Details on R's smooth.spline()

Martin Maechler

June 8, 2022

Smoothing splines penalized regression

Given observations (our data), $\left(x_{i}, Y_{i}\right)(i=1, \ldots, n)$, a quite general model for such data is

$$
\begin{equation*}
Y_{i}=m\left(x_{i}\right)+\varepsilon_{i}, \tag{1}
\end{equation*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. with $\mathbb{E}\left[\varepsilon_{i}\right]=0$ and $m: \mathbb{R} \rightarrow \mathbb{R}$ is an "arbitrary" function. The function $m(\cdot)$ is called the nonparametric regression function and it satisfies $m(x)=\mathbb{E}[Y \mid x]$ and should fulfill some kind of smoothness conditions.

One fruitful approach to estimate such a "smooth" function $m()$ is via so called "smoothing splines" (or their generalization, "penalized regression splines").

Penalized sum of squares

Consider the following problem: among all functions m with continuous second derivative, find the one which minimizes the penalized residual sum of squares

$$
\begin{equation*}
L_{\lambda}(m):=\sum_{i=1}^{n}\left(Y_{i}-m\left(x_{i}\right)\right)^{2}+\lambda \int m^{\prime \prime}(t)^{2} d t, \tag{2}
\end{equation*}
$$

where $\lambda>0$ is a smoothing parameter. The first term measures closeness to the data and the second term penalizes curvature ("roughness") of the function. The two extreme cases are:

- $\lambda=0$: As any function m interpolating the data gives $L_{0}(m)=0$, hence (2) does require $\lambda>0$. In the limit, $\lambda \rightarrow 0$, however, $\hat{m}_{\lambda} \rightarrow$ the well defined interpolating natural cubic spline). ${ }^{1}$
- $\lambda=\infty$: any linear function fulfills $m^{\prime \prime}(x) \equiv 0$, and the minimizer of (2) is the least squares regression line.

The smoothing spline solution

Remarkably, the minimizer of (2) is finite-dimensional, although the criterion to be minimized is over the infinite-dimensional Sobolev space of functions for which the integral $\int m^{\prime \prime 2}$ is finite.

Let us assume for now that the data has x values sorted and unique,

$$
x_{1}<x_{2}<\ldots<x_{n}
$$

[^0]The solution $\hat{m}_{\lambda}(\cdot)$ (i.e., the unique minimizer of (2)) is a natural cubic spline with knots $t_{1}, t_{2}, \ldots, t_{n_{k}}$ which are the sorted unique values of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. That is, \hat{m} is a piecewise cubic polynomial in each interval $\left[t_{j}, t_{j+1}\right)$ such that $\hat{m}_{\lambda}^{(k)}(k=0,1,2)$ is continuous everywhere and has "natural" boundary conditions $\hat{m}^{\prime \prime}\left(t_{1}\right)=\hat{m}^{\prime \prime}\left(t_{n_{k}}\right)=0$. For the $n_{k}-1$ cubic polynomials, we'd need $\left(n_{k}-1\right) \cdot 4$ coefficients. Since there are $\left(n_{k}-2\right) \cdot 3$ continuity conditions (at every "inner knot", $\left.j=2, \ldots, n_{k}-1\right)$ plus the 2 "natural" conditions, this leaves $4\left(n_{k}-1\right)-\left[3\left(n_{k}-2\right)+2\right]=n_{k}$ free parameters (the β_{j} 's below). Knowing that the solution is a cubic spline, it can be obtained by linear algebra. We represent

$$
\begin{equation*}
m_{\lambda}(x)=\sum_{j=1}^{n_{k}} \beta_{j} B_{j}(x) \tag{3}
\end{equation*}
$$

where the $B_{j}(\cdot)$'s are basis functions for natural splines. The unknown coefficients can then be estimated from least squares in linear regression under side constraints. The criterion in (2) for \hat{m}_{λ} as in (3) then becomes

$$
\tilde{L}_{\lambda}(\boldsymbol{\beta}):=L_{\lambda}(m)=\|\mathbf{Y}-X \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\boldsymbol{\top}} \Omega \boldsymbol{\beta}
$$

respectively, when not all weights w_{i} are 1 ,

$$
\begin{equation*}
\tilde{L}_{\lambda}(\boldsymbol{\beta})=(\mathbf{Y}-X \boldsymbol{\beta})^{\top} W(\mathbf{Y}-X \boldsymbol{\beta})+\lambda \boldsymbol{\beta}^{\boldsymbol{\top}} \Omega \boldsymbol{\beta} \tag{4}
\end{equation*}
$$

where the design matrix X has j th column $\left(B_{j}\left(x_{1}\right), \ldots, B_{j}\left(x_{n}\right)\right)^{\top}$, i.e.,

$$
\begin{aligned}
X_{i j} & =B_{j}\left(x_{i}\right) \text { for } i=1, \ldots, n \\
W & =\operatorname{diag}(\mathrm{w}), \text { i.e., } W_{i j}=\mathbf{1}_{[i=j]} \cdot w_{i}, \quad \text { and } \\
\Omega_{j k} & =\int B_{j}^{\prime \prime}(t) B_{k}^{\prime \prime}(t) d t, \text { for } j, k=1, \ldots, n_{k}
\end{aligned}
$$

The solution, $\widehat{\boldsymbol{\beta}}=\arg \min _{\beta} \tilde{L}_{\lambda}(\boldsymbol{\beta})$ can then be derived by setting the gradient $\frac{\partial}{\partial \boldsymbol{\beta}} \tilde{L}_{\lambda}(\boldsymbol{\beta})$ to zero: $\mathbf{0}=-2\left(X^{\top} W \mathbf{Y}\right)^{\top} \boldsymbol{\beta}+2\left(X^{\top} W X+\lambda \Omega\right) \boldsymbol{\beta}$, and hence

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(X^{\top} W X+\lambda \Omega\right)^{-1} X^{\top} W \mathbf{Y} . \tag{5}
\end{equation*}
$$

When B-splines are used as basis function B_{j}, both X and Ω are banded matrices, i.e., zero apart from a "band", i.e., few central diagonals. As,

$$
\hat{m}_{\lambda}(x)=\sum_{j=1}^{n_{k}} \hat{\beta}_{j} B_{j}(x),
$$

the fitted values are $\hat{\mathbf{Y}}=X \widehat{\boldsymbol{\beta}}$, where $\hat{Y}_{i}=\hat{m}_{\lambda}\left(x_{i}\right)(i=1, \ldots, n)$, and

$$
\begin{equation*}
\hat{\mathbf{Y}}=X \widehat{\boldsymbol{\beta}}=\mathcal{S}_{\lambda} \mathbf{Y}, \quad \text { where } \mathcal{S}_{\lambda}=X\left(X^{\boldsymbol{\top}} W X+\lambda \Omega\right)^{-1} X^{\top} W \tag{6}
\end{equation*}
$$

The hat matrix $\mathcal{S}_{\lambda}=\mathcal{S}_{\lambda}{ }^{\top}$ is symmetric which implies elegant mathematical properties (real-valued eigen-decomposition).

Notes

1.
2.

[^0]: ${ }^{1}$ We will see that taking the limit $\lambda \rightarrow 0$ is problematic directly numerically and in practice you should rather use spline() for spline interpolation instead of smoothing.

