chol-methods {Matrix}R Documentation

Compute the Cholesky Factor of a Matrix

Description

Computes the upper triangular Cholesky factor of an n \times n real, symmetric, positive semidefinite matrix A, optionally after pivoting. That is the factor L' in

P_{1} A P_{1}' = L L'

or (equivalently)

A = P_{1}' L L' P_{1}

where P_{1} is a permutation matrix.

Methods for denseMatrix are built on LAPACK routines dpstrf, dpotrf, and dpptrf, The latter two do not permute rows or columns, so that P_{1} is an identity matrix.

Methods for sparseMatrix are built on CHOLMOD routines cholmod_analyze and cholmod_factorize_p.

Usage

chol(x, ...)
## S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)
## S4 method for signature 'dspMatrix'
chol(x, ...)
## S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)
## S4 method for signature 'ddiMatrix'
chol(x, ...)
## S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)
## S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)

Arguments

x

a finite, symmetric, positive semidefinite matrix or Matrix to be factorized. If x is square but not symmetric, then it will be treated as symmetric; see uplo. Methods for dense x require positive definiteness when pivot = FALSE. Methods for sparse (but not diagonal) x require positive definiteness unconditionally.

pivot

a logical indicating if the rows and columns of x should be pivoted. Methods for sparse x employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability.

tol

a finite numeric tolerance, used only if pivot = TRUE. The factorization algorithm stops if the pivot is less than or equal to tol. Negative tol is equivalent to nrow(x) * .Machine$double.eps * max(diag(x)).

uplo

a string, either "U" or "L", indicating which triangle of x should be used to compute the factorization. The default is "U", even for lower triangular x, to be consistent with chol from base.

...

further arguments passed to or from methods.

Details

For x inheriting from diagonalMatrix, the diagonal result is computed directly and without pivoting, i.e., bypassing CHOLMOD.

For all other x, chol(x, pivot = value) calls Cholesky(x, perm = value, ...) under the hood. If you must know the permutation P_{1} in addition to the Cholesky factor L', then call Cholesky directly, as the result of chol(x, pivot = TRUE) specifies L' but not P_{1}.

Value

A matrix, triangularMatrix, or diagonalMatrix representing the upper triangular Cholesky factor L'. The result is a traditional matrix if x is a traditional matrix, dense if x is dense, and sparse if x is sparse.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995

Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905. doi:10.1145/1024074.1024081

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944

See Also

The default method from base, chol, called for traditional matrices x.

Generic function Cholesky, for more flexibility notably when computing the Cholesky factorization and not only the factor L'.

Examples


showMethods("chol", inherited = FALSE)
set.seed(0)

## ---- Dense ----------------------------------------------------------

## chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")

## Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")

## .... Positive definite ..............................................

(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))

## In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
## even if in general 'chol' does not say ...

stopifnot(exprs = {
   all.equal(  A1           , as(crossprod(R1.nopivot), "dsyMatrix"))
   all.equal(t(A1[2:1, 2:1]), as(crossprod(R1        ), "dsyMatrix"))
   identical(Cholesky(A1)@perm, 2:1) # because 5 > 1
})

## .... Positive semidefinite but not positive definite ................

(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...

stopifnot(exprs = {
   all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
   identical(Cholesky(A2)@perm, 2:1) # because 4 > 1
})

## .... Not positive semidefinite ......................................

(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...

## _Not_ equal: see details and examples in help("Cholesky")
all.equal(t(A3[2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))

## ---- Sparse ---------------------------------------------------------

## chol(x, pivot = value) wrapping
## Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
selectMethod("chol", "dsCMatrix")

## Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")

(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(A4))
(R4 <- chol(A4, pivot = TRUE))

det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
    identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
    identical(R4, expand1(ch.A4, "L."))
    all.equal(A4, crossprod(R4.nopivot))
    all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
    all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
    all.equal(diag(R4), sqrt(diag(ch.A4)))
    all.equal(sqrt(det4), det(R4.nopivot))
    all.equal(sqrt(det4), det(R4))
    all.equal(det4, det(ch.A4.nopivot, sqrt = FALSE))
    all.equal(det4, det(ch.A4, sqrt = FALSE))
    all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
    all.equal(x4, solve(ch.A4.nopivot, b4))
    all.equal(x4, solve(ch.A4, b4))
})

[Package Matrix version 1.7-1 Index]