corAR1 {nlme} | R Documentation |
AR(1) Correlation Structure
Description
This function is a constructor for the corAR1
class,
representing an autocorrelation structure of order 1. Objects
created using this constructor must later be initialized using the
appropriate Initialize
method.
Usage
corAR1(value, form, fixed)
Arguments
value |
the value of the lag 1 autocorrelation, which must be between -1 and 1. Defaults to 0 (no autocorrelation). |
form |
a one sided formula of the form |
fixed |
an optional logical value indicating whether the
coefficients should be allowed to vary in the optimization, or kept
fixed at their initial value. Defaults to |
Value
an object of class corAR1
, representing an autocorrelation
structure of order 1.
Author(s)
José Pinheiro and Douglas Bates bates@stat.wisc.edu
References
Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer, esp. pp. 235, 397.
See Also
ACF.lme
,
corARMA
,
corClasses
,
Dim.corSpatial
,
Initialize.corStruct
,
summary.corStruct
Examples
## covariate is observation order and grouping factor is Mare
cs1 <- corAR1(0.2, form = ~ 1 | Mare)
# Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1. <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1.)
# Pinheiro and Bates, p. 240
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1())
# Pinheiro and Bates, pp. 255-258: use in gls
fm1Dial.gls <-
gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
Dialyzer)
fm2Dial.gls <- update(fm1Dial.gls,
weights = varPower(form = ~ pressure))
fm3Dial.gls <- update(fm2Dial.gls,
corr = corAR1(0.771, form = ~ 1 | Subject))
# Pinheiro and Bates use in nlme:
# from p. 240 needed on p. 396
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm5Ovar.lme <- update(fm1Ovar.lme,
correlation = corARMA(p = 1, q = 1))
# p. 396
fm1Ovar.nlme <- nlme(follicles~
A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time),
data=Ovary, fixed=A+B+C+w~1,
random=pdDiag(A+B+w~1),
start=c(fixef(fm5Ovar.lme), 1) )
# p. 397
fm2Ovar.nlme <- update(fm1Ovar.nlme,
correlation=corAR1(0.311) )