lvq3 {class} R Documentation

## Learning Vector Quantization 3

### Description

Moves examples in a codebook to better represent the training set.

### Usage

lvq3(x, cl, codebk, niter = 100*nrow(codebk\$x), alpha = 0.03,
win = 0.3, epsilon = 0.1)


### Arguments

 x a matrix or data frame of examples cl a vector or factor of classifications for the examples codebk a codebook niter number of iterations alpha constant for training win a tolerance for the closeness of the two nearest vectors. epsilon proportion of move for correct vectors

### Details

Selects niter examples at random with replacement, and adjusts the nearest two examples in the codebook for each.

### Value

A codebook, represented as a list with components x and cl giving the examples and classes.

### References

Kohonen, T. (1990) The self-organizing map. Proc. IEEE 78, 1464–1480.

Kohonen, T. (1995) Self-Organizing Maps. Springer, Berlin.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

lvqinit, lvq1, olvq1, lvq2, lvqtest

### Examples

train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
cd <- lvqinit(train, cl, 10)
lvqtest(cd, train)
cd0 <- olvq1(train, cl, cd)
lvqtest(cd0, train)
cd3 <- lvq3(train, cl, cd0)
lvqtest(cd3, train)


[Package class version 7.3-20 Index]