rsparsematrix {Matrix}R Documentation

Random Sparse Matrix


Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries, and rand.x = NULL generates random pattern matrices, i.e. inheriting from nsparseMatrix.


rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
              symmetric = FALSE,
              rand.x = function(n) signif(rnorm(n), 2), ...)


nrow, ncol

number of rows and columns, i.e., the matrix dimension (dim).


optional number in [0,1], the density is the proportion of non-zero entries among all matrix entries. If specified it determines the default for nnz, otherwise nnz needs to be specified.


number of non-zero entries, for a sparse matrix typically considerably smaller than nrow*ncol. Must be specified if density is not.


logical indicating if result should be a matrix of class symmetricMatrix. Note that in the symmetric case, nnz denotes the number of non zero entries of the upper (or lower) part of the matrix, including the diagonal.


NULL or the random number generator for the x slot, a function such that rand.x(n) generates a numeric vector of length n. Typical examples are rand.x = rnorm, or rand.x = runif; the default is nice for didactical purposes.


optionally further arguments passed to sparseMatrix(), notably repr.


The algorithm first samples “encoded” (i,j)s without replacement, via one dimensional indices, if not symmetric*ncol, nnz), then—if rand.x is not NULL—gets x <- rand.x(nnz) and calls sparseMatrix(i=i, j=j, x=x, ..). When rand.x=NULL, sparseMatrix(i=i, j=j, ..) will return a pattern matrix (i.e., inheriting from nsparseMatrix).


a sparseMatrix, say M of dimension (nrow, ncol), i.e., with dim(M) == c(nrow, ncol), if symmetric is not true, with nzM <- nnzero(M) fulfilling nzM <= nnz and typically, nzM == nnz.


Martin Maechler


set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M1 <- rsparsematrix(1000, 20,  nnz = 123,  rand.x = runif)

## a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"

## a random patter*n* aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))

## a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")

[Package Matrix version 1.4-1 Index]