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Abstract

Accurate volatility predictions are crucial for the successful implementation
of risk management. The use of high frequency data approximately renders
volatility from a latent to an observable quantity, and opens new directions to
forecast future volatilities. Our goals in this paper are: (i) to select an accurate
forecasting procedure for predicting volatilities based on high frequency data
from various standard models and modern prediction tools; (ii) to evaluate
the predictive potential of those volatility forecasts for both the realized and
the true latent volatility; and (iii) to quantify the differences using volatility
forecasts based on high frequency data and using a GARCH model for low
frequency (e.g. daily) data, and study its implication in risk management for
two widely used risk measures. The pay-off using high frequency data for the
true latent volatility is empirically found to be still present, but magnitudes
smaller than suggested by simple analysis.

JEL Classification: C22; C52; G10
Keywords: Forecasting, High-Frequency-Data, Predictive Potential, Risk Measures, Volatility

∗Corresponding author. Tel.: +41-1-632-5319; fax: +41-1-632-1228; e-mail: dettling@stat.math.ethz.ch

1



1 Introduction

Financial market volatility is the key ingredient in the theory of risk management, asset
pricing and asset allocation. Thus, accurate forecasts of the latent volatility are crucial
for the successful implementation of these techniques.

We define the latent volatility σt for the time period of one day as σt =
√

V ar(Rt | Ft−1),
where Rt is the daily return and Ft−1 is the information available on the return process
up to time t − 1. Prediction of σ2

t can be done on the basis of daily data using para-
metric volatility models such as ARCH or GARCH, or by using implied volatility out of
the Black-Scholes formula. A principal goal of the paper is to address the problem of
quantifying possible gains by using high frequency rather than daily data, see also the
discussion below.

The idea to use high frequency data for more reliable volatility estimation turned up
more than twenty years ago. In order not to lose all the information about the price
process in between, Officer (1973) computed annual volatilities from monthly returns,
whereas Merton (1980) used daily returns for the measurement of monthly volatilities.
Yet only recently the idea of using high frequency intra-daily data for estimating daily
volatility came up. Schwert (1998) was working with 15-minute returns, while Taylor and
Xu (1997) as well as Andersen et al. (1998) apply 5-minute returns to estimate daily
exchange rate volatilities.

Andersen et al. (1998) computed volatility estimates from aggregated high frequency
returns and found them so accurate that they introduced the term realized volatility. Those
realized volatilities σt;RV , being observable approximations for the latent volatility σt,
render new possibilities to forecast future volatilities. Our goals in this paper are

a) to find an accurate forecasting procedure for volatilities based on high frequency
data, and

b) to evaluate the quality of the volatility forecasts not only for future realized volatil-
ities σt;RV , but also for the true latent volatilities σt, and

c) to quantify the improvement of using accurate forecasts based on high frequency
data over a GARCH model for daily data and study its implication in the context
of risk management.

Regarding issue a), we consider a variety of modern techniques and prediction tools
for volatility forecasting based on realized volatilities. But surprisingly, detrending the
log-transformed realized volatility log(σt;RV ) by exponential smoothing, and modelling
the remaining stationary time series with a simple linear autoregressive (AR) model was
empirically found to have among the best overall predictive potential. We could not
exploit any advantages by using nonlinear modelling for the detrended log-realized volatil-
ities. An alternative approach using fractional differencing for long memory processes and
subsequent AR-modelling yields similarly accurate predictions.

Issue b) deals with judging volatility forecasts and addresses the problem of quantifying
possible gains using models based on high frequency instead of daily data. Assuming
a Brownian motion model for the continuous time prices, the realized volatilities σt;RV

converge to the corresponding true latent volatilities σt as sampling frequency grows, see
for example Andersen et al. (1998). Hence it is plausible to evaluate a forecast σ̂t by
comparing it with σt;RV . This approach has been pursued by Andersen et al. (1998),
but it does not fully reflect how accurately the target, namely the latent volatility σt,
can be estimated; this, because high frequency sampling is only an approximation to
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infinite sampling frequency and because the Brownian motion model may be (strongly)
inadequate. We propose to evaluate volatility forecasts σ̂t by assuming stationarity and
conditional mean zero of returns only: we then calibrate the squared prediction σ̂2

t against
the squared returns R2

t which are very noisy but unbiased estimates of the true squared
volatility σ2

t . This noise may disturb much of the differences between forecasts for the true
volatility, and we introduce here mean-type test statistics which reduce noise variance due
to averaging.

Considering issue c), we could exploit advantages of our powerful forecasting procedure
with high frequency data compared to a GARCH model with daily returns. Such gains can
then be quantified in terms of p-values rather than (relative) differences between perfor-
mance measures. An important application of volatility prediction is in risk management,
i.e. the computation of risk measures like value at risk or conditional expected shortfall.
We explore the advantage of more reliable high frequency volatility forecasts for improving
the quality of those two risk measures in comparison to the GARCH benchmark model.

The plan for the rest of the paper is as follows. In section 2 we explain how volatilities
on a high frequency basis are computed, and why this is sensible. Section 3 presents a
powerful method for volatility forecasting. The design and the results of our empirical
study are presented in sections 4 and 5, whereas section 6 discusses the impact of the
volatility predictions on the risk measures. Finally, we conclude with a brief summary in
section 7.

2 High Frequency Volatility

Let P(m),t, where t = 1
m , 2

m , . . ., denote the price of a financial asset, which is recorded
equidistantly m times per day. The time series of high frequency returns with m obser-
vations per day, corresponding to a return horizon of ∆t = 1

m , is then defined by the
logarithmic difference of the price process:

R(m),t = log
(
P(m),t

)
− log

(
P(m),t− 1

m

)
, t =

1
m

,
2
m

, . . . . (1)

Throughout the whole paper we assume that the conditional expected returns are equal
to zero, i.e. E[R(m),t | Ft− 1

m
] = 0, where Fs stands for the information about the return

process up to time s. In risk management, the main focus is on the daily return1 R(1),t

which equals Rt =
∑m−1

i=0 R(m),t− i
m

. Hence, high frequency returns do not provide any
new information about the daily return.

The hope to use high frequency data is to improve the estimate of the latent volatility
σt =

√
V ar(Rt | Ft−1). For a short time horizon ∆t, the latent volatility can be estimated

on the basis of the squared return, i.e. σ̂(m),t =
√

R2
(m),t. Again, in risk management the

variable of interest is the daily volatility σt, and not the one for a short time interval. An
estimate of the daily volatility σt, although not a prediction which would be a function of
Ft−1 only, is obtained by summing up the squared high frequency returns:

σ̂t = σt;RV =

√√√√m−1∑
i=0

R2
(m),t− i

m

(2)

Under the assumption of a continuous-time diffusion for the logarithmic price process
and sufficient regularity conditions, it can be shown by the theory of quadratic variation

1In order to simplify the notation, we will write Rt for R(1),t and σt for σ(1),t.
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that the sum of intra-day squared returns in (2) converges almost surely to the true
squared volatility σ2

t as the sampling frequency m goes to infinity. Hence, we can get an
asymptotically error-free estimate of the latent volatility factor by simply increasing the
sampling frequency and, therefore designate σ̂t as realized volatility, denoted by σt;RV .

In practice, due to market microstructure effects, logarithmic asset prices do not evolve
according to a diffusion process. As time intervals become shorter and shorter, especially
the assumption of independent increments becomes less and less realistic. Thus, the
theoretical result mentioned above will no longer hold, and the volatility estimator made
up of high frequency returns is no longer unbiased and consistent, see Corsi et al. (2001).

Thus, we are in a trade-off situation between stochastic error and bias. It has been
found that the return interval for which the bias is not significant is at the level of 2-3
hours even for the most liquid assets. Furthermore, the interval for which the bias has
no influence changes considerably from asset to asset. It is nowadays common to use
realized volatilities based on a return interval of 5 minutes, which is equivalent to m = 288
measurements per day.

Olsen&Associates kindly provided three datasets containing daily observations of high
frequency realized volatilities for the exchange rates between US Dollar and Swiss Franc
(US$/SFr), between US Dollar and Japanese Yen (US$/JPY), and between GB Pound
and US Dollar (GB£/US$) from January 1, 1990 through December 31, 1999. To obtain
greater variety of the data, the third exchange rate was chosen with respect to the US$,
whereas the others are with respect to a non US currency. The construction for realized
volatilities, using measurement intervals ∆t of 5 minutes, is actually more complicated
than described in formula (2): the preprocessing and bias corrections described in Corsi
et al. (2001) have been used. Such preprocessing is important and there seems to be still
room to improve upon that task. But this is beyond the scope of the present paper: we
rather take the view that the preprocessed realized volatilities are given to us as “good”
and useful auxiliary variables. All together, we have a total of 2600 such daily observations
of realized volatilities and log-returns per dataset.

3 Forecasting Volatility

Plotting the realized volatilities σt;RV against time, we recognize in figure 1 that its fluc-
tuations show substantial persistence and the upward spikes are much larger than the
downward spikes. The latter fact is an evidence of skewness in the data, which was also
confirmed by an analysis of the empirical distribution.

Since modelling of time series is easier under the assumption of normally distributed
data, we log-transform the realized volatilities. This results in a symmetric and approxi-
mately normal distribution of the transformed data. But still, the transformed time series
in figure 2 exhibits clearly defined periods of high and low observations. Thus, not sur-
prisingly, the empirical autocorrelation function shows a slow decay. This decay could be
interpreted as hyperbolic and thus as an evidence of long-range dependence. An alter-
native is to consider the presence of a deterministic component: we therefore apply the
classical decomposition model to the transformed time series,

log(σt;RV ) = Xt = mt + ξt, (3)

where mt = E[Xt] is deterministic and (ξt)t is a stochastic process with E[ξt] = 0, cf.
Brockwell and Davis (1991). Note that on the basis of data, it is very difficult or even
impossible to answer the question whether the (log-)realized volatilities are long-range de-
pendent or whether they are nonstationary due to a deterministic component, see Künsch
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Figure 1: The realized volatility (σt;RV )t∈{1,...,1000} for the exchange rate GB£/US$.
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Figure 2: The log-transformed series (Xt)t∈{1,...,1000} for the exchange rate GB£/US$.

(1986). In fact, we will see in section 4.2 that both long memory and decomposition
models yield very similar results. This is not surprising, as pointed out in more detail in
section 4.2.8.

We estimate the deterministic component with an asymmetric linear filter,

m̂t =
t−1∑
j=0

ajXt−j , (4)

which depends on a set of weights {aj} . We choose them with an exponential decay and
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standardize so that
∑

aj = 1,

aj =
αj∑t−1

k=0 αk
, where α ∈ (0, 1) and j = 0, 1, 2, . . . , t− 1. (5)

The technique specified above is known as exponential smoothing. The parameter α
is a tuning element. Empirically, we found a good performance with α = 0.05, but more
formal data-driven choices using outsample-optimization or cross-validation for dependent
data would be possible. See for example Gijbels et al. (1999), making a connection
of exponential smoothing to kernel smoothing. Subtraction of m̂t then leaves us with
residuals

Zt = Xt − m̂t, (6)

the empirical analogues to the ξt from (3). An inspection by descriptive techniques shows
that the residual process (Zt)t has a symmetric and approximately normal distribution.
Furthermore, it seems to be stationary. But most importantly, its sample autocorrelation
function is decaying quickly, which indicates that the deterministic component has been
successfully removed.

A simple parametric stochastic model for the residual time series (Zt)t is a linear
autoregressive model of order p, AR(p). On the other hand, nonlinear state of the art
forecasting procedures such as projection pursuit autoregression and dynamic combina-
tion of models may represent the residual process more accurately, and provide better
predictions. We will compute one step ahead forecasts

Ẑt+1 = ĝ(Zt, Zt−1, . . .), (7)

where ĝ(·) is an estimated prediction function, e.g. from an AR or from a nonlinear model.
We then use them in conjunction with a predictive estimate ̂̂mt+1 of the deterministic
component for the prediction of the log-realized volatilities. We assume that the trend
varies only slowly, so that mt+1 ≈ mt. The predictive estimate is then set as ̂̂mt+1 = m̂t.
Therefore, the predicted log-realized volatility is given by

X̂t+1 = m̂t + Ẑt+1. (8)

We will see in section 4.2 that, compared to more complex and nonlinear methods, we
obtain very competitive forecasting results if we use the simple AR model to estimate the
prediction function ĝ(·) for the residual process (Zt)t.

4 Predictive Potential for Realized Volatilities

4.1 Measuring Performance

The time series methods we will apply have unequal complexity. For a fair comparison, it
is therefore necessary to evaluate the predictive potential out-of-sample. It is important to
keep in mind that more complex forecasting procedures usually show a better performance
in-sample, without implying a better out-of-sample accuracy. Thus, we divide each of the
three datasets into a learning set L containing the first n = 1000 consecutive observations,
and a test set T containing the remaining m = 1600 observations. Once the models have
been fitted on the learning set L, we explore their performance on the test set T .

The standard approach for judging the predictive potential of any forecasting procedure
is to compare predictions and subsequent realizations. For the volatility σt which is a latent
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variable, the subsequent realizations are unknown. If we utilized the noisy estimate R2
t

for the squared volatility σ2
t , we could look at the magnitude of the difference R2

t − σ̂2
t;M,

where σ̂2
t;M is the volatility prediction obtained with a particular forecasting model M. If

Rt = σtεt (9)

with εt iid innovations having E[εt] = 0 and V ar(εt) = 1, then

R2
t − σ̂2

t;M = σ2
t − σ̂2

t;M + ηt, (10)

where ηt = σ2
t (ε

2
t − 1), satisfying E[ηt] = 0. This regression type representation has

typically extremely low signal to noise ratio, and a measure like

E[(R2
t − σ̂2

t;M)2] = E[(σ2
t − σ̂2

t;M)2] + E[η2
t ] (11)

or its empirical analogue
∑

t∈τ (R
2
t − σ̂2

t;M)2 is dominated by the large nuisance term E[η2
t ].

This implies that the values of the performance measure in (11) are very similar for a large
collection of forecasting models M, and hence not suitable for discrimination. One way to
improve the evaluation method in (11) is to substitute the subsequent realizations σt with
the realized volatilities σt;RV , which considerably lowers the magnitude of the nuisance
term E[η2

t ]. This approach was pursued by Andersen et al. (1998), but it may be biased
since it only measures the predictive potential for the realized volatility σt;RV , and not for
the true latent volatility σt which is our objective. We discuss in section 5 how to compare
accuracy of different prediction methods for the true latent volatility. However, to gain a
first impression of the performance of a particular forecasting model M, we will compute
the residual sum of squares,

RSSσ(M) =
∑
t∈T

(σt;RV − σ̂t;M)2. (12)

This criterion is not very robust and easily influenced by outliers. We will therefore also
compute the residual sum of absolute differences which is less sensitive to outliers:

RSADσ(M) =
∑
t∈T

|σt;RV − σ̂t;M| . (13)

4.2 Prediction Methods

This section contains an empirical study, where we explore the performance of standard
forecasting procedures and modern prediction tools for the volatility.

4.2.1 AR modelling

Our aim here is to find an accurate forecasting procedure for the empirical residual process
(Zt)t from the decomposition model in (6). Since a descriptive analysis of the residual
process (Zt)t shows that its sample autocorrelation function is decaying exponentially
quick, it is sensible to model it with a simple linear autoregressive process. The order p of
that model is chosen by Akaike’s information criterion (AIC), and forecasts are computed
in the usual manner.

In the next two subsections we present two state of the art prediction techniques, pro-
jection pursuit autoregression and dynamic combination of models, that could outperform
the AR model as a forecasting procedure for the residual process (Zt)t. Both these meth-
ods are generally competitive nonlinear prediction procedures for conditional means and
future observations in stationary time series.
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4.2.2 Projection Pursuit

The projection pursuit autoregression model for the stationary mean zero residual process
(Zt)t from (6)is given by

Zt = µt + Wt,

µt = E[Zt|Zt−1, Zt−2, . . . , Zt−p] =
m∑

k=1

fk(αk +
p∑

j=1

φk,jZt−j), (14)

where fk(·) are unknown ridge functions, αk, φk,j are unknown parameters, and (Wt)t

is a sequence of iid innovations such that Wt is independent of {Zs; s < t}. This is a
surprisingly general class of models, as it can approximate arbitrary continuous conditional
mean functions over compacta and it also encompasses feed-forward neural networks, see
Ripley (1996). We consider here mainly m = 1 with one ridge function, which is sometimes
referred as a single-index model: already this and even more complex structures did not
prove to be useful for our application. Note that for m = 1 and f1(·) linear, we obtain the
linear AR(p) model. The projection pursuit estimate of µt is also the best (with respect to
mean squared error) predictor for the random variable Zt. The number of lagged variables
p has been optimized with respect to outsample performance. Although this is not a rule
on the learning set L only, it yields the benchmark with this method; we will see later that
this benchmark can even be achieved by much simpler AR predictions where the order p
was chosen by AIC on the learning data L only.

4.2.3 Dynamic Combination of Models

Another powerful method for predicting conditional means and future observations is
given by dynamic combination of models, see Bühlmann and Ferrari (2002). The dynamic
combination of AR(p) models for the stationary mean zero residual process (Zt)t from (6)
is given by

Zt = µt + Wt,

µt = E[Zt|Zt−1, Zt−2, . . .] =
m∑

k=1

Pt;k(αk +
p∑

j=1

φk,jZt−j), (15)

where Pt;k is the conditional probability that Zt falls into a quantization interval Ik; here
∪m

k=1Ik = R, and the intervals Ik are pairwise disjunct. The conditional probabilities are
modelled as variable length Markov chains

Pt;k = P[Zt ∈ Ik|Zt−1, Zt−2, . . . , Zt−`t ], (16)

where `t = `(Zt−1, Zt−2, . . .) is the variable length of the memory, depending on the past
values Zt−1, Zt−2, . . .. Thus, the Pt;k can be viewed as mixture weights, dynamically chang-
ing over time, for different AR models. For prediction, such dynamic combination of AR
models seems to be as good or even slightly better than projection pursuit autoregres-
sion, see Bühlmann and Ferrari (2002). Here, we choose the simplest version with k = 2
and I1 = (−∞, 0], I2 = (0,+∞), since more complex structures did not show any better
performance in our application. As for projection pursuit autoregression, the number of
lagged variables p has been optimized with respect to outsample performance, yielding
the benchmark for this procedure. But neither the dynamic combination of models with
outsample-optimized number of variables p could outperform AR predictions where p was
chosen by AIC on the learning set L only.
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4.2.4 Long Memory Models

A totally different interpretation of the slow hyperbolic decay in the autocorrelation func-
tion of the log-realized volatilities log(σt;RV ) is given by a long-memory characteristic
rather than a deterministic component as in (3). Such processes can be modelled by a
fractionally integrated ARFIMA(p, d, q), where the parameter d is not an integer. As
model order, we set q = 0 and choose p according to Akaike’s information criterion as
in the exponential smoothing setting. The model coefficients as well as the degree of
fractional integration are then simultaneously estimated on the learning set L.

4.2.5 Benchmark Methods

The popular GARCH(1,1) is a standard model for volatility forecasting without high
frequency data. As in Andersen et al. (2002), we use it as a benchmark for a comparison
with the forecasting procedures mentioned above. Since this volatility model is not based
on realized volatilities, we expect an inferior performance with respect to the measures in
(12) or (13).

In order to check whether the filtering process by exponential smoothing improves the
accuracy of the predictions, we also forecast the unfiltered log-realized volatilities Xt with
a linear AR model, where the order p is again chosen by AIC. The use of an AR model
does not correspond well with the slowly decaying autocorrelation function of (Xt)t, and
therefore we expect a worse performance. As an extension of the autoregressive approach,
we also consider projection pursuit directly applied on the unfiltered log-realized volatility
Xt, see section 4.2.2.

4.2.6 Results

In the following tables 1-3 the deviance measures for each of the three exchange rates are
given2 . The second column contains the percentual deterioration against the smallest
value.

We observe that the magnitude of the deviance measures is very different across the
three datasets. This is due to the different signal to noise ratio of the three exchange
rates. But qualitatively, the results given in the tables are consistent both across the two
deviance measures and the three datasets. The three forecasting procedures applied to
the exponentially smoothed log-realized volatilities Xt and the fractional ARIMA show
approximately the same predictive potential. We will explore the practical significance of
this observation in sections 4.2.7 and 4.2.8.

The two benchmark methods, projection pursuit autoregression and AR(p), which are
directly fitted on the log-realized volatilities Xt, cannot keep up with the performance of
the best four methods. This matches our expectations, since these two forecasting pro-
cedures are not suitable for time series which are nonstationary or long-range dependent.
Finally, using the GARCH(1,1)-model for daily data, we observe a very bad performance.
We thus exploit the celebrated fact that high frequency data may drastically improve
volatility forecasts. In section 5, we take a fresh look to see whether this is also true when

2Abbreviations in tables 1-3:
ES Exponential Smoothing.
AR(p) Linear autoregressive model of order p.
PPR(m, p) Projection pursuit autoregression of order (m, p), see formula (14).
DCM(m, p) Dynamic combination of m AR(p) models, see formula (15).
ARFIMA(p, d, q) Fractionally integrated ARMA(p, q) with degree of fractional integration d.
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Prediction Method RSSσ in% RSADσ in %
ES & AR(4) 35.65 · 10−4 + 0.65% 157.62 · 10−2

ES & PPR(1,5) 36.18 · 10−4 + 2.15% 158.52 · 10−2 + 0.57%
ES & DCM(2,4) 35.65 · 10−4 + 0.65% 158.10 · 10−2 + 0.30%
ARFIMA(4,0.27,0) 35.42 · 10−4 159.22 · 10−2 + 1.02%
PPR(1,18) 35.74 · 10−4 + 0.90% 167.57 · 10−2 + 6.31%
AR(9) 36.34 · 10−4 + 2.60% 163.28 · 10−2 + 3.59%
GARCH(1,1) 50.90 · 10−4 + 43.70% 219.09 · 10−2 + 39.00%

Table 1: Deviance measures for the exchange rate US$/SFr. RSSσ and RSADσ are
defined as in (12) and (13). The third and fifth column (in % ) show the percentual
deterioration against the best value. ES & AR(p), ARFIMA(p, d, q) and AR(p) are data-
driven forecasting procedures using high frequency data. ES in combination with PPR
and DCM, as well as PPR on its own are outsample-optimized benchmarks using high
frequency data. Finally, GARCH(1,1) is a benchmark using daily data.

Prediction Method RSSσ in % RSADσ in %
ES & AR(5) 18.31 · 10−4 + 0.38% 104.55 · 10−2

ES & PPR(1,3) 18.60 · 10−4 + 1.97% 105.70 · 10−2 + 1.10%
ES & DCM(2,5) 18.80 · 10−4 + 3.07% 106.63 · 10−2 + 1.99%
ARFIMA(5,0.47,0) 18.24 · 10−4 106.20 · 10−2 + 1.58%
PPR(1,11) 18.72 · 10−4 + 2.63% 111.54 · 10−2 + 6.69%
AR(9) 18.80 · 10−4 + 3.07% 112.85 · 10−2 + 7.94%
GARCH(1,1) 45.87 · 10−4 + 151.48% 229.12 · 10−2 + 119.50%

Table 2: Deviance measures for the exchange rate GB£/US$. Prediction methods and
deviance measures are as explained in the caption of table 1.

Prediction Method RSAD in % RSADσ in %
ES & AR(5) 87.25 · 10−4 202.53 · 10−2 + 0.79%
ES & PPR(1,7) 88.56 · 10−4 + 1.50% 202.17 · 10−2 + 0.61%
ES & DCM(2,5) 87.31 · 10−4 + 0.07% 202.37 · 10−2 + 0.71%
ARFIMA(5,0.33,0) 88.37 · 10−4 + 1.28% 200.94 · 10−2

PPR(1,15) 100.46 · 10−4 + 15.14% 207.47 · 10−2 + 3.25%
AR(5) 90.17 · 10−4 + 3.35% 202.90 · 10−2 + 0.98%
GARCH(1,1) 109.69 · 10−4 + 25.72% 244.02 · 10−2 + 21.44%

Table 3: Deviance measures for the exchange rate US$/JPY. Prediction methods and
deviance measures are as explained in the caption of table 1.
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measuring the forecasting potential for the true volatility σt, rather than for the realized
volatility σt;RV .

4.2.7 Linearity of the Detrended Process

The results given in the tables show that the three forecasting procedures applied after
exponential smoothing perform equally well. In five of six cases, the most accurate pre-
dictions were even produced by the simple linear AR(p) model. It is a surprising fact
that a linear model yields so competitive results and couldn’t be beaten by the much
more complex projection pursuit autoregression or the dynamically weighted combination
of two AR models. Additionally, the simple AR(p) was handicapped by the fact that its
order p was chosen by AIC on the learning set L, whereas for the two nonlinear methods,
p was selected to optimize the outsample performance.

We consider these observations as an evidence of linearity for the residual process (Zt)t.
It would be tempting to test this hypothesis statistically, but Bickel and Bühlmann (1996)
argue that such testing problems are in a sense ill-posed, saying that it is impossible
(or extremely difficult) to detect nonlinearity from observed data. But for the task of
prediction, we have collected empirical evidence that the linear AR(p) model performs
among the best. In the light of the ill-posed testing problem, this is “all” we can do.
A second argument for linearity of the residual process (Zt)t is that the ridge function
estimated by the projection pursuit autoregression was found close to linear.

4.2.8 Trend or Long-Range dependence?

We observe that the decomposition model made up of exponential smoothing combined
with AR(p) and the long memory ARFIMA model perform very similarly. Even though
the models are fundamentally different, a closer look at their properties can explain this
observation.

Both, fractional differentiation and exponential smoothing correspond to a linear filter
of the log-realized volatilities. Moreover, both remaining time series after filtering are
described with an AR model. Consequently, both these forecasting procedures are similar
from a mathematical point of view, and it is no longer surprising that their results are
almost the same.

5 Testing for Better Prediction of the Latent Volatility σt

As we now have insights how forecasting realized volatility σt;RV performs, our goal is to
judge the predictive potential for the latent volatility σt. For the squared return R2

t in the
basic model (9), the equation

R2
t = σ2

t ε
2
t = σ2

t + σ2
t (ε

2
t − 1)︸ ︷︷ ︸

=ηt

= σ2
t + ηt (17)

holds, where ηt are uncorrelated but not independent martingale differences with E[ηt] = 0.
To evaluate the predictive potential of a particular forecasting procedure M, consider the
expected squared loss

P (M) = E[(R2
t − σ̂2

t;M)2]. (18)

Note that we assume here stationarity, implying independence of the right-hand side from
t. Applying the notation of equation (17), we can convert the performance measure P (M)
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into
P (M) = E[(σ2

t − σ̂2
t;M)2] + E[η2

t ]. (19)

The first term on the right side of equation (19) apparently measures the predictive
potential of a volatility forecast σ̂t;M, whereas the second term on the right side is a nui-
sance term. Unfortunately, its magnitude is so big that it renders P (M) almost constant
to E[η2

t ] for a whole collection of different models, see also Andersen et al. (1998). Hence,
P (M) is not suitable to quantify the performance of different models. But a very simple,
yet fundamental idea helps: for the difference between two models M1 and M2, the noise
term E[η2

t ] disappears. The random variables

Ut = (R2
t − σ̂2

t;M1
)2 − (R2

t − σ̂2
t;M2

)2 for all t ∈ T (20)

can be easily recorded. The expected difference between two forecasting procedures M1

and M2 is then given by

E[Ut] = E[(R2
t − σ̂2

t;M1
)2]− E[(R2

t − σ̂2
t;M2

)2]

= E[(σ2
t − σ̂2

t;M1
)2]− E[(σ2

t − σ̂2
t;M2

)2] (21)
= P (M1)− P (M2).

It is possible to statistically test whether the difference between two forecasting pro-
cedures M1 and M2 is significantly different from zero. As a null hypothesis H0, we will
use E[Ut] = 0, and test it against the alternative E[Ut] 6= 0 or E[Ut] > 0.

We estimate the expectation of Ut by the mean µ̂m = 1
m

∑
t∈T Ut, where m = |T | =

1600, but we have to pay attention to the fact that Ut are not uncorrelated random
variables. Under sufficient regularity conditions, including stationarity of Ut, the central
limit theorem for dependent variables implies

√
m(µ̂m − E[Ut])

d−→ N (0, σ2
∞) (m →∞), (22)

where σ2
∞ =

∑∞
k=−∞Cov(U0, Uk). Since the variance of µ̂m does not depend on the value

of E[Ut], the asymptotic variance σ2
∞ remains the same under the null hypothesis H0, and

hence √
mµ̂m

d−→ N (0, σ2
∞) (m →∞) (23)

under H0. For practical use, the asymptotic variance σ2
∞ has to be estimated. This

problem is equivalent to estimating the spectral density of the variables {Ut}

fU (λ) =
1
2π

∞∑
k=−∞

Cov(U0, Uk) exp(−iλk) (0 ≤ λ ≤ π) (24)

at frequency λ = 0. We do this using a classical smoothed periodogram f̂U (λ), but
more formal approaches would be possible, see Bühlmann (1996). The estimate for the
asymptotic variance is then

σ̂2
∞ = 2π · f̂U (0). (25)

Assuming that asymptotic properties hold in our particular setting, we reject the null
hypothesis against the two-sided alternative on significance level α if∣∣∣∣∣ 1

|T |
∑
t∈T

Ut

∣∣∣∣∣ > Φ−1
(
1− α

2

)
· σ̂∞√

|T |
, (26)
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US$/SFr GB£/US$ US$/JPY
p-value (one-sided test): M2 better than M1 0.009 1 · 10−9 0.038
p-value (two-sided test): M2 different from M1 0.018 2 · 10−9 0.076

Table 4: GARCH(1,1) (M1) and accurate high frequency (M2) predictions, using ex-
ponential smoothing and AR modelling. Testing null hypothesis of equal performance
against better performance of high frequency method (one-sided), and against non-equal
performance (two-sided). Low p-values are always in favor of M2, the high frequency
predictions with exponential smoothing and AR modelling.

where |T | is the number of observations in the test set, i.e. |T | = 1600. Alternatively,
a one-sided test would reject the null hypothesis of equal performance against favoring
model M2 if

1
|T |

∑
t∈T

Ut > Φ−1
(
1− α

2

)
· σ̂∞√

|T |
. (27)

We use this version of the t-test, adapted to dependent observations, to check whether a
volatility forecast based on high frequency data results in more reliable predictions for the
latent volatility σt. Hence, we compare the GARCH(1,1) as the benchmark model M1

with one of the best high frequency data methods, exponential smoothing combined with
an AR model as M2. The test described above always points towards better accuracy of
the high frequency data method with p-values as given in table 4.

In all three datasets the use of high frequency data significantly improves the predictive
potential for the latent volatility σt. The high frequency method based on exponential
smoothing and AR modelling is thus more reliable than the GARCH(1,1)-model with
daily data. By pairwise comparison of the forecasting procedures which are based on high
frequency data, we could not observe any significant differences in the predictive potential.
This is why we omit the respective p-values.

5.1 A Good Volatility Forecasting Procedure

According to our empirical study, we conclude that a good forecasting procedure for the
latent volatility σt is to filter the log-transformed realized volatility log(σt;RV ) by expo-
nential smoothing, and to predict the residual process (Zt)t with an AR(p) model. The
ARFIMA model for long-range dependence performed similarly and can be used alterna-
tively. Exponential smoothing and subsequent AR modelling have the advantage to be
very popular in standard time series analysis, are easy to implement and computationally
cheap. In figure 3, a comparison between the ex-post realized volatility, the good forecast
based on exponential smoothing combined with AR(p), and the GARCH(1,1) predictions
is shown.

6 Risk Estimation

6.1 Introduction

The large increase in the number of traded assets in portfolios of most financial institu-
tions has made the measurement of risk exposure a primary concern for regulators and for
internal risk control. A key ingredient for the practically relevant risk measures is a volatil-
ity forecast. The aim of this section is an evaluation whether a more accurate volatility

13
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Figure 3: Comparison between ex-post realized volatility (top, not a forecast), the pre-
diction based on exponential smoothing combined with an AR model using high fre-
quency data (middle), and the daily GARCH(1,1) forecast (bottom) for the exchange rate
US$/SFr.
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prediction based on high frequency data improves the quality of the risk measures. In
particular, we compare the impact of our “best” forecasting procedure, the combination
of exponential smoothing with an AR-model, against the one of GARCH(1,1) predictions.

In practice, an important time horizon for the risk measures is one day. The most
popular measure for the risk exposure within the next 24 hours is the conditional quantile
qt of the return Rt, also known as value at risk,

P[Rt < qt | Ft−1] ≤ α. (28)

An alternative risk measure, which is coherent, is the conditional expected shortfall
St, see Artzner et al. (1999). It measures the magnitude of the expected loss given that
the loss exceeds the value at risk qt,

St = E[Rt |Rt < qt,Ft−1] (29)

In the next section we explore the estimation of these risk measures.

6.2 Estimating the Risk Measures

For the following computations we assume that the time series (Rt)t, containing daily
asset returns is stationary and follows the basic model

Rt = σtεt, (30)

where the innovations εt are iid according to the cumulative distribution function Fε

with zero mean and unit variance. Under these model assumptions, value at risk qt and
conditional expected shortfall St simplify to

qt = σt · F−1
ε (α), (31)

and

St = σt · E[εt | εt < F−1
ε (α)] =

σt

α
·
∫ F−1

ε (α)

−∞
x dFε(x), (32)

respectively. To implement an estimation of the two risk measures, we must have a
volatility forecast σ̂t and the distribution Fε of the innovations εt. In the previous sections,
we already investigated the issue of volatility forecasting. We will now focus on the
distribution of the innovations εt. For both volatility forecasts, the residuals Rt

σ̂t
and their

squares did not show any significant autocorrelation structure. Hence, the iid assumption
for the residuals seems plausible. Their empirical distribution looks symmetric but clearly
leptokurtic.

Because of the empirically plausible symmetry, we use Student’s leptokurtic t-distribution
for the residuals Rt

σ̂t
, and scale it to have a variance equal to one. The degrees of freedom

ν are then estimated with the maximum likelihood method.

standardized by: US$/SFr GB£/US$ US$/JPY
σ̂BestPrediction 5.247 4.615 4.601
σ̂GARCH 5.184 4.832 4.457

Table 5: Degrees of freedom ν̂ estimated with maximum likelihood.

Since we want to construct the risk measures in a predictive fashion, we have to estimate
the distribution Fε with the residuals Rt

σ̂t
, where σ̂t is a forecast. If we were using Rt

σt;RV
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instead, we would underestimate the tail of the innovations εt: it is unrealistic to mimic
an unpredictable innovation by Rt

σt;RV
, where σt;RV ∈ Ft rather than Ft−1. That is why we

believe that ν̂ in the range of 5 is much more appropriate than ν̂ close to infinity which
would correspond to approximately N (0, 1) distributed innovations yielding potentially
much to small quantiles for risk management.

We now estimate the risk measures as follows. The value at risk is given by

q̂t = σ̂t;M · c(ν̂) · t−1
ν̂ (α) for all t ∈ T , (33)

where σ̂t;M denotes the volatility forecast from a particular forecasting procedure M,

c(ν̂) =
√

ν̂−2
ν̂

is the constant scaling the innovation variance to unity, and t−1
ν̂ (α) is the

α-quantile of the tν̂ distribution. We choose α = 1% and plot in figure 4 the value at risk
based on the “best” volatility forecast and the one based on the GARCH(1,1) predictions.
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Figure 4: 1%-value at risk based on the “best” volatility forecast (solid line) and 1%-value
at risk computed with GARCH(1,1) predictions (dashed line) superimposed on the returns
of the exchange rate US$/SFr.

We observe that the value at risk estimated with the “best” volatility prediction lies
most of the times above its analogue from the GARCH forecast. Nevertheless, the value
at risk estimated with the “best” volatility forecast seems to be able to avoid violations
despite generally being on a higher level. This is easy to explain, because the “best”
forecast describes the conditional variance of the returns much more accurately than the
GARCH model. The “best” forecasting procedure allows therefore more progressive risk
management, which is of great importance in practice. The question whether it is not too
progressive and underestimates the conditional quantile will be addressed in section 6.3.

An estimate for the conditional expected shortfall St is given by

Ŝt = σ̂t;M · Etν̂ [εt | εt < t−1
ν̂ (α)] =

σ̂t;M
α

·
∫ t−1

ν̂
(α)

−∞
xfν̂(x) dx for all t ∈ T , (34)

where c(ν̂) and t−1
ν̂ (α) are defined as in (33), and fν̂(·) is the density function of the

tν̂-distribution. As for the value at risk, we will compare the expected shortfall based on
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the two volatility forecasting procedures graphically. The plot in figure 5 is very similar
to the one in figure 4. Again, the expected shortfall estimated with the “best” forecast
lies above its analogue from the GARCH prediction. The similarity is not surprising since
both risk measures are primarily depending on the volatility forecast. The “best” volatility
prediction yields a more progressive and optimistic estimate of the conditional expected
shortfall. From a practical point of view, we prefer this more progressive risk measure
based on the “best” forecast, provided it is not unaware of the true existing risk. This is
indeed the case as argued in the next section.
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Figure 5: Conditional expected shortfall with α = 1% based on the “best” volatility fore-
cast (solid line) and conditional expected shortfall computed with GARCH(1,1) predictions
(dashed line) superimposed on the returns of the exchange rate US$/SFr.

6.3 Backtesting the Risk Measures

We compare the predicted conditional quantile q̂t with the true return Rt, and simply
count how often the quantile was violated. A violation is said to occur whenever Rt < q̂t.
The total number of violations N(M) is approximately binomially distributed if the model
is correct:

N(M) ∼ Bin(m,α), (35)

see McNeil and Frey (2000). We perform a two-sided binomial test for the null hypothesis
that a forecasting method M correctly estimates the conditional quantiles qt against the
alternative that the method has a systematic error. We assessed the quantile violations
for the value at risk based on the “best” volatility forecast and the one computed with
GARCH predictions.

Table 6 indicates an advantage for the method with σ̂BestPrediction: it rejects the model
only once, whereas the GARCH prediction yields two rejections. Moreover, according to
our backtest, the value at risk obtained with the “best” forecasting model is not too
progressive. However, one should keep in mind that the power of the backtest is fairly
low, due to relatively few expected violations.
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US$/SFr GB£/US$ US$/JPY
violations p-value violations p-value violations p-value

expected 16 - 16 - 16 -
with σ̂BestPrediction 21 0.256 20 0.312 36 0.000
with σ̂GARCH 15 0.900 6 0.006 35 0.000

Table 6: Violations of the 1%-value at risk and p-values of the two-sided binomial test.

In a backtest for the conditional expected shortfall, we analyze

r̂t =
Rt − St

σ̂t
for t ∈ T with Rt < q̂t, (36)

some standardized residuals between the true return and the conditional expected shortfall
in case of quantile violation. If the model is correct, the residuals r̂t are approximately
equal to

r̂t ≈ εt − Etν̂ [εt | εt < t−1
ν̂ (α)], (37)

which indicates that they should be approximately iid with mean zero. Such residuals are
given in figure 6: the procedures with σ̂BestPrediction and with the GARCH model yield
residuals which vary similarly around zero. Moreover, the autocorrelation of the empirical
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Figure 6: Boxplots for the empirical standardized residuals r̂t between the true return
and the 5%-conditional expected shortfall in case of quantile violation. The numbers in
parentheses are the number of quantile violations.

residuals r̂t as well as the ones of their squares r̂2
t do not indicate a specific structure. We

conclude from these facts that the more progressive conditional expected shortfall based
on the “best” volatility prediction is not significantly biased.
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7 Conclusions

We construct an accurate forecasting procedure for the volatility based on high frequency
data and we quantify possible gains for predicting the true latent volatility. The recognition
that the use of high frequency data approximately renders volatility from a latent to an
observable quantity opens new directions for its prediction. Powerful state of the art
forecasting procedures can be directly fitted to the realized volatility without having to
rely on volatility models with latent variables. In an empirical study we explore the
performance of various models and modern prediction tools, and discuss the problem of
performance measurement. Finally, we investigate the practical impact of the improved
volatility forecast by estimating the two most popular risk measures, value at risk and
conditional expected shortfall. Our main findings can be summarized as follows:

• The volatility predictions based on high frequency realized volatility are much more
accurate for predicting the auxiliary realized volatility than GARCH methods based
on low frequency, daily data. More importantly, a novel statistical test also yields
in all three datasets significantly better predictions with high frequency data for
the principal target, namely the true underlying latent volatility. Our new and fresh
look at evaluating performances supports that high frequency data methods perform
better than low frequency techniques. But the gains are not so huge as reported in
previous works (see e.g. Andersen et al., 2002) where only accuracy for the auxiliary
realized volatilities has been considered.

• One of the best forecasting procedures for the volatility is derived from detrend-
ing the log-transformed realized volatilities log(σt;RV ) by exponential smoothing,
and forecasting the residual process (Zt)t with an AR model. Surprisingly, nonlin-
ear and sophisticated models for the filtered residual process (Zt)t did not improve
the accuracy of the forecast, even though their model specifications were chosen to
optimize the outsample performance, whereas the model order p of the AR was de-
termined via AIC on the learning set L only. We consider this as empirical evidence
for linearity of the exponentially smoothed residual process (Zt)t. The alternative
ARFIMA long-range dependence model for log-realized volatilities log(σt;RV ) yields
a very similar performance and is thus an equally good tool for volatility prediction.

• Volatility predictions are frequently used in risk management. We explore how our
more reliable volatility forecast improves the two most popular risk measures, value
at risk and conditional expected shortfall. We observe that the improved volatility
forecasts lead to more progressive risk measures. According to backtests, we gained
evidence that they are not underestimating the true underlying risks. Our findings
about the risk measures should be interpreted with caution, because the focus is on
tail events which are very delicate to quantify.
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