Exponential {stats}R Documentation

The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

rate

vector of rates.

log, log.p

logical; if TRUE, probabilities/densities are given as logarithms.

lower.tail

logical; if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate \lambda has density

f(x) = \lambda {e}^{- \lambda x}

for x \ge 0.

Value

dexp gives the density, pexp is the cumulative distribution function, and qexp is the quantile function of the exponential distribution. rexp generates random deviates.

The length of the result is determined by n for rexp, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Note

The cumulative hazard H(t) = - \log(1 - F(t)) is -pexp(t, r, lower = FALSE, log = TRUE).

Source

dexp, pexp and qexp are all calculated from numerically stable versions of the definitions.

rexp uses ⁠Ahrens and Dieter (1972).

References

Ahrens JH, Dieter U (1972). “Computer Methods for Sampling from the Exponential and Normal Distributions.” Communications of the ACM, 15(10), 873–882. doi:10.1145/355604.361593.

Becker RA, Chambers JM, Wilks AR (1988). The New S Language. Chapman and Hall/CRC, London.

Johnson NL, Kotz S, Balakrishnan N (1994). Continuous Univariate Distributions, volume 1. Wiley, New York. ISBN 978-0-471-58495-7.
Chapter 19.

See Also

exp for the exponential function.

Distributions for other standard distributions, including dgamma for the gamma distribution and dweibull for the Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

## a fast way to generate *sorted*  U[0,1]  random numbers:
rsunif <- function(n) { n1 <- n+1
   cE <- cumsum(rexp(n1)); cE[seq_len(n)]/cE[n1] }
plot(rsunif(1000), ylim=0:1, pch=".")
abline(0,1/(1000+1), col=adjustcolor(1, 0.5))

[Package stats version 4.6.0 Index]