nearPD {Matrix} | R Documentation |
Nearest Positive Definite Matrix
Description
Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.
Usage
nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)
Arguments
x |
numeric |
corr |
logical indicating if the matrix should be a correlation matrix. |
keepDiag |
logical, generalizing |
base.matrix |
logical indicating if the resulting |
do2eigen |
logical indicating if a
|
doSym |
logical indicating if |
doDykstra |
logical indicating if Dykstra's correction should be
used; true by default. If false, the algorithm is basically the
direct fixpoint iteration
|
only.values |
logical; if |
ensureSymmetry |
logical; by default, |
eig.tol |
defines relative positiveness of eigenvalues compared
to largest one, |
conv.tol |
convergence tolerance for Higham algorithm. |
posd.tol |
tolerance for enforcing positive definiteness (in the
final |
maxit |
maximum number of iterations allowed. |
conv.norm.type |
convergence norm type ( |
trace |
logical or integer specifying if convergence monitoring should be traced. |
Details
This implements the algorithm of Higham (2002), and then (if
do2eigen
is true) forces positive definiteness using code from
posdefify
. The algorithm of Knol and ten
Berge (1989) (not implemented here) is more general in that it
allows constraints to (1) fix some rows (and columns) of the matrix and
(2) force the smallest eigenvalue to have a certain value.
Note that setting corr = TRUE
just sets diag(.) <- 1
within the algorithm.
Higham (2002) uses Dykstra's correction, but the version by Jens
Oehlschlägel did not use it (accidentally),
and still gave reasonable results; this simplification, now only
used if doDykstra = FALSE
,
was active in nearPD()
up to Matrix version 0.999375-40.
Value
If only.values = TRUE
, a numeric vector of eigenvalues of the
approximating matrix;
Otherwise, as by default, an S3 object of class
"nearPD"
, basically a list with components
mat |
a matrix of class |
eigenvalues |
numeric vector of eigenvalues of |
corr |
logical, just the argument |
normF |
the Frobenius norm ( |
iterations |
number of iterations needed. |
converged |
logical indicating if iterations converged. |
Author(s)
Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.
References
Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097–1110.
Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika 54, 53–61.
Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA Journal of Numerical Analysis 22, 329–343.
See Also
A first version of this (with non-optional corr=TRUE
)
has been available as nearcor()
; and
more simple versions with a similar purpose
posdefify()
, both from package sfsmisc.
Examples
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A[c("mat", "normF")]
n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat
stopifnot(exprs = { #=--------------
all.equal(n.A$mat[1,2], 0.760689917)
all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16
})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08
if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"
}
round(nearPD(m, only.values=TRUE), 9)
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 / 30 !
ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example
## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805
### 3) a real data example from a 'systemfit' model (3 eq.):
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
dim(symW) # 24 x 24
class(symW)# "dsCMatrix": sparse symmetric
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
tail(EV)# all 6 are negative
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {
plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
for(side in 1:2) sfsmisc::eaxis(side)
} else
plot(pmax(1e-3,EV), EV2, type="o", log="xy")
abline(0, 1, col="red3", lty=2)