trls.influence {spatial} | R Documentation |
Regression diagnostics for trend surfaces
Description
This function provides the basic quantities which are used in
forming a variety of diagnostics for checking the quality of
regression fits for trend surfaces calculated by surf.ls
.
Usage
trls.influence(object)
## S3 method for class 'trls'
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
add = FALSE, div = 8, ...)
Arguments
object , x |
Fitted trend surface model from |
div |
scaling factor for influence circle radii in |
add |
add influence plot to existing graphics if |
border , col , pch , cex , ... |
additional graphical parameters |
Value
trls.influence
returns a list with components:
r |
raw residuals as given by |
hii |
diagonal elements of the Hat matrix |
stresid |
standardised residuals |
Di |
Cook's statistic |
References
Unwin, D. J., Wrigley, N. (1987) Towards a general-theory of control point distribution effects in trend surface models. Computers and Geosciences, 13, 351–355.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See Also
surf.ls
, influence.measures
, plot.lm
Examples
library(MASS) # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)