KhatriRao {Matrix}R Documentation

Khatri-Rao Matrix Product


Computes Khatri-Rao products for any kind of matrices.

The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably, it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).


KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)



matrices of with the same number of columns.


the (name of the) function to be used for the column-wise Kronecker products, see kronecker, defaulting to the usual multiplication.


logical specifying if Y should be coerced and treated as sparseMatrix. Set this to FALSE, e.g., to distinguish structural zeros from zero entries.


logical indicating if the result should inherit dimnames from X and Y in a simple way.


a "CsparseMatrix", say R, the Khatri-Rao product of X (n \times k) and Y (m \times k), is of dimension (n\cdot m) \times k, where the j-th column, R[,j] is the kronecker product kronecker(X[,j], Y[,j]).


The current implementation is efficient for large sparse matrices.


Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.


Khatri, C. G., and Rao, C. Radhakrishna (1968) Solutions to Some Functional Equations and Their Applications to Characterization of Probability Distributions. Sankhya: Indian J. Statistics, Series A 30, 167–180.

Liu, Shuangzhe, and G├Átz Trenkler (2008) Hadamard, Khatri-Rao, Kronecker and Other Matrix Products. International J. Information and Systems Sciences 4, 160–177.

Bader, Brett W, and Tamara G Kolda (2008) Efficient MATLAB Computations with Sparse and Factored Tensors. SIAM J. Scientific Computing 30, 205–231.

See Also



## Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))

nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)

stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
## border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
          all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))

d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
	  all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
	  all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
	  all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
	  identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))

## a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
           Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5  <- KhatriRao( d, m01))
K5d  <- KhatriRao( d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Ud <- KhatriRao(DU, m01, sparseY=FALSE)
(K6  <- KhatriRao(diag(3),     t(m01)))
K6D  <- KhatriRao(Diagonal(3), t(m01))
K6d  <- KhatriRao(diag(3),     t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)
stopifnot(exprs = {
    all(K5 == K5d)
    identical(cbind(c(7L, 10L), c(3L, 4L)),
              which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
    identical(K5d, K5Dd)
    identical(K6, K6D)
    all(K6 == K6d)
    identical(cbind(3:4, 1L),
              which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
    identical(K6d, K6Dd)

[Package Matrix version 1.5-1 Index]