weight id

1.1 F 1 175.8 83 1

2.1 M 1 162.1 78 2

3.1 F 1 168.7 70 3

4.1 M 1 168.7 91 4

5.1 F 1 164.0 80 5

1.2 F 2 169.9 87 1

2.2 M 2 178.2 66 2

3.2 F 2 177.3 74 3

4.2 M 2 174.8 86 4

5.2 F 2 166.5 85 5

The times argument has been omitted in the second example above, and the default is to
use sequential times. The v.names argument can be omitted as well, but the default is not
generally sensible.

Of course, the time and id variables can also be controlled in the usual way as long as
v.names is specified.

> reshape(d2, direction = "long",

varying = rbind(c("ht_before", "ht_after"),

c("wt_before", "wt_after")),

v.names = c("height", "weight"),

timevar = "when",

times = c("pre", "post"),

idvar = "subject",

ids = letters[1:n])

5

sex when height weight subject

a.pre F pre 175.8 83 a

b.pre M pre 162.1 78 b

c.pre F pre 168.7 70 c

d.pre M pre 168.7 91 d

e.pre F pre 164.0 80 e

a.post F post 169.9 87 a

b.post M post 178.2 66 b

c.post F post 177.3 74 c

d.post M post 174.8 86 d

e.post F post 166.5 85 e

2.2 Variables names in a guessable format

Even when variable names are in a guessable format, reshape() will not try to guess if mul-
tiple time-varying variables are provided as a list or matrix. However, when the wide format
variable names are suitably formatted in the same manner for all time-varying variables, it
is still possible to take advantage of automatic guessing by specifying the varying argument
as an atomic vector (of either names or indices) containing all time-varying columns.

> reshape(d2, direction = "long",

varying = c("ht_before", "ht_after",

"wt_before", "wt_after"), sep = "_")

sex time ht wt id

1.before F before 175.8 83 1

2.before M before 162.1 78 2

3.before F before 168.7 70 3

4.before M before 168.7 91 4

5.before F before 164.0 80 5

1.after F after 169.9 87 1

2.after M after 178.2 66 2

3.after F after 177.3 74 3

4.after M after 174.8 86 4

5.after F after 166.5 85 5

The atomic vector form of varying can be combined with explicit (non-guessed) specification
of v.names as well, but in that case, one needs to pay careful attention to the order of variable
names in varying. The following gives wrong results:

> reshape(d2, direction = "long",

varying = c("ht_before", "ht_after",

"wt_before", "wt_after"),

v.names = c("height", "weight"))

sex time height weight id

1.1 F 1 175.8 169.9 1

2.1 M 1 162.1 178.2 2

3.1 F 1 168.7 177.3 3

4.1 M 1 168.7 174.8 4

6

5.1 F 1 164.0 166.5 5

1.2 F 2 83.0 87.0 1

2.2 M 2 78.0 66.0 2

3.2 F 2 70.0 74.0 3

4.2 M 2 91.0 86.0 4

5.2 F 2 80.0 85.0 5

The correct order requires all columns corresponding to the same time to be contiguous; this
is the same intrinsic column-major ordering in the matrix form above. It is best to avoid
the atomic vector form of varying unless v.names is being omitted.

2.3 Repeated application of reshape

Just as an illustration, let us try to create an even longer dataset that combines height and
weight together in a single column.

> dlong <-

reshape(d2, direction = "long",

varying = c("ht_before", "wt_before",

"ht_after", "wt_after"),

v.names = c("height", "weight"),

timevar = "when", times = c("pre", "post"),

idvar = "subject", ids = letters[1:n])

> reshape(dlong, direction = "long",

varying = c("height", "weight"),

v.names = "combined",

timevar = "what", times = c("height", "weight"))

sex when subject what combined id

1.height F pre a height 175.8 1

2.height M pre b height 162.1 2

3.height F pre c height 168.7 3

4.height M pre d height 168.7 4

5.height F pre e height 164.0 5

6.height F post a height 169.9 6

7.height M post b height 178.2 7

8.height F post c height 177.3 8

9.height M post d height 174.8 9

10.height F post e height 166.5 10

1.weight F pre a weight 83.0 1

2.weight M pre b weight 78.0 2

3.weight F pre c weight 70.0 3

4.weight M pre d weight 91.0 4

5.weight F pre e weight 80.0 5

6.weight F post a weight 87.0 6

7.weight M post b weight 66.0 7

8.weight F post c weight 74.0 8

9.weight M post d weight 86.0 9

10.weight F post e weight 85.0 10

7

Can we get this directly from d2 using a single reshape() call? We can, except that we will
get a composite time variable (which can be easily split if needed).

> reshape(d2, direction = "long",

v.names = "combined",

varying = c("ht_before", "ht_after", "wt_before", "wt_after"),

timevar = "when_what",

times = c("pre_height", "post_height", "pre_weight", "post_weight"),

idvar = "subject", ids = letters[1:n])

sex when_what combined subject

a.pre_height F pre_height 175.8 a

b.pre_height M pre_height 162.1 b

c.pre_height F pre_height 168.7 c

d.pre_height M pre_height 168.7 d

e.pre_height F pre_height 164.0 e

a.post_height F post_height 169.9 a

b.post_height M post_height 178.2 b

c.post_height F post_height 177.3 c

d.post_height M post_height 174.8 d

e.post_height F post_height 166.5 e

a.pre_weight F pre_weight 83.0 a

b.pre_weight M pre_weight 78.0 b

c.pre_weight F pre_weight 70.0 c

d.pre_weight M pre_weight 91.0 d

e.pre_weight F pre_weight 80.0 e

a.post_weight F post_weight 87.0 a

b.post_weight M post_weight 66.0 b

c.post_weight F post_weight 74.0 c

d.post_weight M post_weight 86.0 d

e.post_weight F post_weight 85.0 e

3 Conversion from long to wide format

Conversion from long to wide format is generally simpler. Let us simulate long format data
from the same hypothetical setup.

> d3 <- data.frame(sex = sample(c("M", "F"), 2 * n, replace = TRUE),

ht = round(rnorm(2 * n, 165, 6), 1),

wt = round(rnorm(2 * n, 80, 6)),

subject = rep(1:n, 2),

when = rep(c("pre", "post"), each = n))

> d3

sex ht wt subject when

1 M 161.8 81 1 pre

2 M 176.7 72 2 pre

3 F 165.3 83 3 pre

4 M 167.1 90 4 pre

8

5 F 161.0 76 5 pre

6 F 166.7 69 1 post

7 F 169.1 85 2 post

8 M 169.9 90 3 post

9 F 177.9 83 4 post

10 F 150.9 72 5 post

To convert this to the wide format, the arguments idvar and timevar to reshape() are
mandatory, and all other variables are assumed to be time-varying. This is what we do in
the next example, where even sex is erroneously treated as time-varying.

> reshape(d3, direction = "wide",

idvar = "subject", timevar = "when")

subject sex.pre ht.pre wt.pre sex.post ht.post wt.post

1 1 M 161.8 81 F 166.7 69

2 2 M 176.7 72 F 169.1 85

3 3 F 165.3 83 M 169.9 90

4 4 M 167.1 90 F 177.9 83

5 5 F 161.0 76 F 150.9 72

To specify some variables as time-constant, the time-varying variables must be explicitly
specified through v.names.

> reshape(d3, direction = "wide",

idvar = "subject", timevar = "when",

v.names = c("ht", "wt"))

This gives a warning because sex is not really time-constant in the dataset we have created.
Let us fix that:

> n <- 10

> d4 <- data.frame(sex = rep(sample(c("M", "F"), n, replace = TRUE), 2),

ht = round(rnorm(2 * n, 165, 6), 1),

wt = round(rnorm(2 * n, 80, 6)),

subject = rep(1:n, 2),

when = rep(c("pre", "post"), each = n))

> reshape(d4, direction = "wide",

idvar = "subject", timevar = "when",

v.names = c("ht", "wt"), sep = "_")

sex subject ht_pre wt_pre ht_post wt_post

1 F 1 170.7 84 176.2 77

2 F 2 170.0 77 169.0 78

3 F 3 160.1 93 163.2 89

4 F 4 167.9 76 168.2 77

5 M 5 171.1 76 169.9 82

6 F 6 168.9 81 159.2 73

7 F 7 171.3 73 159.9 72

8 M 8 163.2 83 176.3 88

9 M 9 179.9 72 162.6 88

10 F 10 170.8 81 159.1 80

9

To specify the resulting wide format variable names explicitly instead of using the automati-
cally constructed defaults, we may use the varying argument as in wide-to-long conversion.
As in that case, varying can be a vector of variable names, where the same caveats apply
regarding order.

> reshape(d4, direction = "wide",

idvar = "subject", timevar = "when",

v.names = c("ht", "wt"),

varying = c("h_before", "w_before", "h_after", "w_after"))

sex subject h_before w_before h_after w_after

1 F 1 170.7 84 176.2 77

2 F 2 170.0 77 169.0 78

3 F 3 160.1 93 163.2 89

4 F 4 167.9 76 168.2 77

5 M 5 171.1 76 169.9 82

6 F 6 168.9 81 159.2 73

7 F 7 171.3 73 159.9 72

8 M 8 163.2 83 176.3 88

9 M 9 179.9 72 162.6 88

10 F 10 170.8 81 159.1 80

For more than one time-varying variable, it is safer to avoid the vector form and instead
specify varying as a list or matrix.

> reshape(d4, direction = "wide",

idvar = "subject", timevar = "when",

v.names = c("ht", "wt"),

varying = list(c("h_before", "h_after"),

c("w_before", "w_after")))

sex subject h_before w_before h_after w_after

1 F 1 170.7 84 176.2 77

2 F 2 170.0 77 169.0 78

3 F 3 160.1 93 163.2 89

4 F 4 167.9 76 168.2 77

5 M 5 171.1 76 169.9 82

6 F 6 168.9 81 159.2 73

7 F 7 171.3 73 159.9 72

8 M 8 163.2 83 176.3 88

9 M 9 179.9 72 162.6 88

10 F 10 170.8 81 159.1 80

10

	Introduction
	Conversion from wide to long format
	Explicitly specifying variables names
	Variables names in a guessable format
	Repeated application of reshape

	Conversion from long to wide format

