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Abstract

Undirected graphs are often used to describe high dimeakdisatributions. Under sparsity
conditions, the graph can be estimated uginngenalization methods. We propose and study the
following method. We combine a multiple regression apphoatth ideas of thresholding and
refitting: first we infer a sparse undirected graphical mastalcture via thresholding of each
among many,-norm penalized regression functions; we then estimatedkariance matrix and
its inverse using the maximum likelihood estimator. We sltlost under suitable conditions, this
approach yields consistent estimation in terms of grapisttacture and fast convergence rates
with respect to the operator and Frobenius norm for the ¢amee matrix and its inverse. We
also derive an explicit bound for the Kullback Leibler digence.

Keywords: Graphical model selection, covariance estimation, Lassolewise regression,
thresholding

1. Introduction

There have been a lot of recent activities for estimationigh{dimensional covariance and in-
verse covariance matrices where the dimengiofthe matrix may greatly exceed the sample size
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n. High-dimensional covariance estimation can be classifigxtwo main categories, one which
relies on a natural ordering among the variablési [and PourahmagdP003 Bickel and Leving
2004 Huang et al.2006 Furrer and BengtssqQR007 Bickel and Levina2008§ Levina et al, 2009
and one where no natural ordering is given and estimatorpearautation invariant with respect
to indexing the variablesYuan and Lin 2007 Friedman et a).2007 d’Aspremont et a}.2008§
Banerjee et 2).200§ Rothman et a).200d. We focus here on the latter class with permutation
invariant estimation and we aim for an estimator which isigate for both the covariance matpix
and its inverse, the precision matdix . A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrikis given by the/;-norm regularized
maximume-likelihood estimation, also known as the GLas&a[ and Lin 2007 Friedman et a).
2007 Banerjee et 8).200g. The GLasso approach is simple to use, at least when relymg
publicly available software such as tgéasso package irR. Further improvements have been
reported when using some SCAD-type penalized maximunfiided estimator [[am and Fan
2009 or an adaptive GLasso procedurea)y et al, 2009, which can be thought of as a two-stage
procedure. It is well-known from linear regression thattstwo- or multi-stage methods effec-
tively address some bias problems which arise ftgrpenalization fou, 2006 Candes and Tgo
2007 Meinshause2007 Zou and Lj 2008 Biihimann and Meier2008 Zhou, 2009, 20104.

In this paper we develop a new method for estimating graplstacture and parameters for
multivariate Gaussian distributions using a multi-stepgedure, which we call &ato (Graph
estimation with Lasso and Threglding). Based on ai;-norm regularization and thresholding
method in a first stage, we infer a sparse undirected grapmoedel, i.e. an estimated Gaussian
conditional independence graph, and we then perform ufigedanaximum likelihood estima-
tion (MLE) for the covariancé& and its inverse&.—! based on the estimated graph. We make the
following theoretical contributions: (i) Our method allsws to select a graphical structure which
is sparse. In some sense we select only the important edgesteugh there may be many non-
zero edges in the graph. (ii) Secondly, we evaluate the tyuafiithe graph we have selected by
showing consistency and establishing a fast rate of coanerywith respect to the operator and
Frobenius norm for the estimated inverse covariance mairiger sparsity constraints, the latter
is of lower order than the corresponding results for the Gbdsothman et a).200d and for the
SCAD-type estimatori[am and Fan2009. (iii) We show predictive risk consistency and provide
a rate of convergence of the estimated covariance matuxLé&stly, we show general results for
the MLE, where onlyapproximategraph structures are given as input. Besides these theaireti
advantages, we found empirically that our graph based rdgpecforms better in general, and
sometimes substantially better than the GLasso, while werrfeund it clearly worse. Moreover,
we compare it with an adaptation of the method Spaea et a.2009. Finally, our algorithm is
simple and is comparable to the GLasso both in terms of camtipnal time and implementation
complexity.

There are a few key motivations and consequences for progpasich an approach based on
graphical modeling. We will theoretically show that thene @&ases where our graph based
method can accurately estimate conditional independerari@ong variables, i.e. the zeroes of
¥~1 in situations where GLasso fails. The fact that GLasso\e&asis to estimate the zeroes
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of ¥~! has been recognized byeinshauserf200d and it has been discussed in more details
in Ravikumar et al[200d. Closer relations to existing work are primarily regargliour first
stage of estimating the structure of the graph. We follow nibelewise regression approach
from Meinshausen and Buhlmap2004g but we make use of recent results for variable selection
in linear models assuming the much weaker restricted eajeevcondition Bickel et al, 2009
Zhou, 20101 instead of the restrictive neighborhood stability coimdit]Meinshausen and Buhlmann
2009 or the equivalent irrepresentable conditicthpo and Y,1200€. In some sense, the novelty
of our theory extending beyondhou[20101 is the analysis for covariance and inverse covariance
estimation and for risk consistency based on an estimat@desmgraph as we mentioned above.
Our regression and thresholding results build upon arglgkithe thresholded Lasso estimator
as studied inzhou[20104. Throughout our analysis, the sample complexity is onehef key
focus point, which builds upon results ihou [20104; Rudelson and Zho{2011]. Once the
zeros are found, a constrained maximum likelihood estimattthe covariance can be computed,
which was shown irChaudhuri et al[2007; it was unclear what the properties of such a pro-
cedure would be. Our theory answers such questions. As at@ge method, our approach is
also related to the adaptive Lassm[, 200§ which has been analyzed for high-dimensional sce-
narios inHuang et al[200g; Zhou et al[2009; van de Geer et a[2011]. Another relation can

be made to the method Byutimann and Buhimanf2009 for covariance and inverse covariance
estimation based on a directed acyclic graph. This reldtasonly methodological character: the
techniques and algorithms usedrnitimann and Buhlman[2009 are very different and from a
practical point of view, their approach has much higher degf complexity in terms of compu-
tation and implementation, since estimation of an equinadeclass of directed acyclic graphs is
difficult and cumbersome. There has also been work that &scars estimation of sparse directed
Gaussian graphical modelerzelen[201( proposes a multiple regularized regression procedure
for estimating a precision matrix with sparse Choleskydestwhich correspond to a sparse di-
rected graph. He also computes non-asymptotic Kullbachkléerisk bound of his procedure for

a class of regularization functions. It is important to nibiat directed graph estimation requires a
fixed good ordering of the variables a priori.

Notation. We use the following notation. Given a graph= (V, Ey), whereV = {1,...,p} s
the set of vertices anf is the set of undirected edges. we wsé denote the degree for node
that is, the number of edges iy connecting to nodé. For an edge sel, we let| E| denote its
size. We us®, = Egl andXg to refer to the true precision and covariance matrices &s@dy
from now on. We denote the number of non-zero element® bdfy supp©). For any matrix
W = (wi;), let |IW| denote the determinant &7, tr(1/) the trace ofilV. Let pmax (V) and
©min (W) be the largest and smallest eigenvalues, respectively. it diag(1V) for a diagonal
matrix with the same diagonal & andoffd (W) = W —diag(W). The matrix Frobenius norm is
given by|[Wllp = />0 >; w%. The operator nornﬁW||§ is given by (WWT). We write
| |1 for the £, norm of a matrix vectorized, i.e., for a matik/|; = [[vecW ||, = >_, >, lwy],
and sometimes writ¢¥' ||, for the number of non-zero entries in the matrix. For an inget’
and a matrixiV’ = [w;;], write W = (w;;1((4,5) € T')), wherel(-) is the indicator function.
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2. The model and the method

We assume a multivariate Gaussian model
X =(X1,...,Xp) ~Ny(0,%0), where X = 1. 1)

The data is generated by, ..., X™ iid. ~ N,(0,%). Requiring the mean vector and all
variances being equal to zero and one respectively is nalaeastriction and in practice, we can
easily center and scale the data. We denote the concentratitrix by©, = > L

Since we will use a nodewise regression procedure, as deddoelow in Sectio.1, we consider
a regression formulation of the model. Consider many regipas, where we regress one variable
against all others:

Xi=> BX;+V;(i=1,...,p), where )
J#i
Vi ~ N(0,07,) independent of X j # i} (i = 1,...,p). (3)

There are explicit relations between the regression caetiis, error variances and the concentra-
tion matrix©g = (907“):

Bt = —00,ij/00,i, Var(Vi) :=ov, = 1/00i (i,j =1,...,p). (4)

Furthermore, itis well known that for Gaussian distribngpconditional independence is encoded
in ©g, and due to4), also in the regression coefficients:

X is conditionally dependent of; given{Xy; k€ {1,...,p} \ {i,j}}
= f04 #0 < £ 0andgi #0. 5)

For the second equivalence, we assume YhatV;) = 1/60y; > 0 andVar(V;) = 1/6p ; > 0.
Conditional (in-)dependencies can be conveniently emtdmjean undirected graph, the condi-
tional independence graph which we denote&dy: (V, Eyy). The set of vertices i¥" = {1,...,p}
and the set of undirected edgks C V' x V' is defined as follows:

there is an undirected edge between nodmasd;
= 0o #0 < B #£0ands #£0. (6)

Note that on the right hand side of the second equivalencesoukl replace the word "and” by
"or”. For the second equivalence, we assuviae(V;), Var(V;) > 0 following the remark afters).

We now define the sparsity of the concentration matrixor the conditional independence graph.
The definition is different than simply counting the nonezetements ob, for which we have
supp(©p) = p + 2|Ep|. We consider instead the number of elements which are sarffigilarge.
For eachi, define the numbey}, ,, as the smallest integer such that the following holds:

P

Z min{@&ij,)\zﬁo,ii} < sé,nAQHOm-, where A = /2log(p)/n, (7)

j=Lj#i
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whereessential sparsitysgm at row ¢ describes the number of “sufficiently large” non-diagonal
elementst ;; relative to a given(n,p) pair andfo;;,i = 1,...,p. The valueSy,, in (8) is
summingessential sparsitgcross all rows 08y,

p
> S0 ©)

Due to the expression of, the value ofS, depends orp andn. For example, if all non-
zero non-diagonal elements ;; of the ith row are larger in absolute value than/f,;;, the
value s;, ,, coincides with the node degreé. However, if some (many) of the elements ;|
are non-zero but smalbf],n is (much) smaller than its node degre€eAs a consequence, if some
(many) of|6y 451, Vi, j,7 # j are non-zero but small, the value § ,, is also (much) smaller than
2| Ey|, which is the “classical” sparsity for the matrp©, — diag(©y)). See Sectior for more
discussions.

2.1 The estimation procedure

The estimation oy andXy = @gl is pursued in two stages. We first estimate the undirected
graph with edge sef, as in g) and we then use the maximum likelihood estimator based on
the estimatel,,, that is, the non-zero elements ©f, correspond to the estimated edgesiip.
Inferring the edge sek, can be based on the following approach as proposed and ticadye
justified in Meinshausen and Buhlmalﬁﬁooq perform p regressmns usmg the Lasso to obtain
p vectors of regression coefﬂmen@é ..,67’ where for each, 6’ = {6]’, jed{l,...,p}\ i}
Then estimate the edge set by the “OR” rule,

estimate an edge between nodesid;j <= 3. # 0 or 3/ # 0. 9)

Nodewise regressions for inferring the graph.in the present work, we use the Lasso in
combination with thresholdingZhou, 2009 2010f. Consider the Lasso for each of the nodewise
regressions

B = argming. Y (X7 =3 gix 2 40, 318l fori=1,....p, (10)
r=1 ji ji

where),, > 0 is the same regularization parameter for all regressioimsceShe Lasso typically
estimates too many components with non-zero estimateegssign coefficients, we use thresh-
olding to get rid of variables with small regression coeéitis from solutions of1(0):

B Ans7) = B it Ca) LB it On)| > 7). (11)

wherer > 0 is a thresholding parameter. We obtain the corresponditigha@®d edge set as
defined by 9) using the estimator inl(l) and we use the notation

En(n, 7). (12)
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We note that the estimator depends on two tuning paramgjeasidr.

The use of thresholding has clear benefits from a theorgpiomit of view: the number of false
positive selections may be much larger without threshgldimhen tuned for good prediction).
and a similar statement would hold when comparing the adajptsso with the standard Lasso.
We refer the interested readerioou[2009 20101 andvan de Geer et a[2011].

Maximum likelihood estimation based on graphs Given a conditional independence graph
with edge sefrr, we estimate the concentration matrix by maximum likelthoDenote bys,, =
n~t 3" XM(XNT the sample covariance matrix (using that the mean vectar® and by

T, = diag(S,)~"/2(8,,)diag(S,,)~1/? (13)

the sample correlation matrix. The estimator for the cotregion matrix in view of () is:

~

O, (E) = argminge vy, ,, (tr(@fn) — log ]@]) , Where
My ={0© cRP*P; © -0 andd,; = 0forall (¢,j) ¢ E, wherei# j} (14)

defines the constrained set for positive defirtite If n > ¢* whereg* is the maximal clique
size of a minimal chordal cover of the graph with edge Betthe MLE exists and is unique,
see, for exampléJhler [2011, Corollary 2.3]. We note that our theory guarantees that ¢*
holds with high probability foilG = (V, E), whereE = En(/\n,T)), under Assumption (Al) to
be introduced in the next section. The definition 1d)(is slightly different from the more usual
estimator which uses the sample covariaigeather thal',,. Here, the sample correlation matrix
reflects the fact that we typically work with standardizedadahere the variables have empirical
variances equal to one. The estimatorid)(is constrained leading to zero-values corresponding

toE°={(i,j):i,j=1,...,p,i # j,(i,j) € E}.

If the edge sef’ is sparse having relatively few edges only, the estimatdi#) is already suf-
ficiently regularized by the constraints and hence, no afdit penalization is used at this stage.
Our final estimator for the concentration matrix is the comaliion of (L2) and (L4):

On = On(En(Ap, 7)) (15)

Choosing the regularization parameters.We propose to select the paramekgrvia cross-
validation to minimize the squared test set error among edgressions:

p
An = argmin, Z (CV-scoref\) of ith regressioi,

=1
where CV-scoreX) of ith regression is with respect to the squared error predidtss. Sequen-
tially proceeding, we then selectby cross-validating the multivariate Gaussian log-liketd,
from (14). Regarding the type of cross-validation, we usually ugelib-fold scheme. Due to the
sequential nature of choosing the regularization parametee number of candidate estimators is
given by the number of candidate values foplus the number of candidate value far In Sec-
tion 4, we describe the grids of candidate values in more detaiksnbte that for our theoretical
results, we do not analyze the implications of our methongsistimateoKn andr.
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3. Theoretical results

In this section, we present in Theordngonvergence rates for estimating the precision and the co-
variance matrices with respect to the Frobenius norm; intiaag we show a risk consistency re-
sult for an oracle risk to be defined ih'{). Moreover, in Propositiod, we show that the model we
select is sufficiently sparse while at the same time, thetbi@s we introduce via sparse approxi-
mation is sufficiently bounded. These results illustratediassical bias and variance tradeoff. Our
analysis is non-asymptotic in nature; however, we first fdate our results from an asymptotic
point of view for simplicity. To do so, we consider a triangularray of data generating random
variables

XM x0id ~ N,(0,5), n=1,2,... (16)

where¥, = >, andp = p, change withn. Let©, := 251. We make the following assump-
tions.

(AQ) The size of the neighborhood for each nade V' is upper bounded by an integer< p
and the sample size satisfies for some constant

n > Cslog(p/s).

(A1) The dimension and number of sufficiently strong norezedgesS ,, as in @) satisfy: di-
mensionp grows withn following p = o(e“"*) for some constart < ¢ < 1 and

So,n = o(n/logmax(n,p)) (n — 00).

(A2) The minimal and maximal eigenvalues of the true covaramatrixX, are bounded: for
some constantd/,,, > M, > 0, we have

(-Pmin(EO) > Mlow > (0 and Somax(EO) < Mupp < o0.

Moreover, throughout our analysis, we assume the followiffgere exists? > 0 such that
for all i, andV; as defined ing): Var(V;) = 1/6¢; > v°.

Before we proceed, we need some definitions. Defin®fer 0
R(©) = tr(©3) — log O], 17)
where minimizing {7) without constraints give®,. Given @), (7), and©, define
Cliag = min{ max 67 ;;, max (so,/So,n) - [|diag(©)|7}- (18)

We now state the main results of this paper. We defer the fépattdn on various tuning parame-
ters, namely)\,,, 7 to Section3.2, where we also provide an outline for Theorém
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Theorem 1 Consider data generating random variables as 18)(and assume that (A0), (A1),
and (A2) hold. We assunm&, ; = 1 for all 4. Then, with probability at least — d/p?, for some
small constant/ > 2, we obtain under appropriately chosen andr, an edge sek, as in L2,
such that

|E,| < 2S0,,, where |E, \ Ey| < So.n; (19)

and for®,, and¥,, = (©,,)! as defined ir{15) the following holds,

Hé" — @0H2 < ”@n —Ollr Op <\/S0,n logmax(n,p)/n> ,

Op <\/S0,n log max(n,p)/n) ,
R(6,) — R(©y) = Op (So.n logmax(n,p)/n)

Hin - 20H2 <|IEn — ollr

where the constants hidden in thi () notation depend om, Mgy, Mupp, Caiag @s in(18), and
constants concerning sparse and restrictive eigenvaltié) ¢cf. Sectior3.2andB).

We note that convergence rates for the estimated covarimat@x and for predictive risk depend
on the rate in Frobenius norm of the estimated inverse caweg matrix. The predictive risk can
be interpreted as follows. Lef ~ N (0, ¥) with f, denoting its density. Lefs be the density

for N'(0,3,,) and Dk, (30/|S,,) denotes the Kullback Leibler (KL) divergence froki(0, 3) to
N(0,%,). Now, we have fob, 3, = 0,

R(6,) — R(6) = 2Eo [10?; fso(X) —log fs (X)] = 2Dk (0]|Zn) > 0. (20)

Actual conditions and non-asymptotic results that areliraain the Gelato estimation appear in
SectionsB, C, andD respectively.

Remark 2 Implicitly in (A1), we have specified a lower bound on the dansize to ben =
Q (So,n logmax(n, p)). For the interesting case @f > n, a sample size of

n = Q (max(Sp, logp, slog(p/s))) (21)

is sufficient in order to achieve the rates in Theorenfs to be shown in our analysis, the lower
bound onn is slightly different for each Frobenius norm bound to halohi a non-asymptotic
point of view (cf. Theorerh9 and 20).

Theoreml can be interpreted as follows. First, the cardinality of #sémated edge set exceeds
So,n at most by a factor 2, wher§, ,, as in @) is the number of sufficiently strong edges in the
model, while the number of false positives is boundedShy,. Note that the factor8 and1 can

be replaced by some other constants, while achieving the saomds on the rates of convergence
(cf. SectionD.1). We emphasize that we achieve these two goals by sparséd sebeletion, where
only important edges are selected even though there are marg/non-zero edges ify, under
conditions that are much weaker than (A2). More precisél) (can be replaced by conditions
on sparse and restrictive eigenvalues (REX@f Moreover, the bounded neighborhood constraint
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(A0) is required only for regression analysis (cf. Theorgg and for bounding the bias due to
sparse approximation as in PropositidnThis is shown in Section8 andC. Analysis follows
from Zhou[2009 20104 with earlier references t@andes and Taf2007; Meinshausen and Yu
[2009; Bickel et al.[2009 for estimating sparse regression coefficients.

We note that the conditions that we use are indeed simildraset inRothman et al[200¢, with

(A1) being much more relaxed whe#y,, < |Ey|. The convergence rate with respect to the
Frobenius norm should be compared to the fate /| Ey| log max(n, p)/n) in casediag(Xo) is
known, which is the rate ifRothman et al[200] for the GLasso and for SCAD_pm and Fapn
2009. In the scenario whergEy| > Sy ,,, i.e. there are many weak edges, the rate in Theorem
1is better than the one established for GLassotfiman et a).200{ or for the SCAD-type esti-
mator [Lam and Fan2009; hence we require a smaller sample size in order to yieldcanrate
estimate 00,

Remark 3 For the general case whebg, ;;,< = 1, ..., p are not assumed to be known, we could
achieve essentially the same rate as stated in Thedrdor |6, — O|» and |, — Sl
under (Ap), (A1) and (Aq) following analysis in the present work (cf. Theoré&nand that

in Rothman et al[2008 Theorem 2]. Presenting full details for such results argdrel the scope
of the current paper. We do provide the key technical lemmahnik essential for showing such
bounds based on estimating the inverse of the correlatiamnixria Theoreng; see also Remark
which immediately follows.

In this case, for the Frobenius norm and the risk to conveaeeto, a too large value gf is not
allowed. Indeed, for the Frobenius norm and the risk to cayeg A1) is to be replaced by:

(A3) p=ncforsome constarii < ¢ < 1and p+ Sy, = o(n/log max(n,p)) as n — oo.

In this case, we have

)

Hén —Oollr = Op <\/(p + So,n) log max(n, p)/n

Hin —Yollr = Op <\/(p + So,n) logmax(n,p)/n> ,
R(6,) — R(©y) = Op((p+ So,n) log max(n,p)/n) .

Moreover, in the refitting stage, we could achieve thesesrafth the maximum likelihood estima-
tor based on the sample covariance mat$ixas defined in{22):

~

O, (E) = argminge uy, ,, (tr(@§n) — log \@\) , Where
My ={0cRPP, © >0 andf;; =0forall (i,j) ¢ E, wherei # j} (22)

A real high-dimensional scenario whepe>>> n is excluded in order to achieve Frobenius norm
consistency. This restriction comes from the nature of teedhius norm and when considering
e.g. the operator norm, such restrictions can indeed bexetlaas stated above.
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It is also of interest to understand the bias of the estimedased by using the estimated edge set
FE,, instead of the true edge skg. This is the content of Propositich For a givenE,,, denote by

Oy = diag(©) + (©9) 5 = diag(©9) + ©0, B0

there the second equality holds sirt@g x: :AO. Note that the quantit@o is identical to@Q on

E,, and on the diagonal, and it equals zeroldh= {(i,5) : t,7 = 1,...,p,i # J,(i,7) & Enp}.
Hence, the quantitpop := 0y — ©, measures the bias caused by a potentially wrong edge set
E,,; note that®, = O, if £, = Ej.

Proposition 4 Consider data generating random variables as in expres§i@). Assume that
(A0), (A1), and (A2) hold. Then we have for choices\gnr as in Theoreni and £,, in (12),

100l = B0 ~ Bollr = O (/Sa logmaxn,p)/n ).

We note that we achieve essentially the same ratﬁ(ffét’))‘1 — || r; see Remarlk7. We give
an account on how results in Propositiérare obtained in SectioB.2, with its non-asymptotic
statement appearing in Corollaty.

3.1 Discussions and connections to previous work

It is worth mentioning that consistency in terms of operatiod Frobenius norms does not depend
too strongly on the property to recover the true underlyinigee setly in the refitting stage.
Regarding the latter, suppose we obtain with high proltgiitie screening property

EO C E7 (23)

when assuming that all non-zero regression coeﬁicigﬁquare sufficiently large £ might be an
estimate and hence random). Although we do not intend to med@se the exact conditions
and choices of tuning parameters in regression and thrdisigoin order to achieve2), we state
Theoremb5, in case 23) holds with the following condition: the number of false fivges is
bounded a$F \ Ey| = O(S).

Theorem 5 Consider data generating random variables as in expresél@h and assume that
(A1) and (A2) hold, where we repla& ,, with S := |Ey| = > 7, s'. We assume& ;; = 1 for
all i. Suppose on some evehtsuch thatP (£) > 1 — d/p? for a small constant/, we obtain
an edge sef such thatE, C E and |E \ Ey| = O(S). LetO,,(E) be the minimizer as defined

in (14). Then, we havé®,,(E) — ©gl|r = Op <\/S log max(n,P)/n)-

It is clear that this bound corresponds to exactly thaRofhman et al[200] for the GLasso
estimation under appropriate choice of the penalty paranfet a generak = 0 with ¥;; = 1

for all 7 (cf. Remark3). We omit the proof as it is more or less a modified version aédriem19,
which proves the stronger bounds as stated in Thedréive note that the maximum node-degree
bound in (AO) is not needed for Theoresn

10
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We now make some connections to previous work. First, we thateto obtain with high prob-
ability the exact edge recover¥; = Ey, we need again sufficiently large non-zero edge weights
and some restricted eigenvalue (RE) conditions on the @owee matrix as defined in Sectidn
even for the multi-stage procedure. An earlier example @avshin Zhou et al.[2009, where
the second stage estima@rcorresponding tol(1) is obtained with nodewise regressions using
adaptive Lassoou, 2009 rather than thresholding as in the present work in orderetmver
the edge sely with high probability under an assumption which is strontiem (A0). Clearly,
given an accurat@n, under (Al) and (A2) one can then apply Theorgito accurately estimate
@n. On the other hand, it is known that GLasso necessarily newule restrictive conditions on
Yo than the nodewise regression approach with the Lasso, assdid inVieinshauserf200g
andRavikumar et al[200g in order to achieve exact edge recovery.

Furthermore, we believe it is straightforward to show thalaBo works under the RE conditions
on Xy and with a smaller sample size than the analogue withouthtestiolding operation in
order to achievanearly exact recovergf the support in the sense thé§ C E,, andmax; |E,; \

Ey ;| is small, that is, the number of extra estimated edges at ead®: is bounded by a small
constant. Thisis shown essentiallyihou[2009 Theorem1.1] for a single regression. Given such
properties ofEn, we can again apply Theoreito obtam@ under (Al) and (A2). Therefore,
Gelato requires relatively weak assumptionsXgnin order to achieve the best sparsity and bias
tradeoff as illustrated in Theorefrand Propositiod when many signals are weak, and Theokem
when all signals infj are strong.

Finally, it would be interesting to derive a tighter bound te operator norm for the Gelato
estimator. Examples of such bounds have been recentlyedefor a restricted class of inverse
covariance matrices iiuan[201(; Cai et al.[2011].

3.2 An outline for Theorem 1

Let sp = max;—1,_. 86n We note that although sparse eigenvalpgsx(s), pmax(3s0) and
restricted eigenvalue for; (cf. SectionA) are parameters that are unknown, we only need them
to appear in the lower bounds fdyp, D4, and hence also that foy,, andt, that appear below.
We simplify our notation in this section to keep it consistesith our theoretical non-asymptotic
analysis to appear toward the end of this paper.

Regression.We choose for some) > 4v/2,0 < 0 < 1, and\ = /2log(p)/n,

A = doX, where dy > co(1 4 0)? v/ prmax(5) pmax (350).

Let 8. ¢ = 1,...,p be the optimal solutions td.Q) with \,, as chosen above. We first prove an
oracle result on nodewise regressions in Theot&m

Thresholding. We choose for some constariis, D, to be defined in Theorerb5,
to = fo)\ := Dydp WhereD4 > Dy

11
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whereD; depends on restrictive eigenvalue3af; Apply (11) with 7 = tg andgi,,i = 1,...,p
for thresholding our initial regression coefficients. Let

D' ={j:j#4 |Bln| <to=for},
where bounds o®,i = 1,...,p are given in Lemmaeé. In view of (9), we let

D ={(i,j) i #j:(i,j) € D' ND}. (24)

Selecting edge set’. Recall for a pair(i, j) we take theOR ruleas in Q) to decide if it is to be
included in the edge séi: for D as defined in44), define

E:={(i,7):4,j=1,...,p,i # j,(i,j) &€ D}. (25)
to be the subset of pairs of non-identical verticeg-oivhich do not appear i®; Let
(:)0 = diag(@o) + @O7EOQE (26)

for £ as in ¢5), which is identical to9, on all diagonal entries and entries indexediyn E,
with the rest being set to zero. As shown in the proof of CargllL7, by thresholding, we have
identified asparse subsetf edgesE of size at mosttS, ,,, such that the corresponding bias
©opllp = 180 — Oy || is relatively small, i.e., as bounded in Propositian

Refitting. In view of Proposition4, we aim to recoveB, given a sparse subsét; toward this
goal, we use14) to obtain the final estimatd@n and in = ((:)n)‘l. We give a more detailed
account of this procedure in Sectidn with a focus on elaborating the bias and variance tradeoff.
We show the rate of convergence in Frobenius norm for thenamaid@n and in in Theorem6,
19and20, and the bound for Kullback Leibler divergence in Theorghrespectively.

3.3 Discussion on covariance estimation based on maximunkdilihood

The maximum likelihood estimate minimizes over@ll- 0,
R,(©) = tr(©5,) — log O] 27)

Where§n is the sample covariance matrix. Minimizi@l(@) without constraints giveﬁn = §n.
We now would like to minimizeZ7) under the constraints that some pre-defined subs#tedges
are set to zero. Then the follow relationships hold regzy@g(E) defined in 22) and its inverse
.., andS,: for E as defined inZ5),

©nij = 0,V(i,j)eD and
Snii = Snijs Y(i,j) € EU{(i,i),i=1,...,p}.

Hence the entries in the covariance ma;g for the chosen set of edges iand the diagonal
entries are set to their corresponding values$'in Indeed, we can derive the above relationships
via the Lagrange form, where we add Lagrange constaptéor edges irD,

(c(©) =log 0] — tr(5,0) — > b (28)
(4,k)eD

12
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Now the gradient equation o29) is:
0 1-§,-T=0,

whereT is a matrix of Lagrange parameters such that # 0 for all (j,k) € D and~;;, = 0
otherwise.

Similarly, the follow relationships hold regardir@n(E) defined in (4) in caseX ;; = 1 for all
1, wheresS,, is replaced with",,, and its invers&’,,, andl',,: for E as defined inZ5),

©,ij = 0,V(i,j)eD and
En,ij = Fm’j = M-j/&i&j, V(Z,j) € F and
S = L Vi=1,...,p.

Finally, we state Theorer®, which yields a general bound on estimating the inverse ettrre-
lation matrix, wher®g 11, ..., X, take arbitrary unknown values iR* = (0, 00). The corre-
sponding estimator is based on estimating the inverse afdtrelation matrix, which we denote
by €. We use the following notations. L&t, = (po,;) be the true correlation matrix and let
Qo = Uyt LetW = diag(Xo)'/2. Let us denote the diagonal entries1of with o1,..., 0,

whereo; := 2(1]/3 for all 7. Then the following holds:

Yo = WU¥W and®, = W lQuw!

Given sample covariance matrﬁgl, we construct sample correlation matﬁx, as follows. Let
W = diag(S,,)"/? and

~ — N (S (Xi, X;)
L, =W YS,)W!, whereT, ; = Y = e (29)
" " " Ge 1Kl X5,

Whereﬁi2 = §m, Thusfn is a matrix with diagonal entries being 48 and non-diagonal entries
being the sample correlation coefficients, which we dengtg; p
The maximum likelihood estimate fét, = \Ifgl minimizes over alf) = 0,

Rn(Q) = tx(QL,) — log Q) (30)

To facilitate technical discussions, we need to introdwreesmore notation. Le$? | denote the
set ofp x p symmetric positive definite matrices:

St ={0 e RP*?|© - 0}.
Let us define a subspac®. corresponding to an edge $8tC {(i,j) : i,j = 1,...,p,i # j}:
Sh={0eRP*?|0;; =0Vi#j st(i,j) ¢ E} anddenoteS, = S7 NSh. (31)

Minimizing ﬁn(G) without constraints give@n = fn. Subiject to the constraints thate S,, as
defined in 81), we write the maximum likelihood estimate foy:

Qn(E) = arg min ﬁn(Q) =arg min {tr(an) — log|Q} (32)

QeS, Qes? NSk

13
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which yields the following relationships regardi@(E), its inversel,, = (ﬁn(E))‘l, andl’,,.
For E as defined inZ5),

,V(z‘ )eD

Pij V(i,j) cE
1,.

3

<
o
<,

S ;EO )

3
.
S

= ’1)
i

)
S
a
<
I

Given(),,(E) and its inversel,, = (Q,,(E))~!, we obtain
S, =WU,W and 6, =W 'Q,W!

and therefore the following holds: fdr as defined in45),

én,ij = O, V(Z,]) €D
Ynij 0,0V = 0i0;nij = Snij V(i,j) €EE
and \I’n,ii = 6'\22 = Sn,ii Vi = 1,...,p.

The proof of Theoren® appears in SectioB.

Theorem 6 Consider data generating random variables as in expresél@h and assume that
(A1) and (A2) hold. Leto2,,. := max; Yo < oo ando?. := min; Yo > 0. Let& be some
event such thaP (£) > 1 — d/p? for a small constand. Let S, ,, be as defined i(8). Suppose on
evente:

1. We obtain an edge sétsuch that its siz¢€E'| = lin (Sp5,) is a linear function inSp ,,.

2. And for@, as in(26) and for some constardipiss to be specified if71), we have

1©0,pf :== Héo - @oHF < Chias\/ 250, log(p) /n. (33)

Let ﬁn(E) be as defined if32) Suppose the sample size satisfiesfor> 4,/5/3,

o o, < 10y 4 13Mupp

M? 1202

low O min

2
) max {2|E|log max(n, p), Cpa2Sonlogp} . (34)

Then with probability> 1—(d+1) /p?, we have fotd = (907, /(2k?))- (4C5 + 13Mypp /(1202,.))

Hﬁn( QOH (M +1) max{\/2|E|10gmaX(n p)/n, Chias\/ 2S0,n log(p )/n} (35)

Remark 7 We note that the constants in Theor@are by no means the best possible. Fi@5),
we can derive bounds df®,,(E) — Oz and ||, (E) — S|2 to be in the same order as {85)
following the analysis irRothman et al[2008 Theorem 2]. The corresponding bounds on the

Frobenius norms on covariance estimation would be in theoaf Op <\/p+30> as stated in

Remarks.
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4. Numerical results

We consider the empirical performance for simulated antidat. We compare our estimation
method with the GLasso, the Space method and a simplifiedd@edéimator without thresholding
for inferring the conditional independence graph. The carigon with the latter should yield
some evidence about the role of thresholding in Gelato. Th&s6o is defined as:

éGLasso = argmin(tr(fn@) — log ’@’ +p Z ‘HUD
O >0 i<j

whereT,, is the empirical correlation matrix and the minimizationoiger positive definite ma-
trices. Sparse partial correlation estimation (Spacehia@proach for selecting non-zero partial
correlations in the high-dimensional framework. The mdtlagssumes an overall sparsity of the
partial correlation matrix and employs sparse regresschrtiques for model fitting. For details
seePeng et al[2009. We use Space with weights all equal to one, which refersdaethod type
space in Peng et al[2009. For the Space method, estimationaf is done via maximum likeli-
hood as in {4) based on the edge sB§°7*°® from the estimated sparse partial correlation matrix.
For computation of the three different methods, we used thaékagesg)l nmet [Friedman et al.

201Q, gl asso [Friedman et aJ.2007 andspace [Peng et al.2009.

4.1 Simulation study

In our simulation study, we look at three different models.

e An AR(1)-Block model. In this model the covariance matridbleck-diagonal with equal-
sized AR(1)-blocks of the formX ... = {0.9 771}, ;.

e The random concentration matrix model considere@danhman et al[200d. In this model,
the concentration matrix i® = B + 61 where each off-diagonal entry iB is generated
independently and equal to 0 or 0.5 with probability- 7 or 7, respectively. All diagonal
entries of B are zero, and is chosen such that the condition numbegois p.

e The exponential decay model considered-irmn et al[2009. In this model we consider a
case where no element of the concentration matrix is exaetly. The elements @, are
given byb, ;; = exp(—2|i — j|) equals essentially zero when the differefice j| is large.

We compare the three estimators for each model wita 300 andn = 40,80, 320. For each
model we sample datx (M, ... X jid. ~ N(0,%,). We use two different performance
measures. The Frobenius norm of the estimation effar — X » and||©,, — ©o||r, and the
Kullback Leibler divergence betweeYi(0, %) and A (0, ,,) as defined inZ0).

For the three estimation methods we have various tuningypetexs, namely, = (for Gelato),p
(for GLasso) and; (for Space). We denote the regularization parameter of ffae&technique
by 7 in contrary toPeng et al[2009, in order to distinguish it from the other parameters. Daoie t
the computational complexity we specify the two parametérsur Gelato method sequentially.
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That is, we derive the optimal value of the penalty paramgtby 10-fold cross-validation with
respect to the test set squared error for all the nodewisessigpns. After fixing\ = Aoy we
obtain the optimal threshold again by 10-fold cross-validation but with respect to thgaiwe
Gaussian log-likelihood ((©5°“!) — log |©|, whereS°¥* is the empirical covariance of the hold-
out data). We could use individual tuning parameters fohezdhe regressions. However, this
turned out to be sub-optimal in some simulation scenariod (ever really better than using a
single tuning parametex, at least in the scenarios we considered). For the penatgnperp

of the GLasso estimator and the parametaf the Space method we also use a 10-fold cross-
validation with respect to the negative Gaussian log-lilead. The grids of candidate values are
given as follows:

I _ I
AszM/in k=1,...,10 with Tkzo.75.BM/0§p

log p
n

D
Ny = 1.56y/n® ! <1—2 g) r=1,...,7
P

pr = Cr k=1,...,10

whereAy, By, Cy € {0.01,0.05,0.1,0.3,0.5,1,2,4,8,16} andD, € {0.01,0.05,0.075,0.1,0.2,
0.5,1}. The two different performance measures are evaluatechioestimators based on the
samplex® ... X (™ with optimal CV-estimated tuning parametexsr, p andr for each model
from above. All results are based on 50 independent sinomatins.

4.1.1 THE AR(1)-BLOCK MODEL

We consider two different covariance matrices. The first isne& simple auto-regressive process
of order one with trivial block size equal @ = 300, denoted byzél). This is also known as a
Toeplitz matrix. That is, we havg() . = 0.9=1l v i, j € {1,...,p}. The second matrix{’

02,5
is a block-diagonal matrix with AR(1) blocks of equal blodkes30 x 30, and hence the block-
diagonal ofE(()z) equals: ki ; = 0.97771, 4 5 € {1,...,30}. The simulation results for the

AR(1)-block models are shown in Figuteand?2.

The figures show a substantial performance gain of our metbathared to the GLasso in both
considered covariance models. This result speaks for othade especially because AR(1)-
block models are very simple. The Space method performstasowell as Gelato, except for

the Frobenius norm of,, — ¥,. There we see an performance advantage of the Space method
compared to Gelato. We also exploit the clear advantagere$tiolding in Gelato for a small
sample size.

4.1.2 THE RANDOM PRECISION MATRIX MODEL

For this model we also consider two different matrices, Wwhidfer in sparsity. For the sparser
matrix @(()3) we set the probabilityr to 0.1. That is, we have an off diagonal entry®{*) of 0.5
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Figure 1: Plots for modd]gl). The triangles (green) stand for the GLasso and the circde for
our Gelato method with a reasonable value-ofThe horizontal lines show the perfor-
mances of the three techniques for cross-validated turangnpeters\, 7, p andn. The
dashed line stands for our Gelato method, the dotted onééoGtasso and the dash-
dotted line for the Space technique. The additional dasinedwith the longer dashes
stands for the Gelato without thresholding. Lambda/Rhodsdor\ or p, respectively.
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Figure 2: Plots for modd]éz). The triangles (green) stand for the GLasso and the circéel {or
our Gelato method with a reasonable value-ofThe horizontal lines show the perfor-
mances of the three techniques for cross-validated turangnpeters\, 7, p andn. The
dashed line stands for our Gelato method, the dotted ondéhéoGt.asso and the dash-
dotted line for the Space technique. The additional dasinedwith the longer dashes
stands for the Gelato without thresholding. Lambda/Rhodstdor \ or p, respectively.
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with probability 7 = 0.1 and an entry of 0 with probabilit9.9. In the case of the second matrix
(984) we setr to 0.5 which provides us with a denser concentration matrix. Theugtion results
for the two performance measures are given in Figlaad4.

From Figures3 and4 we see that GLasso performs better than Gelato with respgét — O¢||
and the Kullback Leibler divergence in both the sparse amrdd#mse simulation setting. If we
consider||S, — S| », Gelato seems to keep up with GLasso to some degree. For #e Sp
method we have a similar situation to the one with GLasso.Spgece method outperforms Gelato
for |©,, — ©o||r and D (Zo||S,) but for ||, — || 7, Gelato somewhat keeps up with Space.

4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of thecamtration matri>®g5). The entries
of (985) are generated b%i)] = exp(—2[i — j|). Thus,X is a banded and sparse matrix.

Figure 5 shows the results of the simulation. We find that all threehoe$ show equal per-

formances in both the Frobenius norm and the Kullback Leitheergence. This is interesting

because even with a sparse approximatio®g@{with GLasso or Gelato), we obtain competitive
performance for (inverse) covariance estimation.

4.1.4 SIMMARY

Overall we can say that the performance of the methods deperitde model. For the models
Z(()l) andEéz) the Gelato method performs best. In case of the mdaéﬁ)sand@((f‘), Gelato gets
outperformed by GLasso and the Space method and for the r@é@ehone of the three methods
has a clear advantage. In Figure$o 4, we see the advantage of Gelato with thresholding over
the one without thresholding, in particular, for the sintida settingsE(()l), E(()z) and®((]3). Thus
thresholding is a useful feature of Gelato.

4.2 Application to real data
4.2.1 ISOPRENOID GENE PATHWAY INARABIDOBSIS THALIANA

In this example we compare the two estimators on the isoptdsosynthesis pathway data given
in Wille et al.[2004]. Isoprenoids play various roles in plant and animal phiggjizal processes
and as intermediates in the biological synthesis of oth@ontant molecules. In plants they serve
numerous biochemical functions in processes such as pmibesis, regulation of growth and
development.

The data set consists pf= 39 isoprenoid genes for which we haxe= 118 gene expression pat-
terns under various experimental conditions. In order togare the two techniques we compute
the negative log-likelihood via 10-fold cross-validatitor different values of\, = and
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Figure 5: Plots for mod&Bgf). The triangles (green) stand for the GLasso and the cirobey for
our Gelato method with a reasonable value-ofThe horizontal lines show the perfor-
mances of the three techniques for cross-validated turdngnpeters\, 7, p andn. The
dashed line stands for our Gelato method, the dotted onéaéoGtasso and the dash-
dotted line for the Space technique. The additional dasinedwith the longer dashes
stands for the Gelato without thresholding. Lambda/Rhodsdor\ or p, respectively.
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Figure 6: Plots for the isoprenoid data from arabidopsi$idha (a) and the human breast cancer
data (b). 10-fold cross-validation of negative log-likelod against the logarithm of
the average number of non-zero entries of the estimatedeotmadion matrix9,,. The
circles stand for the GLasso and the Gelato is displayeddious values of.

p- In Figure6 we plot the cross-validated negative log-likelihood agtitme logarithm of the
average number of non-zero entries (logarithm of feorm) of the estimated concentration
matrix (:)n. The logarithm of th&y-norm reflects the sparsity of the matl@n and therefore the
figures show the performance of the estimators for diffefemls of sparsity. The plots do not
allow for a clear conclusion. The GLasso performs sligh#ytér when allowing for a rather dense
fit. On the other hand, when requiring a sparse fit, the Gelatiopns better.

4.2.2 QINICAL STATUS OF HUMAN BREAST CANCER

As a second example, we compare the two methods on the berasiraataset frori/est et al.
[2001]. The tumor samples were selected from the Duke Breast C&RORE tissue bank. The
data consists gb = 7129 genes withn = 49 breast tumor samples. For the analysis we use the
100 variables with the largest sample variance. As befoescampute the negative log-likelihood
via 10-fold cross-validation. Figu@shows the results. In this real data example the interpoetat

of the plots is similar as for the arabidopsis dataset. Fosddits, GLasso is better while Gelato
has an advantage when requiring a sparse fit.

5. Conclusions

We propose and analyze the Gelato estimator. Its advargaigatiit automatically yields a positive
definite covariance matrix,,, it enjoys fast convergence rate with respect to the opewratd
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Frobenius norm oﬁn — Y and (:)n — 0Oy. For estimation o, Gelato has in some settings a
better rate of convergence than the GLasso or SCAD type afiis1 From a theoretical point of
view, our method is clearly aimed for bounding the operatot Brobenius norm of the inverse
covariance matrix. We also derive bounds on the convergeateefor the estimated covariance
matrix and on the Kullback Leibler divergence. From a noyrgstotic point of view, our method
has a clear advantage when the sample size is small relatibe sparsitys = | Ey|: for a given
sample sizez, we bound the variance in our re-estimation stage by exoudidges offsy with
small weights from the selected edge §ebtwhile ensuring that we do not introduce too much
bias. Our Gelato method also addresses the bias problemeimtha the GLasso estimator since
we no longer shrink the entries in the covariance matrixegponding to the selected edgeﬁgt

in the maximum likelihood estimate, as shown in Section 3.3.

Our experimental results show that Gelato performs béti@n tGLasso or the Space method for
AR-models while the situation is reversed for some randoetigion matrix models; in case of an
exponential decay model for the precision matrix, all mdtexhibit the same performance. For
Gelato, we demonstrate that thresholding is a valuablefeatVe also show experimentally how
one can use cross-validation for choosing the tuning patemé regression and thresholding.
Deriving theoretical results on cross-validation is nothivi the scope of this paper.
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Appendix A. Theoretical analysis and proofs

In this section, we specify some preliminary definitiongskinote that when we discuss estimat-
ing the parameters, and© = X ! we always assume that

Somax(EO) = 1/(-;Dmin(@O) < I/Q < 00 andl/@max(QO) = Somin(EO) > E >0, (36)
where we assumé,c <1 sothatt <1<1/k. (37)

It is clear that these conditions are exactly that of (A2) actt®n3 with
Mypp :=1/c and My =k,

where it is clear that fodly; = 1,¢ = 1,...,p, we have the sum op eigenvalues of,
>b L 0i(X0) = tr(Xo) = p. Hence it will make sense to assume tHzi)(holds, since other-
wise, 6) implies thaty,in(20) = ¢max(X0) = 1 which is unnecessarily restrictive.
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We now define parameters relating to the key notioessential sparsity, as explored ircandes and Tao
[2007; Zhou[2009 20104 for regression. Denote the number of non-zero non-dialgentiies

in each row of® by s'. Lets = max;—;__, s’ denote the highest node degreedn= (V, Ey).
Consider nodewise regressions as ), (where we are given vectors of paramet@@, j =
1,...,p,7 # i} fori = 1,...,p. With respect to the degree of noddor eachi, we define

si, < s' < s as the smallest integer such that

P

Z min((ﬂj)z,)\z\/ar(‘/;))Ssg)\ZVar(V where = /2logp/n, (38)

J=1,j#i
wheres{, denotess, ,, as defined in7).

Definition 8 (Bounded degree parameters.)The size of the node degreefor each node is
upper bounded by an integer< p. For s{, as in(38), define

so = max spy<sand Sy, = E sh (39)
i:17"'7p . 1
1= 7"'7p

whereS ,, is exactly the same as {8), although we now drop subscriptfrom sg,n in order to
simplify our notation.

We now define the following parameters related®@. For an integemm < p, we define the
smallest and largesih-sparse eigenvaluesf X as follows:

=44, =27,
o) ompase VP o e T,

Definition 9 (Restricted eigenvalue conditionRE (s, kg, ¥¢)). For some integed < so < p
and a positive numbé, the following condition holds for alb # 0,

1/2
———— = min min —_— >
K (s0, ko, o) It losell Skollos vl ’
=S50

whereuv s represents the subvector ofc R confined to a subset of {1,...,p}.

Whensy andky become smaller, this condition is easier to satisfy. Whemmhg aim to estimate
the graphical structuré, itself, the global conditions3g) need not hold in general. Hence up till
SectionD, we only need to assume thag satisfies 40) for sq as in 88), and the sparse eigenvalue
pmin(s) > 0. In order of estimate the covariance matry, we do assume tha8@) holds, which
guarantees that theF’ condition always holds oF, andpmax(m), pmin (m) are upper and lower
bounded by some constants foradl < p. We continue to adopt parameters suct@9max($),
andpmax(3so) for the purpose of defining constants that are reasonalbieuigler condition6).

In general, one can think of

Pmax(max(3sg, s)) < 1/¢ < oo and K2(30,k0, o) € 1/k < o0,
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for ¢, k as in 86) whensg is small.

Roughly speaking, for two variable’s;, X; as in (1) such that their corresponding entry@y =
(o,i;) satisfies®y i; < Ay/Bo.ii, whereX = /21og(p)/n, we can not guarantee that j) € E,
when we aim to keep< s, edges for node, i = 1,...,p. For a givenQy, as the sample size
increases, we are able to select edges with smaller coeffigjg;. In fact it holds that

|90,ij| < /\\/9072'2‘ which is equivalent t¢ﬁ;| < /\O’Vi, forall j > 86 + 1+ Higsé—i-l? (42)
wherely , is the indicator function, if we order the regression cogdfits as follows:
B3] = 183)... = 18i 1] = |Bi 1l = |6y,
in view of (2), which is the same as if we order for ravef O,
100,61 = 100,i2]-- = [0o,ii-1] = |00,i,it1l- > 100,ipl- (42)

This has been show byandes and Ta[2007; See alsazhou[20104.

A.1 Concentration bounds for the random design

For the random desigX generated byl(©), let X, ;; = 1 for all 7. In preparation for showing the
oracle results of Lasso in Theore®s, we first state some concentration boundsX¥nDefine for
somel < 0 <1

FO)={X:Vi=1,...,p, 1-0<|X,|,/vVn<1+06}, (43)

where Xy, ..., X, are the column vectors of the x p design matrixX. When all columns ofX’
have an Euclidean norm close {&: as in @3) , it makes sense to discuss the RE condition in the
form of (44) as formulated byBickel et al.[2009. For the integed < sg < p as defined in{8)

and a positive numbeky, RE(so, ko, X ) requires that the following holds for all = 0,

1 [ Xvll

R — min min —_—
K (s0, ko, X) 1<t Joselly Skollos Vi llvlly
S0

1>

> 0. (44)

The parametek, > 0 is understood to be the same quantity throughout our digmussThe
following eventR provides an upper bound dki(sg, ko, X) for a givenk, > 0 whenX satisfies
RE(sg, ko, X0) condition:

(45)

. K by
R(0) = {X : RE(s0, ko, X') holds with 0 < K (s, ko, X) < M}.

1-6

For some integem < p, we define the smallest and largestsparse eigenvalues &f to be

Amin(m) = min || Xv|[3/(n|v]3) and (46)
v#£0;m—sparse

Amax = X 2 2 47

(m) = e IXO/ o oll), (@)
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upon which we define the following event:
M(0) :={X : (49) holdsVm < max(s, (ko + 1)so)}, for which (48)
0<(1-0) \/Pmin(m) < \/Amin(m) < \/AmaX(m) < (1+6)V pmax(m). (49)

Formally, we consider the set of random designs that sadi$fgvents as defined, for sone<
# < 1. Theoreml0 shows concentration results that we need for the preserit, wvich follows
from Theorem 1.6 izhou[20104 and Theorem 3.2 iRudelson and Zho[2011].

Theorem 10 Let0 < 6 < 1. Letpnin(s) > 0, wheres < p is the maximum node-degree
in G. SupposeRE(sp,4,3) holds forsy as in(39), whereXy,;; = 1fori = 1,...,p. Let
f(s0) = min (4s0pmax(50) log(5ep/so), sologp). Lete,a,¢ > 0 be some absolute constants.
Then, for a random desigX as generated bylg), we have

P(X):=P(R(0) N F(0) N M(0)) > 1 — 3exp(—ch?*n/a’) (50)

as long as the sample size satisfies

/A4 4
n > max { 909? max (36K2(So,4, ¥0)f(s0), logp) ) 8052(1 log <5ﬂ> } . (51)
s6

Remark 11 We note that the constraint< p/2, which has appeared irihou[20105 Theorem
1.6] is unnecessary. Under a strong&F condition onXg, a tighter bound on the sample size
n, which is independent @f,.x(s0), is given inRudelson and Zhof2011] in order to guarantee
R(#). We do not pursue this optimization here as we assumeptha(so) is a bounded constant
throughout this paper. We emphasize that we only need theefia in (51) in order to obtain
F(0) andR(0); The second term is used to bound sparse eigenvalues of arder

A.2 Definitions of other various events

Under (A1) as in Sectio, excluding eventt’ as bounded in TheoreiD and event¥,, A, to
be defined in this subsection, we can then proceed to ¥eatX N C, as a deterministic design
in regression and thresholding, for whig(#) N M (6) N F(€) holds withC,, We then make use
of eventXj in the MLE refitting stage for bounding the Frobenius norm. Mie define two types
of correlations event§, andXj.

Correlation bounds on X; and V;. In this section, we first bound the maximum correlation
between pairs of random vectdrs;, X ), for all ¢, j wherei # j, each of which corresponds to a
pair of variablegV;, X;) as defined inZ) and @). Here we useX; andV;, for all 4, j, to denote
both random vectors and their corresponding variables.

Let us definery, := /Var(V;) > v > 0 as a shorthand. Lét] := V;/oy,,j = 1,...,pbe a
standard normal random variable. Let us now define fof,&ll=~ 7,

1, 1<~ ,
Zijk = ;(VjaXH = Z;’Uj,imk,ia
1=
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where foralli = 1,...,n v/

% Tk, Vi, k # j are independent standard normal random variables.
For somez > 6, let event

Cy = {m%X|ij| <1 —|—a\/(2logp)/n wherea > 6}. (52)
]7

Bounds on pairwise correlations in columns ofX. Let ¥ := (0¢,;;), where we denote ;; :=
o2. Denote byA = X7 X /n — 5. Consider for some consta@t;, > 4,/5/3,

Xo = {m%x|Ajk| < C30;0j+/logmax{p,n}/n < 1/2} . (53)
]7

We first state Lemma2, which is used for bounding a type of correlation events sxail regres-
sions; see proof of Theorefrd. It is also clear that eveld, is equivalent to the event to be defined
in (54). Lemmal?2 also justifies the choice of,, in nodewise regressions (cf. Theordrs). We
then bound event) in Lemmal3. Both proofs appear in Sectigh3.

Lemma 12 Suppose that < e"/4C3  Then with probability at least — 1/p?, we have

Vi #k, ‘%M,Xw < ov,VT T ay/2logp)/n (54)

whereoy, = \/Var(V;) anda > 6. HenceP (C,) > 1 — 1/p*.

Lemma 13 For arandom desigiX as in (1) with 3o ;; = 1,Vj € {1,...,p}, andforp < en/403
whereCs > 4./5/3, we have

P (Xp) > 1 — 1/max{n,p}>.

We note that the upper bounds prin Lemmal2 and 13 clearly hold given (Al). For the rest
of the paper, we prove Theorei® in SectionB for nodewise regressions. We proceed to derive
bounds on selecting an edge #ein SectionC. We then derive various bounds on the maximum
likelihood estimator giverF in Theorem19- 21 in SectionD, where we also prove Theorein
Next, we prove Lemma2 and13in SectionA.3.

A.3 Proof of Lemmal2and 13

We first state the following large inequality bound on pragduaf correlated normal random vari-
ables.

Lemma 14 Zhou et al[2008 Lemma 38]Given a set of identical independent random variables
Yi,...,Y, ~Y,whereY = zjxy, withzy, 29 ~ N(0,1) andoz = p12 With p12 < 1 being their
correlation coefficient. Let us now defige= 1 37 | V; =: L( X, Xo) = 2 5™ | 2y ;a0 ;. Let
Uiy = (1+0%)/2. For0 <7 < ¥y,

7_2
P(|Q —EQ| > 7) §exp{—1()(i’n7+0%2)} (55)
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Proof of Lemmal2. Itis clear that event4) is the same as evedy},. Clearly we have at
mostp(p — 1) unique entriesZ;,vj # k. By the union bound and by taking = C5 1"%
in (55) with o5, = 0,Vj, k, where\/2(1 4+ a) > Cy > 2,/10/3 for a > 6.

1
P <m%x]ij! > V2(1+a)y/ o§p>
j

1 3021
P | max |Zj| > Coy /22 ) < (p? — p)exp [ ——2 8P
jk n 10

2 2
3C5 logp :p_%+2<i2
10 P

1-P(C,)

IN

< plexp (—

where we apply Lemma4 with p;, = 0,Vj,k =1,...,p,j # k and use the fact th@~;;, = 0.
Note thatp < €™/ guarantees thaf, |/ %52 < 1/2.

In order to bound the probability of eveAf,, we first state the following large inequality bound

for the non-diagonal entries aiy, which follows immediately from Lemma4 by plugging in

0? =00, = 1,¥i =1,...,p and using the fact thato x| = |pjrojor| < 1,V # k, wherepjy,

i =

is the correlation coefficient between variabfésand Xj,. Let U5, = (1 + o2 ix)/2- Then

R 3nr?
PAg] >7) < _ A< — for 0 <7< W,,. 56
(1A T)_GXP{ 10(1+037jk)}_exp{ 50 } <7< Wy (56)

We now also state a large deviation bound for{Bedistribution PJohnstong20071:

2

2 _
P<&—1>T> < exp< 3nT>,f0rO§T§

n 16 (57

1
5
Lemmal3follows from (56) and £7) immediately.

Proof of Lemmal3. Now it is clear that we have(p — 1)/2 unique non-diagonal entries

oo jk,Vj # k andp diagonal entries. By the union bound and by taking= Cs4/ w
in (57) and ©6) with o j;, < 1, we have

P((X)) = P (H;%X‘Ajk’ > @,J@)

3C2 log max{p, n 2 3C2log max{p,n
< pexp<_ 3 g16 {p }>+p zpexp<_ 3 g20 {p }>
3C?2 log max{p,n} _3c3 1
< 2 _ 3 ) — 20 +2 -
< p eXP( 50 (max{p,n}) < Tmaxp ]2

for C5 > 4,/5/3, where for the diagonal entries we u&&), and for the non-diagonal entries, we
use 66). Finally, p < ¢"/4C3 guarantees tha@,dw <1/2. 1
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Appendix B. Bounds for nodewise regressions

In Theorem15 and Lemmal6 we lets{, be as in 88) and7{; denote locations of the/, largest
coefficients of3’ in absolute values. For the vectht to be defined in Theorerh5, we let 7%
denote thes{ largest positions ofi’ in absolute values outside @f; Let T¢, = T U T}. We
suppress the superscripty, 77, andT¢, throughout this section for clarity.

Theorem 15 (Oracle inequalities of the nodewise regressishLet0 < 6 < 1. Letpyin(s) > 0,
wheres < p is the maximum node-degree @ SupposeRFE(sg,4,>) holds forsy < s as
in (39), whereX, ;; = 1 forall i. SupPOSEImax(max(s,3sg)) < oco. The data is generated by
XM XM iid. ~ N, (0,%0), where the sample sizesatisfieg51).

Consider the nodewise regressiongif), where for eachi, we regressX; onto the other variables
{Xk; k # i} following (2), whereV; ~ N (0, Var(V;)) is independent ok ;, Vj # i as in(3).

Let 3¢, be an optimal solution t¢10) for eachi. Let), = doA = djAov; Whered, is chosen
such thatdy > 2(1 + 6)/1 + a holds for some. > 6. Leth’ = i — 37, . Then simultaneously
for all i, onC, N X, whereX := R(0) N F(0) N M(6), we have

|G~ B, < A/sidor/2D3 +2D7 + 2, where
Ihnll, < Dodody/sj and |

whereDy, D, are defined i(109) and (110) respectively.

< Didg)s} (58)

7 _ )
hrg |, = Hﬁinit,Tg )

Suppose we choose for some constgnt 4v/2 andag = 7,

dO = 00(1 + 9)2\/pmax(3)pmax(330)7
where we assume thaf,.x (max(s, 3s9)) < oo is reasonably bounded. Then

49K?(s9,4,%0)

5K2(307 47 EO)
Dy < ———— 7
0 16(1 — 6)2

andD; <
The choice ofiy will be justified in Sectior, where we also the upper bound by, D, as above.

Proof Consider each regression function 0 with X.,; being the design matrix and; the
response vector, wherg.,; denotes columns ot excludingX;. Itis clear that for\, = doA, we
have fori = 1,...,p anda > 6,

A = (do/ov;)ov X == dyov, A > doday, > 2(1 + 0)AV1 + aoy, = 2(1 + 0)Asap
such that {08) holds given thaty, < 1, Vi, where it is understood that:= oy;.

Itis also clear that oG, N X, eventZ, N X holds for each regression when we invoke TheoB3n
with Y := X; andX := X, fori =1,...,p. By definitiond{oy, = dy. We can then invoke
bounds for each individual regression as in TheoBto conclude. [ |

30



HIGH-DIMENSIONAL COVARIANCE ESTIMATION

Appendix C. Bounds on thresholding

In this section, we first show Lemmnis, following conditions in Theoreni5. We then show
Corollary 17, which proves Propositiod and the first statement of Theorem D, D, are the
same constants as in Theorém

Lemma 16 Suppose&RE (s, 4, X) holds fors be as in(39) and pin(s) > 0, wheres < pis the
maximum node-degree @&. SUPPOS®max(max(s,3sg)) < cco. LetS' = {j : j # 14, () # 0}.
Letcy > 41/2 be some absolute constant. Suppoesatisfieg51). Let Bt be an optimal solution
to (10) with

An = doA Where dy = ¢o(1 + 0) \/pmaX (8)Pmax (350);

Suppose for each regression, we apply the same threshaldimtp obtain a subsek’ as follows,
I'={j:5#4 |BLnt| = to=foA}, and D" :={1,...,i—1i+1,...p}\ I’

where fy := D,4d, for some constanb, to be specified. Then we have on evgnt X',

I’ < sh(14 Dy/Dy)and |I'USY| < s'+ (Dy/Dy)sy and (59)
185, < dory/shv/T+ (Do + Di)? (60)

whereD is understood to b@".

Recalloy = 251. Let ©pp denote the submatrix &, indexed byD as in @4) with all other
positions set to be 0. Ldf, be the true edge set.

Corollary 17 Suppose all conditions in Lemm& hold. Then on everdt, N X, for Oy as in(26)
and E as in(25), we have forSy ,, as in(39) and©y = (6 ;;)

|E| < (14 D1/D4)Sp,, Where |E\ Eoy| < (D1/D41)Son (61)
usl = [0~ e,

< \/min{So,n(igllaXp 02 ), so | diag(©0)[|7}v/ (1 + (Do + Da)?)doX (62)

= /S0 (1+ (Do + Da)2)Cuiagedo
whereC3,,, := min{max,—1_ ;03 ;;, (s0/So.n) |diag(©0)|| %} For D4 > Dy, we have(19).
Proof By the OR rule in §), we could select at mo3t'_, |I;| edges. We have by9)

B < Z (14 D1/Dy)sfy = (14 D1/D4) Son
i=1,..p

where(D;/Dy)Sy,y, is an upper bound ofE \ Ey| by (63). Thus

1©0pl3 < ZHOMH%HQ (14 (Do + Dy)* dO)‘2ZQOWSO
=1

< mln{Som(iI:nlaxp Qo,n')a S0 Hdiag(@o)H%}(l + (Do + D4)?)dg A\

31



ZHoU, RUTIMANN, XU, AND BUHLMANN

Remark 18 Note that ifsq is small, then the second termdry;,, will provide a tighter bound.

Proofof Lemmal6. LetT; := T} denote thes largest coefficients o’ in absolute values.
We have

1 . .
—_ S Dldosé/(D4d0) § Dlsé/D4 (63)
1 fo/\

by (58), whereD; is understood to be the same constant that appeas8)inThus we have

' NTg| < ‘ 5iinit,TOC

[I'] = [I' N Tg| + |I' N Ty| < sh(1+ D1/Dy).
Now the second inequality irb@) clearly holds given§3) and the following:
IO ST < [S| 4 17N (517 < "+ | I° N (Tg)°)-

We now bouno”ﬁ%“i following essentially the arguments asihou[2009. We have

; 2
57“501)‘ 5’

185l = [18reolls + |

4 2 T 4
where for the second term, we haWé%gﬁD ‘2 < Hﬂ,}oc ‘2 < syA’ot, by definition ofs{, as in 38)
and @1); For the first term, we have by the triangle inequality abg)(

185moll, < 18 = Bz |y + || (B moro |,
< (8 - Buoml, + tov/TTo N D] < lIhmy 1y + toy/sh

< DodgAy/ Sé + D4d0)\\/% < (Do + Dy)doAy/ 36.

Appendix D. Bounds on MLE refitting

Recall the maximum likelihood estima@n minimizes over al € §,, the empirical risk:

O,(E) = arg min R,(©) :=arg min {tr(@fn) —log|©[} (64)
SIS oest nsk,

which gives the “best” refitted sparse estimator given asspaubset of edgels that we obtain
from the nodewise regressions and thresholding. We notelibaestimator §4) remains to be
a convex optimization problem, as the constraint set isritersection the positive definite cone
S” . and the linear subspacg,. Implicitly, by usingT', rather thanS,, in (64), we force the
diagonal entries irﬁ(:)n(E))‘1 to be identicallyl. It is not hard to see that the estimaté#) is
equivalent to {4), after we replacén with T',.
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Theorem 19 Consider data generating random variables as in expresgl@hand assume that
(A1), (36), and (37) hold. Supposé&ly;; = 1 for all i. LetE be some event such tha(&) >
1 — d/p? for a small constant. Let S, ,, be as defined i(39); Suppose on eveist

1. We obtain an edge sét such that its siz¢E| = lin (Sp,,,) is a linear function inS ,,.

2. And foréo as in(26) and for some constartty;;sto be specified, we have

100l 1= Héo . @()HF < Chias\/2S0.0 log(p)/n < ¢/32. (65)

Let (:)n(E) be as defined if64). Suppose the sample size satisfiestor> 4,/5/3,

106

32

2
m) max {2\E! log max(n, p), C’gias2507n log p} . (66)

Then on evenf N X, we have foM = (9/(2k?)) - (4C5 + 32/(31c?))

H@H(E) — @OHF < (M + 1) max {\/2|E| log max(n, p)/n, Chias\/250n log(p)/n} . (67)

We note that although Theoreh® is meant for proving Theorerh, we state it as an independent
result; For example, one can indeed tdkdrom Corollary 17, where we haveE| < ¢Sy, for
some constantfor Dy =< Dy. In view of (62), we aim to recove®, by (:)n(E) as defined in@4).

In SectionD.2, we will focus in Theoreni9 on bounding folV suitably chosen,

Hé"(E) — (:)()HF =Op <W\/So7n logmax(n,p)/n> .

By the triangle inequality, we conclude that

H(:)n(E) - eOHF < Hén(E) - éOHF + Héo - GOHF — 0p <W\ /Som log(n)/n> .

We now state bounds for the convergence rate on Frobenins oftthe covariance matrix and for
KL divergence. We note that constants have not been optimiPeoofs of Theoren20 and21
appear in Sectio.3andD.4 respectively.

Theorem 20 Suppose all conditions, events, and bounds Bhand ||©¢ 1|, in Theorem19
hold. Let©,,(E) be as defined ii64). Suppose the sample size satisfiesdor> 4./5/3 and
Chias, M as defined in Theorei®
106
> — <4C3 +

c2k*

32

2
@> max {2\E! log max(p,n), Cgias2507n log p} . (68)

Then on evenf N X, we havepy, (0,,(E)) > ¢/2 > 0 and forS,,(E) = (6,(E)),

\inw)—onFgwmax{\/2'E“0gmaX(”’p> Cbias %Tk’g(’”} (69)

c? n
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Theorem 21 Suppose all conditions, events, and bounds/gnand ||©¢.p|| . := Héo — GOHF

in Theorem19 hold. Let(:)n(E) be as defined irf64). Suppose the sample size satis{ie®)
for C5 > 4./5/3 and Chjas, M as defined in Theorem9. Then on evenf N &), we have for
R(©,(F)) — R(6g) >0,

R(©,(E))— R(0y) < M(Cs+1/8) max {2|E|log max(n,p)/n, CEa2Son log(p)/n} . (70)

D.1 Proof of Theorem1

Clearly the sample requirement as 1) is satisfied for somé > 0 that is appropriately chosen,
given (66). In view of Corollary17, we have orf := X NC,: for Cyj,e as in (L8)

@0l = H@)o — @OHF < Chias\/ 250, 1og(p)/n < ¢/32 where

. S .
s = mm{,max 93,“-,—0udlag@o)u%}d%<1+<Do+D4>2>

21 04 5y

D
|E| < (1 + D—i)S()m < QSO’n for D, > Dy and

= Cgiagd(%(l + (DO + D4)2) (71)

Clearly the last inequality in65) hold so long as» > 322Cg,250., log(p)/c?, which holds
given (66). Plugging in|E| in (67), we have orf N Xy,

On(E) — 09| < (M + 1) max 2(1 4 D1/Dy4)So,nlog max(n,p)’ Chine 250 log p
F . -

Now if we takeD4 > Dy, then we havel(9) on event£; and moreover 0l N Xy,

“(:)n(E) - @()HF < (M + 1) max {\/4507n log max(n, p)/n, Chias\/2S0.n log(p)/n}

< W\/Som log max(n, p)/n

whereW < /2(M + 1) max{Caiagdo+/1 + (Do + D4)2,2}. Similarly, we get the bound on

‘ f)n -0 - with Theorem20, and the bound on risk following Theorebi. Thus all statements
in Theoreml hold. B

Remark 22 Suppose everdt N X holds. Now suppose that we takg = 1, that is, if we take
the threshold to be exactly the penalty parametgr

to = do/\ = /\n

Then we have on eveéfitby (61) |[E| < (1 + D;1)So,, and|E \ Ey| < D15y, and on event on
EN Ay, for Ct/)ias = Cdiagdo 1+ (Do + 1)2

16,051 60| < A { [T DS logmang] (3506
F n "
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It is not hard to see that we achieve essential the same raséassd in Theorem, with perhaps
slightly more edges included if.

D.2 Proof of Theorem19

Suppose everff holds throughout this proof. We first obtain the bound on spet of Oq: Itis
clear that by 86) and ©5), we have ort,

Omin(©0) > Omin(O0) — Héo — @0H2 > @min(©0) — [|©0p|| p > 31¢/32, (72)

~ ~ C 1
(pmax(GO) < (Pmax(GO) + Heo - 60H2 S (pmax(GO) + HGO,DHF < 3__2 + E (73)

Throughout this proof, we le£y = (o0,;) := O . In view of (72), defineX; := (Oy)~'. We
use®,, := 0,,(E) as a shorthand.

Given©y ¢ SY . NS}, as guaranteed ifYQ), let us define a new convex set:
Un(69) := (S? . NSY) — 6y ={B—-6y|BeS’, NS} S

which is a translation of the original convex s&f, N Sy. Let0 be a matrix with all entries
being zero. Thus it is clear thaf,(6,) > 0 given that®, € S”_, N Sh. Define for R, as in
expression &4)
Q(O) = Ru(O)— Rn(6g) = tx(OT,) — log O] — tr(BL,) + log [O¢|
— ((@ — 8)(T — io)) ~ (log|©)| — log |p|) + tr ((@ - éo)io) :

For an appropriately chosety and a large enough/ > 0, let

T, = {A€U,(O0),||Alp=Mr,}, and (74)

M, = {A€U.(B0),||Ally < Mry,}. (75)

It is clear that botH1,, andT,, U II,, are convex. It is also clear thate II,,. Throughout this

section, we let
2|F|1 12501
Ty = Max { \/ ’ ‘ 8 I:llaX(m p) 5 C'bias w } . (76)

Define forA < Un(@o),

G(A) = QO + A) = tr(A(T, — %)) — (log[Bo + A| —log[6o]) + tr(AS)  (77)
Itis clear thatG(A) is a convex function oi/,, () andG(0) = Q(6,) = 0.
Now, ©,, minimizesQ(0), or equivalentlyA = ©,, — ©, minimizesG(A). Hence by definition,

G(A) < G(0) =0
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Note thatT,, is non-empty, while clearly) € II,,. Indeed, consideB, := (1 + 6)(:)0, where
e > 0; it is clear thatB. — ©y € S”, N &Y andHB6 — (:)()HF = |e| éOHF = Mr, for |e| =

Mr,/

‘(:DOHF. Note also ifA € T,,, thenA;; = 0V(i, j : ¢ # j) ¢ E; Thus we have\ € S}, and
1Al = l[diag(A)lo + [loffd(A)[ly < p+2[E| where|E| = 1in (Son). (78)
We now show the following two propositions. Propositi@®follows from standard results.

Proposition 23 Let B be ap x p matrix. If B = 0andB + D > 0, thenB + vD > 0 for all
v € [0,1].
Proposition 24 Under (36), we have for allA € T,, such that|Al|, = M, for r, as in(76),

©¢ + vA > 0,Yv € an open interval D [0, 1] on event.

Proof In view of Proposition23, it is sufficient to show tha® + (1+e)A, ©o — eA = 0 for
somes > 0. Indeed, by definition o\ € T,,, we havep,i, (0o + A) = 0 on event; thus
min(©0 + (1 +6)A) > omin(Bg+ A) —e||All, > 0
andgmin(©9 — eA) > ©min(O0) — e[| A, > 31¢/32 — ¢ ||All, > 0

for e > 0 that is sufficiently small. [ |

Thus we have thabg |6, + vA| is infinitely differentiable on the open intervél > [0,1] of v.
This allows us to use the Taylor’'s formula with integral rentier to obtain the following:

Lemma 25 On event N &y, G(A) > 0forall A € T,,.

Proof Let us used as a shorthand for
1 o~ ~
vecAT </ (1 —v)(0p +vA)™' @ (6 + vA)_ldv> vecA,
0

where® is the Kronecker product (i = (w;;)mxn, P = (bie)pxq, thenNW QP = (w;; P)mpxng)
andvecA € R?” is A,xp vectorized. Now, the Taylor expansion gives forallc T,

_ _ d. ~ 1 2~
log |09 + A —log|©g| = %log]@o—i-’uAHU:oA—F/(1—v)wlog\@o+vA]dv
0
= tr(SoA) — A.

Hence for allA € T,,,
G(A) = A +tr (A(fn - i:o)) — At (A(fn - zo)) _— (A(io - zo)) (79)

where we first bouncﬂr(A(io — Yp)) as follows: by 65) and (72), we have on everf

(Ao —2o)| = (4, (S0 - %0)| < IAlx [Fo - %o,
[©0,pl
< |Allp ———F
@min(GO)@min(@O)
32Chias\/250. log p/n 327,
) < )
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Conditioned on event), by (89) and ©6)

max ’fn,jk —oo,jk| < 4C3\/log max(n,p)/n =: 6.
Ji
Thus on event N X, we have‘tr(A(fn - Eo))‘ < 8, |offd(A)|, , where

loffd(A)]; < /lloffd(A)g [[offd(A)|[» < V2IE][|All

and

tr (AT~ %)) = —4Csv/logmax(n,p)/ny/2E Al = ~4Csm [ Ally . (8D)
Finally, we boundA. First we note that fo € T,,, we have on everd,

1All, < [[A]lfp = Mr, < (82)

T
16k’

2
given @6): n > (32 - )2 (4(}3 + %) max { (2|E|) log(n), CZa2S0,»logp}. Now we have

by (73) and @7) following Rothman et al[200{ (see Page 502, proof of Theorem 1 therein): on
eventé,

~ 9 ~ 2
Az a0/ (2 (max(®) + 14])
1 ¢ 7 2k?
> 2 — = _1 )2 2 —
> 18I/ (2 + 5+ 1) > 1aIE 2 3)

Now on even€ N Ay, for all A € T,,, we have by79),(83), (81), and @0),

~ 2k 32r,
G(A) 1Al 5 312

2k 1 32r
— A 2 - _ 4 n =n
| ”F( g HAHF(C” +3192>)

B ) (265 1 32
— HAHF<9 i 403+31Q2

hence we havél/(A) > 0 for M large enough, in particulall = (9/(2k2)) (4C3 + 32/(31¢?))
suffices. [ |

V

— 4G [Allp = 1Al

We next state Propositia?t, which follows exactly that of Claim 12 afhou et al[2009.

Proposition 26 Suppose eveit holds. IfG(A) > 0,VA € T, thenG(A) > 0 for all A in
W, = {A: A € Up(©0), |Allp > Mry}
for r,, as in(76); Hence ifG(A) > 0 for all A € T,,, thenG(A) > 0 forall A € T,, UW,,.
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Note that for®,, € S7, NS%, we haveA = ©,, — O, € U,(6y). By Proposition26 and the fact
thatG(A) < G(0) = 0 on event€, we have the following: on eveit, if G(A) > 0,VA € T,
then||A||p < Mr,, given thatA € U,(6,) \ (T, UW,). Therefore

P(IBlIF 2 Mra) < PE)+PE)-P(JA]r 2 Mroe)
&) +P () (1 =P (|Allr < Mry€))

B
B
PE)+P(E
B
B

< ) (1— ( (A)>OVA€T\5))
< PE)+P(E)-(1-P(X[E))

= P(E)+P(XENE) < P(ES) + P (XY

- < n 1 - c+1

- p* max(n,p)? T p*

We thus establish that the theorem hollks.

D.3 Frobenius norm for the covariance matrix

We use the bound o (:)n(E) — 09 - as developed in Theoref®; in addition, we strengthen
the bound onM/r,, in (82) in (85). Before we proceed, we note the following bound on bias of

(©0)7!
Remark 27 Clearly we have on evest, by (80)

6 2Chiasy/2S0.n 1og p/n
|@ = x|« —NQonlle e 2orlompin gy
F Somm(@o)@mm(@(]) 31C

Proof of Theorem20. Suppose everdt N A, holds. Now suppose

16 9 32 \?
n > (7—9 . @)2 <C3 + 31—92> max {2|E| log max(n, p), CgiaQSo,n logp}

which clearly holds giveng8). Then in addition to the bound ii8%), on eventf N X;, we have
Mr,, < 7c/16, (85)

for r,, as in (76). Then, by Theorem9, for the same\/ as therein, on everd N &), we have

H(:)n( @oH (M+1 max{\/2\E]10gmax(n p)/n, Chias\/ 250, log(p )/n}

given that sample bound ir6®) is clearly satisfied. We now proceed to bouH\ﬁn — EOHF
given (67). First note that by&5), we have on everf N X for M > 7

@min(én(E))

v

Puin(©0) = {81 = ©0]|, = ¢nin(©0) = |6 — €0
c— (M +1)r, > ¢/2.

V
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Now clearly on event N X}, (69) holds by 67) and
|6n(E) - @()HF
(pmin(én(E))QOmin(@()) c?

an—xu <
(E) o, =

‘ ~

D.4 Risk consistency

We now derive the bound on risk consistency. Before provihgdfem?21, we first state two
lemmas given the following decomposition of our loss in tewhthe risk as defined irn{):

0 < R(6,(E)) — R(©g) = (R(6,(E)) — R(6y)) + (R(89) — R(6y)) (86)

where clearlyR(0,,(E)) > R(O,) by definition. Itis clear tha®, € S, for S, as defined in1),
and thusR,,(0¢) > R, (0,(E)) by definition of©,,(E) = argminecs, Rn(O).
We now bound the two terms on the RHS 86), where clearlyR(6,) > R(O).

Lemma 28 On event, we have foilChjas, O, (:)0 as in Theoreni9,

2S0,n logp
2n

for r,, as in(76), where the last inequality holds given thiat > 9/2(4C5 + 32/(31c?)).

0 < R(Bg) — R(O) < (32/(31¢))*Chias < (32/(31¢))* - rp/2 < M1y /8
Lemma 29 Underé& N A}, we have for, as in(76) and M, C5 as in Theoreni9

R(6,(E)) — R(6g) < MCyr2,

Proof of Theorem21. We have orf N Xy, for r,, is asin {6)
R(64(E)) — R(6o) = (R(O4(E)) ~ R(Bv)) + (R(Bo) — R(Bp)) < Mr(Cs +1/8)
as desired, using Lemng8 and29. &
Proofof Lemma28. For simplicity, we use\, as a shorthand for the rest of our proof:
Ag = Oyp = 6 — 6.

We useB as a shorthand for
1
vecAoT </ (1 —2)(0p +vA¢) ™' @ (09 + UAQ)_ldU> vecAy,
0

where® is the Kronecker product. First, we have féﬁ, Oy =0

R(éo) — R(@o) = tl‘((:)QZ()) — log ’(:)0’ — tr(@ogo) + log ‘@0’
== tr(((:)() — @0)20) — (log ‘(:)0’ — log ‘@0’) = E > 0
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whereB = 0 holds when|Ao| > = 0, and in the last equation, we bound the difference between
two log | - | terms using the Taylor's formula with integral remaindelidaving that in proof of
Theoreml9; Indeed, it is clear that oéi, we have

O +vAp > 0 for ve (—1,2) D[0,1]
given thatp,,in(©g) > cand||Ag|l, < [[Ao|lp < ¢/32 by (65). Thuslog |O¢ + vAy| is infinitely
differentiable on the open interval> [0, 1] of v. Now, the Taylor expansion gives
2

d ! d
log [©9 + Ag| —log|©g] = %log\@o—l—quoHU:vo—F/o (1—v)wlog]@o+’qu\dv

= tr(Zvo) — B.

We now obtain an upper bound @ > 0. Clearly, we have on eveist, Lemma28 holds given
that

_ 1
B < HAOH% * Pmax </0 (1 —0)(0g 4 vA¢)™! @ (09 + UAO)_ldv>

where||Ag||5 < C2.2S0., log(p)/n and
1
Pmax </ (1 — ’U)(@Q + UAQ)_l & (@0 + UAQ)_ldU>
0

1 1
< / (1- ’u)cprznax(@o + UAO)_ldv < sup cprznax(@o + UAO)_l / (1 —v)dv
0 vel0,1] 0

1 1
= — Sup = -
2 ve0.1] Phin(Q0 +vAg)  2inf,ep0.1) 924, (O0 + vA))
1 1

2 (o (O0) — B0l ~ 2(31c/32)°

where clearly for alb € [0, 1], we havep? . (Qg +vAg) > (Pmin(O0) — [|Aolly)* > (31¢/32)%,
givencpmin(GO) >c andHAOH2 < HGO,DHF < 2/32 by (65). &

Proofof Lemma29. SupposeR(0,,(E)) — R(6) < 0, then we are done.
Otherwise, assumg(0,,(E)) — R(O,) > 0 throughout the rest of the proof. Define
A :=6,(E) - 6y,
which by Theorenml9, we have on everf N A}, and forM as defined therein,

1], = [6ut61- 8, < 0

We have by definition,, (6,,(E)) < R,(6y), and hence
0< R(O,(E)) — R(©g) = R(O,(E)) = Ru(On(E)) + Rn(0,(E)) — R(Oy)
< R(OL(E)) — Ru(On(E)) + Rn(©o) — R(Sy)
= tr(@)n(E)(Eo — fn)) - tr(éO(EO - fn))
= tr((@n(E) — (:)0)(20 - fn)) = tr(ﬁ(zo - fn))
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Now, conditioned on everd N X}, following the same arguments arourgl), we have

‘tr (3(§n - 20))‘ < 6, offd(ﬁ)(l < 5n\/mHoﬁd(£)HF
< Mran\/2]E\ log max(n,p)/n < MCgr,%

whereHoffd(ﬁ) HO < 2| E| by definition, and, is as defined in76). W

Appendix E. Proof of Theorem6

We first boundP (Xj) in Lemma30, which follows exactly that of Lemma3 as the covariance
matrix ¥ for variablesX; /oy, ..., X, /o, satisfy the condition tha¥ ;; = 1,Vi € {1,...,p}.

Lemma 30 For p < en/4Cs whereCs > 4./5/3, we have forX, as defined in{53)

P (Xp) > 1 — 1/max{n,p}>.

On eventt, the following holds forr = Cs4/ w < 1/2, where we assume < en/4C3

X; |2
Vi, | 2”2—1 < 7 (87)
O’in
1
Vi j, |=(Xi/oi, Xj/oj) —poij| < T (88)
n

Let us first derive the large deviation bound fﬁrnvi]— — 00,ij

V1—1 < | Xilly /(oiv/n) < V1 +7andforalli # j

. First note that on evenk)

~

N S . N
Lnjij — po,ij| = 8%”- = poij| = |Pij — Po,ijl
9
L(Xi/oi,X;/0i) — poij P0,ij

'UIXZ-HQ Joi/m)) - (X1 o/m) (Xl o) - (Il oy

- W Xi/oi,Xj/05) — po +‘ P0,ij o
= Xl forv/m) - (151, /ov/m)) | 1 (Xlly /(oov/n) - (X, /(ogv/m)) 7Y
< T il | - 1| < o < (89)

Proof of Theorem6. For®, as in ©6), we define

Qy = WOW = W(diag(0o))W + WOq gynreW
= diag(WO W) + WOq gyneW = diag(Qo) + Qo,zonE
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wherelV = diag(2)"/2. Then clearly € S,, asO € S,,. We first bound|Qp p ||, as follows.

k
1©0pllp < Chiasy/250,, log(p)/n < —
VIHG?, (40 + )
(48¢%02. C5+13)02. — 48C502 . 1302 ) — 1302«

Suppose everf holds throughout this proof. We first obtain the bound on spet of Qq: ltis
clear that by 86) and 33), we have ort,

12
13’7

c 1
£ L2
3o, kO

min(©0) > ©min(O0) — Héo - @0H2 > ¢min(©0) — |O0p|| > (90)

(pmax(éO) < Spmax((aO) + Héo - ®0H2 S Spmax((aO) + HGO,DHF <
Throughout this proof, we lefy = (0,;) := ©5 . In view of (90), defineX := (6)~". Then
Ol =W Oy Wl =wIE Wt =T, (92)

We useQ),, := O,,(E) as a shorthand. Thus we have fay = WO, W,

2

O Q) O max [4
(:Dmax(QO) S Spmax(W)SDmax(GO)(Pmax(W) S A + 1_3
~ 1 1 1
(:Dmin(QO) - =~ - S 1 - 12 =
(:Dmax(\IIO) (Pmax(W ZOW/ ) Spmax(W ) Spmax(ZO)
(:Dmin(W)2 2 ~ 2 122
= — = .= (pmin(W) (Pmin(GO) > Omin 74 (93)
(:Omax(EO) 13

GivenQ € S¥ . NS, as guaranteed ir9g), let us define a new convex set:
Un(Q0) = (S, NSE) —Qy={B-Q|BeS NSk} cSh
which is a translation of the original convex s&f, N S,. Let0 be a matrix with all entries
being zero. Thus it is clear thé,(Q) > 0 given thatQ € S”, N S%. Define forR,, as in
expression0),
Q) = R.(Q) — R,(Q) = tr(QT,) — log || — tr(QT,) + log [
= tr ((Q —Qo)(T, — \io)) — (log |9 — log [Q]) + tr ((Q - fzo)xio) .

For an appropriately chosety and a large enough?/ > 0, let

T, = {AeU,(Q),||Allp=Mr,}, and (94)

I, = {AcU(Q)|Alp < Mry}. (95)

It is clear that botHI,, andT,, U II,, are convex. It is also clear thate II,,. Define forA ¢
Un(QO):

G(A) = Q0 + A) = tr(AT, — g)) — (log | + A| —log | Q) + tr(ATy)  (96)
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Itis clear thatG(A) is a convex function oi/,, () andG(0) = Q(€) = 0.
Now, ©2,, minimizesQ(€2), or equivalentlyA = ,, — Q minimizesG(A). Hence by definition,

G(A)<GO) =0

Note thatT,, is non-empty, while clearly) € II,,. Indeed, consideB, := (1 + e)ﬁo, where
¢ > 0; itis clear thatB, — Qy € S”,. N S% andHBe — QOHF = || HQOHF = Mr, for |¢| =

Mr,/ ‘QOHF Note also ifA € Ty, thenA,; = 0¥(i,j : i # j) ¢ E; Thus we have\ € S}, and

1Allg = [Idiag(A)llg + [loffd(A)[lg < p + 2[E| where[E| = lin (So,n)- (97)
We now show the following proposition.

Proposition 31 Under (36), we have for allA € T,, such that|Al|, = M, for r, as in(76),
Qo+ vA = 0,Vv € an open interval O [0, 1] on event.

Proof In view of Proposition23, it is sufficient to show thaf + (1 + £)A, €y — eA = 0 for
somes > 0. Indeed, by definition oA € T,,, we havep,i, (2o + A) = 0 on event; thus
min(Q0 + (1+)A) > ouin(Qo+A) —e||A]l, >0
andgmin(Q — €A) > @min(Q) — e ||All, > 1202,,¢/13 — ¢ |All, > 0
for ¢ > 0 that is sufficiently small. [ |

Thus we have thabg |Q + vA| is infinitely differentiable on the open interval > [0, 1] of v.
This allows us to use the Taylor’'s formula with integral rentier to obtain the following:

Lemma 32 On event N &y, G(A) > 0forall A € T,,.

Proof Let us used as a shorthand for
1 ~ ~
vecAT </ (1 —)(Qo +vA) @ (Q + ’UA)_Idv> vecA,
0

where® is the Kronecker product (i = (w;;j)mxn, P = (bie)pxq, thenNW QP = (w;; P)mpxng)
andvecA € R”” is A,xp vectorized. Now, the Taylor expansion gives forallc T,

log |9 + A| —log || = % log | + vA[|y—oA + /01(1 — v)dd—; log [Qo + vA|dv
= tr(ToA) — A
Hence for allA € T,,,
G(A) = A+ tr (A, ~ Bo)) = A+ tr (AT, - Wo)) —tr (A(To— Wo))  (98)

where we first boundr(A(\flo — Uy)) as follows: by 83) and (72), we have on everl

(A — ¥o))| = [(A (T - 20))| < [1Al]p || o — o

13r,
A F

2 2
O min&

IN

(99)
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where we boun#i‘\ffo — \IJOHF as follows:

[Fo—wo| = W S0 —soyw || < max w2 S — 5
F F 7 F
1 1©0,pl &
T2in Pmin(©0)Pmin (O0)

Cb|as\/ 2SO nlog p/n < 137,

- 12 mmc2/13 - 120mm c?

Now, conditioned on evenkj, by (89)

n}f}fx \fn]k — po,jk| < 4C3+/log max(n,p)/n =: 5,

and thus on evenf N X,, we have‘tr(A(fn — \I/O))‘ < 4, [offd(A)|;, where|offd(A)|; <

loffd(A)[l loffd(A)[| < /2| E| |Al[, and

tr (AT, —0)) = ~4Cs\/logmax(n,p)/ny/2IE] Al = ~4Csm, |A]| . (200)

Finally, we boundA. First we note that fo € T,,, we have on everd,

3 glax
1Ally < IAlp = Mr < =%, (101)

2
given B4): n > (5 - ) 0 max (403 + W) max {2|E|) log max(n, p), Cpias2S0,n 10g p} -
Now we have by 1) and @37) following Rothman et al[2009 (see Page 502, proof of Theorem 1
therein): on event,

A 2 A1/ (2 (@) + ||A||2)2)

1 3 2 2k?

Now on even€ N Ay, for all A € T,,, we have by $8),(102), (100), and Q9),

~ 2%? 13r,,
G(A) > IIAIIF9 T —4C3r, [|Allp — HAHFT

2
O max Omin€

2k> 1 13r
_ 2 K n
- ”A”F<9cfﬁm TAT, (403” T m>>

2k> 1 13
— 2 - -
= 130 (o (19 3 )

min=

hence we havé/(A) > 0 for M large enough, in particulayl = (952, /(2k?)) (4C5 +13/(1202,,¢%))
suffices. [ |

The rest of the proof follows that of Theoreld, see Propositio26 and the bounds which follow.
We thus establish that the theorem hollis.
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Appendix F. Oracle inequalities for the Lasso

In this section, we consider recoverigge R? in the following linear model:
Y =XB+e, (203)

where X follows (16) ande ~ N(0,021,). Recall given),, the Lasso estimator fo8 € R? is
defined as:

~ 1
B = argmin 2|V = X85 + AnllBlh, (104)

which corresponds to the regression functionif)(by lettingy” := X; and X := X.; where
X.\; denotes columns ok without:. Defines, as the smallest integer such that

p
Zmin( 2 A20%) < so\202, where A = \/2log p/n. (105)
=1
For X € F(0) as defined in43), define
XTe
To=1<¢€: - < (14 0)Xsap, Where X € F(0), for0 <60 <1, (106)

where), ,, = 0v/1+ a+/(2log p)/n, wherea > 0. We have (cf. Lemma&4)
P(Z,) > 1 — (\/wlogpp™) (107)
In fact, for such a bound to hold, we only n X'ylb <1+ 6,YjtoholdinF(#).

We now state Theore®3, which may be of independent interests as the bounds and/; loss
for the Lasso estimator are stated with respect taathtaal sparsitys, rather thans = | supp(3)|
as inBickel et al.[2009 Theorem 7.2]. The proof is omitted as on evéni X, it follows exactly
that of Zhou[2010h Theorem 5.1] for a deterministic design matfi which satisfies the RE
condition, with some suitable adjustments on the constants

Theorem 33 (Oracle inequalities of the Lassoyhou [20101] LetY = X + ¢, for € being
i.i.d. N(0,0%) and letX follow (16). Let s, be as in(105) and 7, denote locations of the,
largest coefficients of in absolute values. Suppose tHRE (sg, 4, ) holds withK (s, 4, X)
and pmin(s) > 0. Fix somel > 6 > 0. Let it be an optimal solution t¢104) with

An = dodo > 2(1 + 0)Aoayp (108)
wherea > 1 anddy > 2(1 + 0)+/1 + a. Leth = Binit — B1,- Define
X = R(6) N F(6) N M(6).
Suppose that satisfieq51). Then orZ, N X', we have

1Binit — Blls < Anv/S0\/2DE +2D3 + 2 := Ao\/sodo\/2D3 + 2D7 + 2,

HhTOc 1 < Dl)\nSO ::Dldo)\O'S(),
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whereD, and D; are defined irf{L09) and (110) respectively, an® (X N 7,) > 1—3exp(—ch?n/at)—
(v Togpp™)~*.

Let 77 denote thesy largest positions of. in absolute values outside @f); Let Ty, := Ty U T7.
The proof of Theoren83yields the following bounds oA’ N 7. ||hgy, ||, < DodoAo /5o where

Do = max {27 2\/5(1 + G)K(So,él, 30)\/ Pmax (s — S0) 3\/5[{2(30,4, >0) }(109)

do (1 —6)do (1-06)?
o 3(1 + 0) Pmax(s - 80) 2(1 + 9)4pmax(380)pmax(s - 80)
e = 0y o @50) Bl — 0 pum(2s0)
and
2
B 41+ 0)%pmax(s — s0) [ (1+0)\/pmax(s — s0) 3K (s0,4,%0)
Dlmax{ g ,( a + 2(1—0) ) }.(110)

We note that implicit in these constants, we have used theetdration bounds foA,.x(3s0),
Amax(s—s0) andAnin(2s) as derived in Theorerh0, given that ¢9) holds form < max(s, (ko+
1)sg), where we také; > 3. In general, these maximum sparse eigenvalues as definee ailb
increase withs, ands; Taking this issue into consideration, we fix fay > 4v/2, A, = doAo
where

do = co(1 + 0)*v/ pmax(s — 50) pmax (350) > 2(1 4+ 0)V1 + a,
where the second inequality holds for= 7 as desired, givep,ax(3s0), Pmax(s — so) > 1

Thus we have fopmax(330) > pmax(230) > pmin(230)

3 2
D/do B CO(l + 9)(1 - 9) \/pmax(330)\/pmin(230) " Cg(l - 9)2pmin(280)
3 pmin(230) 2

co(1 = 0)2\/pmax(350) pmin(250)  €5(1 = 0)pmin(250)
2(3co + 2) K?(s0,4, %) - TV2K?(s0,4,%0)
- c2(1—6)? - 8(1 — 0)2

which holds given thapy.x(3sp) > 1, and1l < # < V2K (s0,ko,%0), and thus
Pmin (450

1 : .
K20, 050) < 2 as shown in Lemma&5; Hence

Dy

IN

max{D/do, do(1—0)2

< 7K2(80747 EO) < 5K2(80747 E0)
= TVRQ-ep (-0
49K2(s9,4,%0)

6 1\,
< _ — <
Dy = (4(1—9)+4> K50, 4,%0) < 5 —gyr
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where for bothD;, we have used the fact that

2(14 0)%pmax(s — s0) 2 - 2
d? A1+ 0)2pmax(3s0) T (1 + 0)%pmin(2s0)
4K2(SQ,4, EO) < K2(SQ,4, EO)
d&(1+6)2 — 8 '

Appendix G. Misc bounds

Lemma 34 For fixed designX with max; || X;|2 < (1 4 0)y/n, where0 < 6 < 1, we have for
7., as defined ir{106), wherea > 0, P (7,¢) < (/7 log pp®) L.

Proof Define random variablest; = 1 37 | ¢, X; ;. Note thatmax;<j<, [Y;| = [ XTe/n| .
We haveE(Y;) = 0 andVar ((Y;)) = || X; Hg o?/n? < (14 6)a?/n. Lete; = 1+ 0. Obviously,

Y; has its tail probability dominated by that &f~ N (0, n2):

P(|Y;| >t) <P(|Z]| >t) <

—nt?
V2 20%0’62 '
We can now apply the union bound to obtain:
c1o —nt?
P Yi|>t) <
<f£fz<p| | ) S Pum exp<26ga2>
nt? t/mn >>
= exp|— + log —lo .
p< (2 102 \/_610 B

By choosingt = c;0v/1+ ay/2logp/n, the right-hand side is bounded by/r log pp®)~! for
a > 0. [ |

Lemma 35 (Zhou[20104) Suppose thalR E (s, ko, 29) holds forky > 0, then form = (ko +
1)80,

1

min(m) > ; and clearl
P ( ) \/2+k8K(SO,kO,EO) y
. 1
if o4 = 1,4, thenl > \/pmin(2s0) > for ky > 1.

T V2K (s0, ko, Xo)
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