Density Estimation:
New Spline Approaches and a Partial Review

Martin B. Machler
Seminar fiir Statistik, ETH Zentrum
CH-8092 Ziirich, Switzerland

e-mail: maechler@stat.math.ethz.ch

COMPSTAT, August 1996 (February 27, 2002)

$Id: P.tex,v 1.15 2002/02/27 17:49:20 maechler Exp

Abstract

Apart from kernel estimators, there have been quite a few different approaches of
“generalized splines” for density estimation. In the present paper, Mazimum Penalized
Likelihood (MPL) approaches are reviewed. In conclusion, penalizing the log density
seems most promising.

In my “wp” approach for semi-parametric density estimation, a novel roughness
penalty is introduced. It penalizes a relative change of curvature which allows consid-
ering modes and inflection points. For a given number of modes, I’ = (log f)’ can be
represented as () = £(x —wq) -+ - (T — Wy, ) - exp hy(x), a semi-parametric term with
parameters w; (model order m) and nonparametric part h;(-). The MPL problem is
equivalently solved via a boundary value differential equation.

Key words: Nonparametric, Semi-Parametric, Density estimation; Smoothing; Rough-
ness penalty; Maximum penalized likelihood; Inflection point; Boundary Value Prob-
lem, Differential Equation, Unimodality, Multimodality.

1 Introduction

The nonparametric estimation of distribution or density functions is well-established and
a variety of methods available, with kernel estimators being the ones most researched, see
(Silverman, 1986; Izenman, 1991; Wand & Jones, 1995) for some review.

Here, I will try to shed light on different approaches of density estimation. Whereas
in nonparametric regression, spline functions have been investigated and used extensively,
this is less the case for density estimation. Mazimum Penalized Likelihood (MPL) estima-
tion has been among the first methods ((Good & Gaskins, 1971)) and still seems appealing
when “proper” smoothness is desired ((Méchler, 1995b) and below). The histosplines of
Boneva, Kendall & Stefanov (1971) were another early approach of spline density estima-
tion. As for the histogram however, the somewhat arbitrary choice of the knots has made
the histospline less appealing.

In the present paper, I'll review different spline-like approaches in section 2, present
my own MPL approach in section 3, and in section 4 shortly look at some new approaches
of semiparametric density modeling.



2 Maximum Penalized Likelihood (MPL)

Here, we will mainly consider “generalized splines”, i.e., approaches within the framework
of “mazximum penalized likelihood estimation”, MPLE (cf. (Thompson & Tapia, 1990, ch. 3—
5) which “contains” (Tapia & Thompson, 1978)), considering different roughness penalties.

Given independent observations zi1,z2,...,z, of X ~ F, with “smooth” density
f(z) = LF(x) on [a,b] (e, Pla < X < b = 1 and therefore, z; € [a,b] Vi), —00 <
a < b < +o0, our goal is to estimate the true f, or F. Sometimes, we assume that f is

(twice continuously) differentiable, and define

l(x) := logf(x) log-density,
d /
and I'(x) = al(x) = ]}((;E)) — (score function). (1)

To estimate f (or F' or [, equivalently), we Maximize the Penalized Likelihood criterion,

n

max ;logf(xi)—@(f), or  max i:1l(xz-)—k<b(l)v (2)

where F and L are appropriate function classes, f : [a,b] — R4, i.e., f(z) > 0 for all z,
or I : [a,b] — R, respectively, with the property

/bf(t) dt — /bel(t) dt =1, (3)

S 1(z;) is the log likelihood, ® : £ — Ry or ®(f) = ®(log f) = ®(I) the roughness
penalty, and A > 0 the smoothing parameter.

Often, the null space of ®, &, := {l | ®(I) = 0}, is finite dimensional. This is
especially attractive, since in this situation, the limiting case, A — oo giving the “most
smooth” solution, is equivalent to classical Maximum Likelihood estimation in @, see
below. Silverman (1982) (cf. (Silverman, 1986, ch. 5.4)), Cox & O’Sullivan (1990) and Gu
& Qiu (1993) develop a nice theory, deriving existence and uniqueness results for a wide
class of MPL problems, including speed of convergence and consistency in various norms.

2.1 Penalizing /f — Good-Gaskins etc

Good & Gaskins (1971) used the roughness penalty ®;(f) = f: f"2(t)/f(t) dt, the Fisher
information which can be written as ®(f) = 4 f; u?(t) dt where u := \/f. A second

proposal was to generalize the problem to penalties ®o(f) = a fab u(t) dt + 3 fab u?(t) dt.

De Montricher, Tapia & Thompson (1975) derive exact existence results for the pro-
posed estimators of Good & Gaskins (1971), and were able to characterize the first one
as “exponential spline”, see also Thompson & Tapia (1990, ch. 4). However, the re-
sulting curve has “kinks”, since the derivative f’ is discontinuous at every data point
((Silverman, 1986, §5.4.2)). Whereas the minimizer for the ® problem will be smoother,
it is delicate to be computed, because u(z) > 0 is necessary ((De Montricher et al., 1975)).

The “Sobolev” s-norm penalty ®3(f) = f: f(s)Q(t) dt (under f9)(a) = f9(b) = 0
for j = 0,1,...,s — 1) is considered in De Montricher et al. (1975), where the authors
prove existence and uniqueness, and (for s = 1) provide an approximating solution, using
discretization.

All these approaches have the drawback that the “most smooth” solution is problem-
atic, since the space {f; ®(f) = 0; f > 0} is not well characterized or even degenerate.



2.2 Penalizing log f

Silverman (1982) (see (Silverman, 1986, §5.4.4)) introduces the penalty ®(1) = fab "2 (t) dt
and proves consistency in three different norms. Silverman also proves that the solution
of the constrained MPL problem (2, 3) is equivalent to solving the unconstrained problem

n b
max l(x;)) = A®(l) —n / e!® dt, (4)
leL “ u

for a very general class of penalties. The same is seen below for the “Wp” penalty.

The choice of penalty here leads to the attractive feature that the smoothest limits (A —
o0) are in @ = {I" = 0} = {l quadratic} which are exactly the Gaussian distributions,
and A — oo corresponds to normal ML estimation. This feature is analogous to the cubic
smoothing splines in regression which lead to least squares linear regression for A — oo,
and is a property which the vastly used kernel density estimates do not share (a regular
“smoothest limit” does not exist there!).

A related — from several standpoints very appealing — approach is to estimate (and
penalize) the score function ¢» = —l' = —f’/f (which is a straight line for a Gaussian).
Cox (1985) introduced and solved a penalized “mean square error” problem for the score
function, and Ng (1994) provided further properties and computational algorithms.

The logspline approach of Kooperberg & Stone (1991) and (1992) is an attractive
practical approach of using cubic splines to model the log density. However, it is not an
MPLE, but rather a ML estimation in carefully chosen space of “regression splines” (splines
with knots determined by the data).

3 Penalizing Modes: ‘Wp’

Very early on, the number of modes (local maxima) of the unknown density has been
considered important (e.g., (Cox, 1966; Silverman, 1981)) and even the number of “bumps”
(concave regions between inflection points) has been tried to be kept small ((Good &
Gaskins, 1971), (1980)).

Modes are often the important attribute of a distribution, since they (informally) lead
to conclusions about the underlying population. Tests of unimodality (vs. multimodality)
have been developed (see above, (Hartigan & Hartigan, 1985), and (Minnotte & Scott,
1993), for a nice graphical tool). See Méchler (1995a) for more examples in the literature.

An appealing notion of smoothness is considering local extrema and/or inflection
points of a curve. For nonparametric regression, I limited the number of inflection points
((Méchler, 1993),(19950)), as a special case of a very general approach of MPLE. Here,
for density estimation, I apply this approach to finding the “best” density function with
a given number of local extrema, or almost equivalently, number of modes'. See Klonias
(1984), Roussas (1991), and Cuevas & Gonzalez-Mantiega (1991) for approaches with a
similar aim.

Here, our goal is to estimate the density f such that it has (at most) m* modes, i.e.
typically, m = (2m* — 1)4 local extrema. For differentiable functions f, w is a local
extremum if and only if f’(w) = 0, or equivalently, I’(w) = 0. Denote the m local extrema

Y “mode” is used here for maxima x where f’(z) = 0. For differentiable densities f, this only excludes
maxima at the end of the support interval, e.g., x = 0 for the exponential distribution (which has zero
modes in our definition).



of f by wy,ws,...,wy,. From basic calculus we know that I’ factors into
U'(z) = pw(®)(=1) M@ where (5)
pw(z) = (z—wi)(r—wy)- - (z—wn), (6)
and h; is continuously differentiable, but otherwise “arbitrary” (in the vast class of func-
tions with penalty f; hf?> dt < 0o). The sign (—1)7 in (5), determined by j = 0 or 1, is

assumed to be given (and will be negative, j = 1, in most situations).
Note that from (5),

m

(logl/(2))" = (1" /V)(x) = hi(x) + Y

j=1

1

)
a:—wj

(7)

such that h) can be regarded as “I”/l’ minus the poles”. By specifying a penalty in terms
of hj, we have a semi-parametric model approach, the parameters being the modes and
antimodes wj, j = 1,...,m, and nonparametric component h;.

Here, we estimate f (and h;), by maximizing the MPL (2) where ®(1) = f; h?(t)dt, and
L is the set of all functions [ : [a,b] — R fulfilling (5), (6) in addition to the normalizing
condition (3), f; e!® dt = 1. L is therefore the product of Q™ C R™ (w € Q™) and the
space of functions hy.y. In effect, we will minimize over the space of h; for fized w, and
“globally” over all mode locations w.

In the following, the situation for fized w is considered. The penalty f; h;z(t) dt
contains the derivative h; which can be expressed as

/

K (
L(

hy(x) =

2 - i - _1wj + 1(2)l' () 3(1 + 7)), (8)
j=1

K

by using (7) and &% /kg, = 1"/l = 31'(1 + 12)~! where rp, is the curvature of L(x) =
[PU(t)dt. Arguments in Miéchler (1989) and (1993) suggest that a natural roughness
penalty for a curve y = g(x) is the “relative change of curvature” r'/k where k(z) =

q"(z) (1 +g’2(x))_3/2 is the curvature at x. Eq. (8) implies that h; approximates the
relative change of curvature “apart from the poles” of L.

Using a Lagrange parameter « for the side condition (3) and making use of Dirac’s ¢
distribution notation, the problem (2) is equivalent to the variational problem

min /b {a et — z": O(t — i) l(x) + )th(t)} dt. 9)

leL
c i=1

3.1 Differential Equation

Now we apply Theorem 1 of Machler (1995b) (and (1989),(1993)) which gives the Euler-
Lagrange ordinary differential equation (=: o.d.e.) and boundary conditions for a vast
class of variational problems in a convenient form:

Theorem 1 (Méchler)
The minimizer f of TP(S(£(1),8) + {(d/d)FF(t, f¥)(1))}?) dt fulfills the o.d.e.

Jo (d)sz — 1(_1)’/”““5 VIt)  for allt € [a, b] (10)
g dt 2 f » Y

where Fy(t, g) = %F(t,g), S¢l0(z) .= (,%S(f,x) it and S;UtY(z) = Ir S¢ll(t) dt

for 0 < j <wv. The boundary conditions of this very general problem are



(A) Se) = 5;P(0) = --- = 5;(b) =0, and
(B) (4)iF(t)=0 fort €{a,b} and j€{k,...,2k—1}.

For our problem (9), v = k = 1, and AS(l,z) = ae! — 3" | §(z — ;)l(2;). There-
fore )\Sf[l] (x) = [F )\%S(Z,t) dt=af’ el®at — 3", [w;<a] = F'(x) — nky,(x), where
F,(z) is the empirical distribution function defined as Fy,(z) = n™' Y7 11, <, Fur-
ther, F(x,l') = hy(z) = log |I'/pw(z)|. The boundary conditions (A) are 0 = \S;[H(b) =
aF (t)—nF,(b) which entails @ = n for the Lagrange parameter because F'(b) = F,(b) = 1.
The conditions (B) are 0 = d/dz F = hj(z) at the boundary # = a or b. The o.d.e. is
Fy - (@fde’F = 1/2(-1%5V(z), and B, = 2F(g.2) = Zlogla/pue)l| = 1/1.

9=

(d/dx)?F = by and S;) = n(F — F,) from above. Therefore, the characterizing Euler-
Lagrange o.d.e. for problem (2) is

W) = N (Bw) - Fla) (1)
with boundary conditions
F(a)=0, F(b)=1, and hj(a) = hj(b) =0, (12)

where F, is the empirical distribution function. This 4** order o.d.e. for F' can be rewritten

as 15 order with four unknown functions (F,l, by, b)), F' = exp(l), I = (=1)/pw exp(hy),
h; = {h;}', and h] obeys (11). Note that the data only enter through F),, and the modes
(and antimodes) are specified in pw = (z —wy) - -+ (. — wiy).

This boundary value o.d.e. is solved numerically to obtain the MPLE for fixed w =
(w1, wa, ..., wy)". Thave used a collocation method o.d.e. solver, “COLNEW” from netlib,
see (Bader & Ascher, 1987), and, (Ascher, Mattheij & Russell, 1988). Numerical boundary
value o.d.e. solvers require an initial “crude” approximate solution to be provided. The
“log-splines” of Kooperberg & Stone (1992) have been convenient “pre-smoothers” for
this. Experience indicates that the locations w; of modes and antimodes are quite well
determined by such a pre-smoother initially.

For the final estimate, the minimizer of (2), the penalized log-likelihood of the above
o.d.e.-solution must be minimized over w. This is relatively easy, at least as long as the
number m of local extrema is not too large for the problem.

Example. The “Old Faithful geyser eruption lengths” are at least bimodal, and
have been used before (e.g., (Silverman, 1986; Hérdle, 1990)). Here I use the data set
dat.geyser$x as supplied in the Statlib (ftp 1ib.stat.cmu.edu) submission S/haerdle.
These are n = 272 observations (at 126 values) of consecutive eruption lengths in minutes
(rounded to seconds precision). Figure 1 shows the data and a Gaussian kernel density
estimate with window width h = h* = .3348 which is default (3.31) from Silverman (1986)
and one with smaller bandwidth A = .1. The first kernel density looks perfect showing two
modes and no unnecessary bumps. A closer look (e.g., plot F'(x) and F,,(x) vs. ) however
reveals that the bandwidth chosen is too large (since the asymptotic for h* is geared
towards unimodal densities, (Silverman, 1986, 3.4.2, p.45ff)). The more appropriately
fitting kernel (h = .1) is wiggly (see also Fig. 2).
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Figure 1: Old Faithful Geyser eruption lengths, n = 272; binned data and two (Gaussian)
kernel density estimates (x10) with h = h* = .3348 and h = .1 (dotted).
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Figure 2: Estimated densities f(z) according to the new approach, (5), (6), (2), with two
modes (m = 3), for A = 272,27% and [a,b] = R. Both “Wp” curves are much smoother
than the Gaussian kernel estimate which even fits (somewhat) less to the data than the
smoother “Wp” curve (A = 1/4).

Figure 2 shows f (r) for A = 272,274 and the Gaussian kernel from above. The
estimates of our new approach are quite better (quantified in (Mé&chler, 1995a), where
a more extensive comparison is made). They fit better to the data while being more
smooth than traditional estimates (Gaussian kernels, parametric mixture of two Gaussian,
logsplines) with comparable amount of fit.

While theoretical results are not yet available, current experience shows that the new
class of density estimates provides very smooth curves while adapting to the data very
well.



3.2 Properties of Solution

By this new approach, we get the distribution function with many derivatives, simultane-
ously, since F,f, ' = score of f, l” are continuously differentiable. f” and I’ are still
“cad-lag” (right-continuous, limit from left) being continuous functions of A}’ and therefore
of the empirical distribution F,.

The prescribed number of modes is the main smoothing parameter. The (extra)
smoothing parameter A is of less importance, since for the “roughest” situation, A — 0 f
is still “smooth”, whereas for nonparametric estimators, f would converge to the sum of
o-spikes at x;.

“Most smooth” solution A — oo.  The MPL criterion is solved in the limit A — oo
by making the penalty [ hj*(t) dt equal to zero, and hence, hj = 0. In other words,
the MPL method for A — oo consists of doing ordinary mazimum likelihood within the
class of functions satisfying hj(z) = 0 Vz € [a,b]. Therefore, iy is constant, say hg, and
I'(z) = cpw(z) (where the constant ¢ = (—1)7¢h0). Consequently, [ is a polynomial of
degree m 4+ 1. We consider the following situations:

e “Zeromodal” case: m* = m = 0: We have I'(z) = +c and therefore f(x) oc e*¢. For
[a, b] = [0, o0], this is the well-known exponential distribution.

e Unimodal case: m* = m = 1. If for the sign, we exclude the rare case j = 0, we
have I'(z) = —c(x — w1), and f(x) o exp(—c(z —w1)?/2), i.e, for [a,b] = R, f is the
normal density with mean w; (and ML estimate w; = Z,). Hence, the smoothest
limit consists of parametrically estimating a normal density.

e General case: For simplicity, let’s assume j = 1, i.e., minus sign in (5). We have
U'(z) = —c(x — wi)(x — we) -+ (¥ — wp,), and therefore I(z) = Iy — cSw(x), where
Sw(x) = [§ pw(t) dt = #ﬂxm+1 - %(Z w;)x™ + ﬁ(sz wiwy)z™t — L+
(=)™ I wj-z. How is lo determined? Let I(c, w) := f; exp(—cSw(t))dt. Then, 1 =
[ f(z)dx = e I(c,w), whence Iy = —logI(c,w). Now, maximizing the likelihood
means n

min  nlogl(c,w) +c Z Sw (i) (13)
v i=1

This ML minimization problem is quite simpler than the general MPL problem (2).

Extension: Bumps and Dips. As in Good & Gaskins 7
(1980), one may want to consider bumps and dips (maximal
concave and convex regions) of the density. As there is at most
one mode in a bump interval, we can effectively control the
local extrema via inflection points.

With this approach, we can require even more “qualitative smoothness”, and the MPL
criterion approximately penalizes relative change of curvature of the log density [. By
factoring " (x) instead of I'(x), we get a very similar o.d.e. boundary value problem with
an additional boundary condition ensuring f;t Cf(t)dt = L3 @y, de., an exact first
moment property. The generalization of considering {(*) for v > 1 is straightforward.

For v > 2, the zeros of f*) and [*) no longer coincide which is a conceptual problem.

For v =2, eg., I" = (f"f — f?)f2, and we have at least f” <0 = 1" <0.




4 Semiparametric log-density modeling

The logarithm of the Gaussian density is quadratic, the simplest non-trivial concave para-
metric curve, and the exponential family being the most predominant class of densities, it
seems natural to look at flexible modeling of the log density rather than the density (or
its square root).

Semiparametric modeling of the log density has been achieved independently by
Loader (1993) and Hjort & Jones (1994) by so-called “local likelihood” approaches (mod-
ifying the likelihood by a localizing kernel). Both models have several nice properties and
lie flexibly between parametric and nonparametric density estimation.

Semi-Parametric Mixture Models. With our “Wp” approach, a different kind
semi-parametric density models can be envisaged. For instance, a mixture of two,

f(z) =pfi(z) + (1 —p)fo(2), (14)

where f; and fy are modeled to be “unibumpal”, i.e., with only one “bump”, and will be
estimated by MPLE (v = 2, m = 0) as above. In the limit, for A; 2 — oo, this approach
comprises traditional parametric (Gaussian) mixture models.
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