cnorm {mgcv}R Documentation

GAM censored normal family for log-normal AFT and Tobit models

Description

Family for use with gam or bam, implementing regression for censored normal data. If y is the response with mean \mu and standard deviation w^{-1/2}\exp(\theta), then w^{1/2}(y-\mu)\exp(-\theta) follows an N(0,1) distribution. That is

y \sim N(\mu,e^{2\theta}w^{-1}).

\theta is a single scalar for all observations. Observations may be left, interval or right censored or uncensored.

Useful for log-normal accelerated failure time (AFT) models, Tobit regression, and crudely rounded data, for example.

Usage

cnorm(theta=NULL,link="identity")

Arguments

theta

log standard deviation parameter. If supplied and positive then taken as a fixed value of standard deviation (not its log). If supplied and negative taken as negative of initial value for standard deviation (not its log).

link

The link function: "identity", "log" or "sqrt".

Details

If the family is used with a vector response, then it is assumed that there is no censoring, and a regular Gaussian regression results. If there is censoring then the response should be supplied as a two column matrix. The first column is always numeric. Entries in the second column are as follows.

Any mixture of censored and uncensored data is allowed, but be aware that data consisting only of right and/or left censored data contain very little information.

Value

An object of class extended.family.

Author(s)

Simon N. Wood simon.wood@r-project.org

References

Wood, S.N., N. Pya and B. Saefken (2016), Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111, 1548-1575 doi:10.1080/01621459.2016.1180986

Examples

library(mgcv)

#######################################################
## AFT model example for colon cancer survivial data...
#######################################################

library(survival) ## for data
col1 <- colon[colon$etype==1,] ## concentrate on single event
col1$differ <- as.factor(col1$differ)
col1$sex <- as.factor(col1$sex)

## set up the AFT response... 
logt <- cbind(log(col1$time),log(col1$time))
logt[col1$status==0,2] <- Inf ## right censoring
col1$logt <- -logt ## -ve conventional for AFT versus Cox PH comparison

## fit the model...
b <- gam(logt~s(age,by=sex)+sex+s(nodes)+perfor+rx+obstruct+adhere,
         family=cnorm(),data=col1)
plot(b,pages=1)	 
## ... compare this to ?cox.ph

################################
## A Tobit regression example...
################################

set.seed(3);n<-400
dat <- gamSim(1,n=n)
ys <- dat$y - 5 ## shift data down

## truncate at zero, and set up response indicating this has happened...
y <- cbind(ys,ys)
y[ys<0,2] <- -Inf
y[ys<0,1] <- 0
dat$yt <- y
b <- gam(yt~s(x0)+s(x1)+s(x2)+s(x3),family=cnorm,data=dat)
plot(b,pages=1)

##############################
## A model for rounded data...
##############################

dat <- gamSim(1,n=n)
y <- round(dat$y)
y <- cbind(y-.5,y+.5) ## set up to indicate interval censoring
dat$yi <- y
b <- gam(yi~s(x0)+s(x1)+s(x2)+s(x3),family=cnorm,data=dat)
plot(b,pages=1)


[Package mgcv version 1.9-1 Index]