### R code from vignette source 'parallel.Rnw' ################################################### ### code chunk number 1: Ecuyer-ex (eval = FALSE) ################################################### ## RNGkind("L'Ecuyer-CMRG") ## set.seed(2002) # something ## M <- 16 ## start M workers ## s <- .Random.seed ## for (i in 1:M) { ## s <- nextRNGStream(s) ## # send s to worker i as .Random.seed ## } ################################################### ### code chunk number 2: affinity-ex (eval = FALSE) ################################################### ## ## Exemplary variance filter executed on three different matrices in parallel. ## ## Can be used in gene expression analysis as a prefilter ## ## for the number of covariates. ## ## library(parallel) ## n <- 300 # observations ## p <- 20000 # covariates ## ## ## Different sized matrices as filter inputs ## ## Matrix A and B form smaller work loads ## ## while matrix C forms a bigger workload (2*p) ## library(stats) ## A <- matrix(replicate( p, rnorm(n, sd = runif(1, 0.1, 10))), n, p) ## B <- matrix(replicate( p, rnorm(n, sd = runif(1, 0.1, 10))), n, p) ## C <- matrix(replicate(2*p, rnorm(n, sd = runif(1, 0.1, 10))), n, 2*p) ## ## varFilter <- function (X, nSim = 20) { ## for (i in 1:nSim) { ## train <- sample(nrow(X), 2 / 3 * nrow(X)) ## colVars <- apply(X[train, ], 2, var) ## keep <- names(head(sort(colVars, decreasing = TRUE), 100)) ## # myAlgorithm(X[, keep]) ## } ## } ## ## ## Runtime comparison ----------------------------------- ## ## ## mclapply with affinity.list ## ## CPU mapping: A and B run on CPU 1 while C runs on CPU 2: ## affinity <- c(1,1,2) ## system.time( ## mclapply(X = list(A,B,C), FUN = varFilter, ## mc.preschedule = FALSE, affinity.list = affinity)) ## ## user system elapsed ## ## 34.909 0.873 36.720 ## ## ## ## mclapply without affinity.list ## system.time( ## mclapply(X = list(A,B,C), FUN = varFilter, mc.cores = 2, ## mc.preschedule = FALSE) ) ## ## user system elapsed ## ## 72.893 1.588 55.982 ## ## ## ## mclapply with prescheduling ## system.time( ## mclapply(X = list(A,B,C), FUN = varFilter, mc.cores = 2, ## mc.preschedule = TRUE) ) ## ## user system elapsed ## ## 53.455 1.326 53.399 ################################################### ### code chunk number 3: parallel.Rnw:531-536 (eval = FALSE) ################################################### ## ## Restricts all elements of X to run on CPU 1 and 2. ## X <- list(1, 2, 3) ## affinity.list <- list(c(1,2), c(1,2), c(1,2)) ## mclapply(X = X, FUN = function (i) i*i, ## mc.preschedule = FALSE, affinity.list = affinity.list) ################################################### ### code chunk number 4: parallel.Rnw:568-569 (eval = FALSE) ################################################### ## library(parallel) ################################################### ### code chunk number 5: parallel.Rnw:594-601 (eval = FALSE) ################################################### ## library(boot) ## cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v) ## cd4.mle <- list(m = colMeans(cd4), v = var(cd4)) ## cd4.boot <- boot(cd4, corr, R = 999, sim = "parametric", ## ran.gen = cd4.rg, mle = cd4.mle) ## boot.ci(cd4.boot, type = c("norm", "basic", "perc"), ## conf = 0.9, h = atanh, hinv = tanh) ################################################### ### code chunk number 6: parallel.Rnw:606-616 (eval = FALSE) ################################################### ## cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v) ## cd4.mle <- list(m = colMeans(cd4), v = var(cd4)) ## run1 <- function(...) boot(cd4, corr, R = 500, sim = "parametric", ## ran.gen = cd4.rg, mle = cd4.mle) ## mc <- 2 # set as appropriate for your hardware ## ## To make this reproducible: ## set.seed(123, "L'Ecuyer") ## cd4.boot <- do.call(c, mclapply(seq_len(mc), run1) ) ## boot.ci(cd4.boot, type = c("norm", "basic", "perc"), ## conf = 0.9, h = atanh, hinv = tanh) ################################################### ### code chunk number 7: parallel.Rnw:621-622 (eval = FALSE) ################################################### ## do.call(c, lapply(seq_len(mc), run1)) ################################################### ### code chunk number 8: parallel.Rnw:626-641 (eval = FALSE) ################################################### ## run1 <- function(...) { ## library(boot) ## cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v) ## cd4.mle <- list(m = colMeans(cd4), v = var(cd4)) ## boot(cd4, corr, R = 500, sim = "parametric", ## ran.gen = cd4.rg, mle = cd4.mle) ## } ## cl <- makeCluster(mc) ## ## make this reproducible ## clusterSetRNGStream(cl, 123) ## library(boot) # needed for c() method on master ## cd4.boot <- do.call(c, parLapply(cl, seq_len(mc), run1) ) ## boot.ci(cd4.boot, type = c("norm", "basic", "perc"), ## conf = 0.9, h = atanh, hinv = tanh) ## stopCluster(cl) ################################################### ### code chunk number 9: parallel.Rnw:651-664 (eval = FALSE) ################################################### ## cl <- makeCluster(mc) ## cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v) ## cd4.mle <- list(m = colMeans(cd4), v = var(cd4)) ## clusterExport(cl, c("cd4.rg", "cd4.mle")) ## junk <- clusterEvalQ(cl, library(boot)) # discard result ## clusterSetRNGStream(cl, 123) ## res <- clusterEvalQ(cl, boot(cd4, corr, R = 500, ## sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle)) ## library(boot) # needed for c() method on master ## cd4.boot <- do.call(c, res) ## boot.ci(cd4.boot, type = c("norm", "basic", "perc"), ## conf = 0.9, h = atanh, hinv = tanh) ## stopCluster(cl) ################################################### ### code chunk number 10: parallel.Rnw:669-683 (eval = FALSE) ################################################### ## R <- 999; M <- 999 ## we would like at least 999 each ## cd4.nest <- boot(cd4, nested.corr, R=R, stype="w", t0=corr(cd4), M=M) ## ## nested.corr is a function in package boot ## op <- par(pty = "s", xaxs = "i", yaxs = "i") ## qqplot((1:R)/(R+1), cd4.nest$t[, 2], pch = ".", asp = 1, ## xlab = "nominal", ylab = "estimated") ## abline(a = 0, b = 1, col = "grey") ## abline(h = 0.05, col = "grey") ## abline(h = 0.95, col = "grey") ## par(op) ## ## nominal <- (1:R)/(R+1) ## actual <- cd4.nest$t[, 2] ## 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))] ################################################### ### code chunk number 11: parallel.Rnw:688-696 (eval = FALSE) ################################################### ## mc <- 9 ## R <- 999; M <- 999; RR <- floor(R/mc) ## run2 <- function(...) ## cd4.nest <- boot(cd4, nested.corr, R=RR, stype="w", t0=corr(cd4), M=M) ## cd4.nest <- do.call(c, mclapply(seq_len(mc), run2, mc.cores = mc) ) ## nominal <- (1:R)/(R+1) ## actual <- cd4.nest$t[, 2] ## 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))] ################################################### ### code chunk number 12: parallel.Rnw:710-721 (eval = FALSE) ################################################### ## library(spatial) ## towns <- ppinit("towns.dat") ## tget <- function(x, r=3.5) sum(dist(cbind(x$x, x$y)) < r) ## t0 <- tget(towns) ## R <- 1000 ## c <- seq(0, 1, 0.1) ## ## res[1] = 0 ## res <- c(0, sapply(c[-1], function(c) ## mean(replicate(R, tget(Strauss(69, c=c, r=3.5)))))) ## plot(c, res, type="l", ylab="E t") ## abline(h=t0, col="grey") ################################################### ### code chunk number 13: parallel.Rnw:725-734 (eval = FALSE) ################################################### ## run3 <- function(c) { ## library(spatial) ## towns <- ppinit("towns.dat") # has side effects ## mean(replicate(R, tget(Strauss(69, c=c, r=3.5)))) ## } ## cl <- makeCluster(10, methods = FALSE) ## clusterExport(cl, c("R", "towns", "tget")) ## res <- c(0, parSapply(cl, c[-1], run3)) # 10 tasks ## stopCluster(cl) ################################################### ### code chunk number 14: parallel.Rnw:738-742 (eval = FALSE) ################################################### ## cl <- makeForkCluster(10) # fork after the variables have been set up ## run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5)))) ## res <- c(0, parSapply(cl, c[-1], run4)) ## stopCluster(cl) ################################################### ### code chunk number 15: parallel.Rnw:745-747 (eval = FALSE) ################################################### ## run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5)))) ## res <- c(0, unlist(mclapply(c[-1], run4, mc.cores = 10))) ################################################### ### code chunk number 16: parallel.Rnw:778-812 (eval = FALSE) ################################################### ## pkgs <- "" ## M <- 20 # number of parallel installs ## M <- min(M, length(pkgs)) ## library(parallel) ## unlink("install_log") ## cl <- makeCluster(M, outfile = "install_log") ## clusterExport(cl, c("tars", "fakes", "gcc")) # variables needed by do_one ## ## ## set up available via a call to available.packages() for ## ## repositories containing all the packages involved and all their ## ## dependencies. ## DL <- utils:::.make_dependency_list(pkgs, available, recursive = TRUE) ## DL <- lapply(DL, function(x) x[x %in% pkgs]) ## lens <- sapply(DL, length) ## ready <- names(DL[lens == 0L]) ## done <- character() # packages already installed ## n <- length(ready) ## submit <- function(node, pkg) ## parallel:::sendCall(cl[[node]], do_one, list(pkg), tag = pkg) ## for (i in 1:min(n, M)) submit(i, ready[i]) ## DL <- DL[!names(DL) %in% ready[1:min(n, M)]] ## av <- if(n < M) (n+1L):M else integer() # available workers ## while(length(done) < length(pkgs)) { ## d <- parallel:::recvOneResult(cl) ## av <- c(av, d$node) ## done <- c(done, d$tag) ## OK <- unlist(lapply(DL, function(x) all(x %in% done) )) ## if (!any(OK)) next ## p <- names(DL)[OK] ## m <- min(length(p), length(av)) # >= 1 ## for (i in 1:m) submit(av[i], p[i]) ## av <- av[-(1:m)] ## DL <- DL[!names(DL) %in% p[1:m]] ## } ################################################### ### code chunk number 17: parallel.Rnw:825-842 (eval = FALSE) ################################################### ## fn <- function(r) statistic(data, i[r, ], ...) ## RR <- sum(R) ## res <- if (ncpus > 1L && (have_mc || have_snow)) { ## if (have_mc) { ## parallel::mclapply(seq_len(RR), fn, mc.cores = ncpus) ## } else if (have_snow) { ## list(...) # evaluate any promises ## if (is.null(cl)) { ## cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) ## if(RNGkind()[1L] == "L'Ecuyer-CMRG") ## parallel::clusterSetRNGStream(cl) ## res <- parallel::parLapply(cl, seq_len(RR), fn) ## parallel::stopCluster(cl) ## res ## } else parallel::parLapply(cl, seq_len(RR), fn) ## } ## } else lapply(seq_len(RR), fn) ################################################### ### code chunk number 18: parallel.Rnw:845-846 (eval = FALSE) ################################################### ## list(...) # evaluate any promises