rWishart {stats} | R Documentation |
Generate n
random matrices, distributed according to the
Wishart distribution with parameters Sigma
and df
,
W_p(\Sigma, m),\ m=\code{df},\ \Sigma=\code{Sigma}
.
rWishart(n, df, Sigma)
n |
integer sample size. |
df |
numeric parameter, “degrees of freedom”. |
Sigma |
positive definite ( |
If X_1,\dots, X_m, \ X_i\in\mathbf{R}^p
is
a sample of m
independent multivariate Gaussians with mean (vector) 0, and
covariance matrix \Sigma
, the distribution of
M = X'X
is W_p(\Sigma, m)
.
Consequently, the expectation of M
is
E[M] = m\times\Sigma.
Further, if Sigma
is scalar (p = 1
), the Wishart
distribution is a scaled chi-squared (\chi^2
)
distribution with df
degrees of freedom,
W_1(\sigma^2, m) = \sigma^2 \chi^2_m
.
The component wise variance is
\mathrm{Var}(M_{ij}) = m(\Sigma_{ij}^2 + \Sigma_{ii} \Sigma_{jj}).
a numeric array
, say R
, of dimension
p \times p \times n
, where each R[,,i]
is a
positive definite matrix, a realization of the Wishart distribution
W_p(\Sigma, m),\ \ m=\code{df},\ \Sigma=\code{Sigma}
.
Douglas Bates
Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.
## Artificial
S <- toeplitz((10:1)/10)
set.seed(11)
R <- rWishart(1000, 20, S)
dim(R) # 10 10 1000
mR <- apply(R, 1:2, mean) # ~= E[ Wish(S, 20) ] = 20 * S
stopifnot(all.equal(mR, 20*S, tolerance = .009))
## See Details, the variance is
Va <- 20*(S^2 + tcrossprod(diag(S)))
vR <- apply(R, 1:2, var)
stopifnot(all.equal(vR, Va, tolerance = 1/16))