single.index {mgcv} | R Documentation |
Single index models with mgcv
Description
Single index models contain smooth terms with arguments that are linear combinations
of other covariates. e.g. s(X\alpha)
where \alpha
has to be estimated. For identifiability, assume \|\alpha\|=1
with positive first element. One simple way to fit such models is to use gam
to profile out the smooth model coefficients and smoothing parameters, leaving only the
\alpha
to be estimated by a general purpose optimizer.
Example code is provided below, which can be easily adapted to include multiple single index terms, parametric terms and further smooths. Note the initialization strategy. First estimate \alpha
without penalization to get starting values and then do the full fit. Otherwise it is easy to get trapped in a local optimum in which the smooth is linear. An alternative is to initialize using fixed penalization (via the sp
argument to gam
).
Author(s)
Simon N. Wood simon.wood@r-project.org
Examples
require(mgcv)
si <- function(theta,y,x,z,opt=TRUE,k=10,fx=FALSE) {
## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
## Suitable for calling from 'optim' to find optimal theta/alpha.
alpha <- c(1,theta) ## constrained alpha defined using free theta
kk <- sqrt(sum(alpha^2))
alpha <- alpha/kk ## so now ||alpha||=1
a <- x%*%alpha ## argument of smooth
b <- gam(y~s(a,fx=fx,k=k)+s(z),family=poisson,method="ML") ## fit model
if (opt) return(b$gcv.ubre) else {
b$alpha <- alpha ## add alpha
J <- outer(alpha,-theta/kk^2) ## compute Jacobian
for (j in 1:length(theta)) J[j+1,j] <- J[j+1,j] + 1/kk
b$J <- J ## dalpha_i/dtheta_j
return(b)
}
} ## si
## simulate some data from a single index model...
set.seed(1)
f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 *
(10 * x)^3 * (1 - x)^10
n <- 200;m <- 3
x <- matrix(runif(n*m),n,m) ## the covariates for the single index part
z <- runif(n) ## another covariate
alpha <- c(1,-1,.5); alpha <- alpha/sqrt(sum(alpha^2))
eta <- as.numeric(f2((x%*%alpha+.41)/1.4)+1+z^2*2)/4
mu <- exp(eta)
y <- rpois(n,mu) ## Poi response
## now fit to the simulated data...
th0 <- c(-.8,.4) ## close to truth for speed
## get initial theta, using no penalization...
f0 <- nlm(si,th0,y=y,x=x,z=z,fx=TRUE,k=5)
## now get theta/alpha with smoothing parameter selection...
f1 <- nlm(si,f0$estimate,y=y,x=x,z=z,hessian=TRUE,k=10)
theta.est <-f1$estimate
## Alternative using 'optim'...
th0 <- rep(0,m-1)
## get initial theta, using no penalization...
f0 <- optim(th0,si,y=y,x=x,z=z,fx=TRUE,k=5)
## now get theta/alpha with smoothing parameter selection...
f1 <- optim(f0$par,si,y=y,x=x,z=z,hessian=TRUE,k=10)
theta.est <-f1$par
## extract and examine fitted model...
b <- si(theta.est,y,x,z,opt=FALSE) ## extract best fit model
plot(b,pages=1)
b
b$alpha
## get sd for alpha...
Vt <- b$J%*%solve(f1$hessian,t(b$J))
diag(Vt)^.5