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August 2007

Abstract

We propose a flexible GARCH-type model for the prediction of volatility

in financial time series. The approach relies on the idea of using multivari-

ate B-splines of lagged observations and volatilities. Estimation of such a

B-spline basis expansion is constructed within the likelihood framework for

non-Gaussian observations. As the dimension of the B-spline basis is large,

i.e. many parameters, we use regularized and sparse model fitting with a

boosting algorithm. Our method is computationally attractive and feasible

for large dimensions. We demonstrate its strong predictive potential for fi-

nancial volatility on simulated and real data, also in comparison to other

approaches, and we present some supporting asymptotic arguments.
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1 Introduction

In the last 30 years there has been a growing literature on financial volatility with

a huge number of new models proposed to predict volatility. The reason why re-

searchers have devoted such an attention to this particular topic can be explained

by the central role that volatility plays in most financial applications in practice.

Most of the models that have been proposed are simple with a small number of pa-

rameters only. In general, we are confronted with finding a good trade-off between

parameter parsimony and model flexibility. The main research stream on financial

volatility has focused more on the former, also by the desire for econometric inter-

pretation. More flexible approaches can be found in the non-parametric setting: see,

for example, Gourieroux and Monfort (1992), Härdle and Tsybakov (1997), Hafner

(1998), Yang et al. (1999), Audrino (2005), and Andersen et al. (2005) for a survey

of methods for nonparametric volatility modeling.

We propose a flexible model based on a high-dimensional parameterization from

a B-spline basis expansion. So far, to our knowledge, the only other study that

used splines to estimate financial volatility is from Engle and Rangel (2005) who

introduced the Spline GARCH model. However, the use of splines in their work is

completely different from ours: they find that an exponential spline is a convenient

non-negative parameterization for the slow changes over time of the unconditional

variance whereas we use B-spline basis functions for approximating the general con-

ditional variance function. One of the novelties of our approach is to bring regu-

larized and sparse model fitting into the field of volatility estimation: even when

having over-parameterized the model a-priori, our estimation method will regularize

by selecting the relevant basis functions only and shrinking all others exactly or close

to zero. B-splines have been mathematically justified for function approximation,

see for example de Boor (2001). In fact, B-splines represent piecewise polynomial
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functions and consequently, they can approximate any given continuous function of

interest. Moreover, B-splines also give rise to an easy interpretation of the model.

For example, if we construct the additive expansion for the conditional variance with

B-splines of order one (i.e. constant functions equal to one in different regions of

the predictor variables), the model can be interpreted as a threshold-regime model

for the volatility, where regimes are associated with different regions of the pre-

dictor space and the conditional variance is locally constant. Another nice feature

of our approach is that it is computationally feasible despite that the number of

parameters to be estimated can be large. The computations rely on fitting a pos-

sibly over-complete dictionary of basis functions, in our case from B-splines, using

a greedy boosting algorithm (Friedman, 2001): the approach is related to the work

by Bühlmann (2006) but with a loss function tailored for volatility estimation.

We validate the goodness of our model in terms of volatility forecasting accuracy

on simulated and real data. We collect strong empirical evidence for superiority

of our model in comparison with two other approaches: the first one being the

standard, widely used parametric GARCH(1,1) model and the second one being

the univariate nonparametric functional gradient descent method in Audrino and

Bühlmann (2003). The use of the former as a benchmark model is motivated by the

remarkable consensus that it is appropriate to describe the dynamics of financial

volatility, despite its simplicity, and by the empirical evidence that it is very diffi-

cult to beat the GARCH(1,1) model with more sophisticated methods (Lunde and

Hansen, 2005). The choice of the latter approach has been motivated by comparing

with a very competitive nonparametric estimator. Our proposed B-splines method

outperforms the competitors with respect to different performance statistics, both

for simulated and real data.
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2 The model

As a starting point, we consider a non-parametric GARCH(1,1) model for the

dynamics of the time series of interest, for example from the log-returns Xt =

log(Pt) − log(Pt−1) ≈ (Pt − Pt−1)/Pt−1 of a financial instrument with prices Pt:

Xt = µt + σtZt (t ∈ Z),

σ2
t = f(Xt−1, σ

2
t−1), f : R × R

+ → R
+, (2.1)

were (Zt)t∈Z is a sequence of independent identically distributed innovation variables

with zero mean and variance equal to one, independent from {Xs; s < t}. Therefore,

µt = IE[Xt | Ft−1] and σ2
t = Var(Xt | Ft−1), where Ft−1 is the σ-algebra generated

from the random variables {Xs; s ≤ t − 1}. Generally, in financial applications,

there is no need to allow for a large degree of flexibility in the dynamics of the

conditional mean. We assume that

µt = α0 + α1Xt−1 (2.2)

follows a simple AR(1) equation. Much more attention must be devoted to the mod-

eling of the time-varying dynamics of the so-called volatility σt =
√

Var(Xt | Ft−1).

The estimation and prediction of volatility is a central task in the financial field

because of its primary importance in many practical applications: finding a method-

ology that yields accurate volatility predictions is one of the main goal in both aca-

demic research and practice.1 Therefore, we first consider the general conditional

variance function in a nonparametric GARCH(1,1) model,

σ2
t = Var(Xt | Ft−1) = f(Xt−1, σ

2
t−1). (2.3)

1Note that accuracy can be measured in different ways: using performance measures that

focus directly on volatility predictions, or, more generally, focusing on final profits obtained when

trading according to a given approach for volatilities. In this study we are more interested in

focusing directly on volatility forecasts.
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The unknown function f(·, ·) ∈ R
+ above may be non-linear or even not smooth.

Nonparametric techniques can be used for the estimation of f(·, ·). Their advan-

tages include generality which is often discounted by decreased or non-improved

average prediction performance. Even worse, nonparametric methods exhibit poor

performance at edges which represent the periods of high volatility that are of ma-

jor interest in practical applications. Additional difficulties are due to the strong

sensitivity of choosing smoothing parameters.

Our approach is in the spirit of a sieve approximation with a potentially high-

dimensional parametric model (i.e. several dozens up to hundreds of parameters)

for the non-parametric function f(·, ·). As we will describe in Section 3, our es-

timation technique is computationally efficient and addresses in an elegant way a

major obstacle of estimating many parameters in a non-linear model. We model the

dynamics of the logarithm of the squared volatility σ2
t as an additive expansion of

simple bivariate B-spline basis functions on a predictor space R × R
+ arising from

the lagged values (Xt−1, σ
2
t−1). Using the log-transform allows to get rid of positivity

restrictions and enables the use of a convex loss function λ(·, ·) in formula (3.2). In

details, we model

log(σ2
t (θ)) = log(fθ(Xt−1, σ

2
t−1(θ)) =

= gθ0
(Xt−1, σ

2
t−1(θ)) +

k1∑

j1=1

k2∑

j2=1

βj1,j2Bj1,j2(Xt−1, σ
2
t−1(θ)), (2.4)

where gθ0
(·, ·) is a simple, parametric starting function and θ denotes the param-

eter set composed by {θ0, βj1,j2, j1 = 1, . . . , k1, j2 = 1, . . . , k2}. We propose to

take gθ0
(·, ·) from the logarithm of a parametric GARCH(1,1) process, see Boller-

slev (1986). We may view our specification in (2.4) as a sieve approximation

which is parametrically guided by gθ0
(·, ·). If all βj1,j2 ≡ 0, which may arise

in our sparse estimation procedure from Section 3, we obtain the classical para-

metric GARCH(1,1) model; in general, we try to improve using the second term
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∑k1

j1=1

∑k2

j2=1 βj1,j2Bj1,j2(Xt−1, σ
2
t−1(θ)) with the bivariate B-spline basis functions

Bj1,j2(Xt−1, σ
2
t−1(θ)).

Multivariate B-splines can be written as products of univariate B-splines and,

therefore, can be computed in an easy way. In our particular case, we have

Bj1,j2(Xt−1, σ
2
t−1(θ)) = Bj1(Xt−1)Bj2(σ

2
t−1(θ)), j1 = 1, . . . , k1, and j2 = 1, . . . , k2.

(2.5)

The definition of univariate B-splines and some of their nice mathematical properties

are described in Appendix B. In fact, B-splines represent piecewise polynomial

functions and consequently, they can be used to approximate a general continuous,

nonparametric conditional variance function in (2.3). B-splines allow for a large

flexibility in the shape of the conditional variance function, depending on how we

choose the following two tuning parameters: the degree and the number of breaks

(or the knots) of each univariate B-spline basis function. In our particular case, we

have two predictors given by past lagged returns and past lagged squared volatilities.

We allow that the squared volatility function can be quadratic in Xt−1 and thus, we

fix the degree of the Bj1(Xt−1)-splines to be equal to 3. Furthermore, we choose a

piecewise linear relation in σ2
t−1 and thus, we fix the degree of the Bj2(σ

2
t−1)-splines to

be equal to 2. The number of breaks is a measure for the approximation accuracy:

with a larger number of breaks, we obtain a better approximation but a higher

variability due to larger complexity. In our empirical analysis, we always choose

as break points the empirical α-quantiles of the corresponding predictor variables

with α = i/mesh , i = 1, . . . , mesh − 1, and mesh∈ N.2 A concrete example of

univariate B-splines for the predictor variable Xt−1 (t = 1, . . . , n − 1) is shown in

2In general, one can also use a third tuning parameter to control the smoothness of the approx-

imation at each break, i.e. the knot’s multiplicity. We impose our approximation to be continuous

and smooth at each break. This means that we set the knot’s multiplicity to be equal to 1 for all

knots except for the first and last one; for more details see Appendix B.
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Figure 1. The data are annualized daily log-returns of the S&P500 index for the

time period between January 1990 and December 1998 (2212 observations). Results

are reported for degree= 3 (i.e. quadratic splines) and mesh= 4, resulting in k1 = 6

basis functions.

FIGURE 1 ABOUT HERE.

We see from Figure 1 that each Bj-spline, j = 1, . . . , 6 is piecewise parabolic. The

breaks (or knots) are clearly visible as places of discontinuity in the derivatives of the

B-spline. In particular, in our example, the three breaks are {−7.664, 0.701, 8.848}.

Over the whole range of the data, the sum of the B-splines at every possible value x

for Xt−1 is equal to one. Last, for every point x, there are always exactly three Bj-

splines that are different from zero. A more detailed description about the properties

of B-splines that are of interest in our context are presented in Appendix B.

3 The estimation algorithm and its properties

We estimate the model specified in (2.1)-(2.5) by pseudo-maximum-likelihood, using

a Gaussian assumption for the conditional innovations. Due to the potentially large

number of parameters, we employ additional regularization in terms of a boosting

algorithm. This will lead to improved prediction performance but also ensures com-

putational feasibility in high dimensions. Assuming that the innovations Zt in (2.1)

are standard normally distributed, the negative log-likelihood in the model is given

by

− log L(α, θ; XT
2 ) =

T∑

t=1

1

2

(
log(2π) + log(σ2

t (θ)) +
(Xt − µt(α))2

σ2
t (θ)

)

=
T∑

t=1

1

2

(
log(2π) + gθ(Xt−1, σ

2
t−1(θ)) +

(Xt − µt(α))2

exp(gθ(Xt−1, σ
2
t−1(θ)))

)
,

(3.1)
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where gθ(Xt−1, σ
2
t−1(θ)) = log(σ2

t (θ)). The log-likelihood is always considered condi-

tional on X1 and some reasonable starting value σ2
1(θ), e.g. σ2

1(θ) = Var(X1).

We estimate the (many) parameters in the model using essentially the func-

tional gradient descent algorithm from Friedman (2001) which belongs to the class

of boosting procedures. Three ingredients are required: a loss function and its par-

tial derivative, a base procedure or weak learner and an initial starting estimate.

We choose the loss function from the likelihood framework above, i.e.

λ(y, g) =
1

2

(
log(2π) + g +

y2

eg

)
, (3.2)

where y = (x−µ), see also Audrino and Bühlmann (2003). Note that when summing

the values of the loss function (3.2) over the data sample, i.e. the empirical risk, we

get the negative log-likelihood in (3.1). To proceed with the minimization, we need

the partial derivative of the loss function with respect to the log squared volatility g.

This is the direction of g that yields the best improvements in the pseudo-maximum-

likelihood optimization:

∂λ(y, g)

∂g
=

1

2

(
1 −

y2

eg

)
. (3.3)

As a weak learner or base procedure, we propose the use of a componentwise least

squares method, which fits one B-spline basis function at a time. Finally, as an

initial starting estimate g0(θ), we propose the use of the log-transformed estimates

from the simple parametric GARCH(1,1) model.

In more details, our estimation algorithm is as follows.

Coordinatewise gradient descent algorithm

Step 1 (initialization). Choose the starting parameters α̂ and θ̂0 from a simple

parametric AR(1) or GARCH(1,1) model, respectively. Denote by

µ̂(t) = α̂1 + α̂2Xt−1
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and by

exp(ĝ0(t)) = θ̂0,1 + θ̂0,2X
2
t−1 + θ̂0,3 exp(ĝ0(t − 1)).

Set m = 1.

Step 2 (projection of the gradient to the B-splines). Compute the negative gra-

dient vector

Ut = −
1

2

(
1 −

Xt − µ̂t

eĝm−1(t)

)
, t = 2, . . . , T.

Then, fit the negative gradient vector with individual bivariate B-spline basis func-

tions. Here, we will exclusively consider the componentwise linear least-squares base

procedure

Ŝm = argmin1≤d≤k

T∑

t=2

[
Ut − β̂dBd

(
Xt−1, e

ĝm−1(t−1)
)]2

,

where d = (d1, d2) is a bivariate index, β̂d is the least-squares estimated coeffi-

cient when regressing Ut versus the spline basis function Bd(Xt−1, e
ĝm−1(t−1)) (t =

2, . . . , T ) and k = (k1, k2) is the bivariate order of the B-splines.

Step 3 (line search). Perform a one-dimensional optimization for the step-length

when up-dating ĝm−1:

β̂Ŝm
= argminw

T∑

t=2

λ
(
Xt − µ̂t, ĝm−1(t) + wBŜm

(Xt−1, e
ĝm−1(t−1)

)
.

Up-date

ĝm(t) = ĝm−1(t) + β̂Ŝm
BŜm

(Xt−1, exp(ĝm−1(t − 1))).

Step 4 (iteration and stopping). Increase m by one and iterate Steps 2 and 3

until stopping with m = M . This produces the estimate

ĝM(t) = ĝ0(t) +
M∑

m=1

β̂Ŝm
BŜm

(Xt−1, exp(ĝm−1(t − 1)))

for the log squared volatility function in (2.4).
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Analogously to Audrino and Bühlmann (2003), the stopping value M is chosen to

optimize a cross-validated empirical risk with the first 70% of the data as training

and the remaining 30% as test data. Note that this stopping parameter M is of

fundamental importance to avoid overfitting and to obtain reliable results in an

out-of-sample analysis.

Furthermore, it is often desirable to introduce shrinkage to zero in Step 3, to

reduce the variance of the estimated B-spline components. The up-date β̂Ŝm
BŜm

in

Step 3 of the algorithm above is then replaced by

κβ̂Ŝm
BŜm

, with 0 < κ ≤ 1.

In our empirical analysis, we find that values κ ∈ {0.1, 0.2} are very reasonable. Re-

garding the choice of the breaks (or the knots) in the two predictors of the bivariate

B-splines, we choose break points corresponding to empirical quantiles of the predic-

tor variables. Since volatility is not observable, we fix the structure (i.e. the break

sequence) of the B-splines for σ2
t−1(θ) as the quantiles of the estimates exp(ĝ0(t))

from the simple GARCH(1,1) starting model.

The optimal values of the tuning parameters differ from application to applica-

tion and can be found using cross validation or similar techniques.

Finally, it is worth emphasizing that our algorithm proceeds with a computation-

ally efficient up-dating rule in Step 3 (using the notation θ for the entire parameter

vector):

σ2
t (θnew) = σ2

t (θold) · h(Xt−1, σ
2
t−1(θold)), (3.4)

where h(Xt−1, σ
2
t−1(θold)) = BŜm

(Xt−1, exp(ĝm−1(t−1)) using the notation from Step

3 in iteration m. That is, the up-date is very fast and does not require O(t) operation

counts for recursive computation of σ2
t (θnew) in the parameterization (2.4).
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3.1 Connections to penalized maximum likelihood

The estimation algorithm from Section 3 above yields sparse solutions and a regu-

larized maximum likelihood estimate, depending on the stopping iteration M . The

sparsity is induced by the nature of the coordinatewise procedure: it fits only one

parameter (i.e. β̂Ŝm
in the mth iteration) at a time. Due to early stopping (i.e. a

“small” M), the estimated parameter vector β̂ will be sparse, in terms of the number

of non-zero elements or also in terms of the ℓ1-norm ‖β̂‖1 =
∑

j |β̂j|.

In case of the squared error loss function with λ(y, g) = (y−g)2, there is a striking

similarity of a coordinatewise gradient descent and the ℓ1-penalized squared error

regression, i.e. the Lasso (Tibshirani, 1996), see Efron et al. (2004). An extension

of this result for more general cases than squared error loss has been given by Zhao

and Yu (2005). It is argued that under some conditions on the design matrix,

the solutions from the coordinatewise gradient descent algorithm approximate, as

κ → 0, the solutions from the Lasso which is defined as

θ̂(ξ) = argminβ(−2L(β) + ξ‖β‖1), (3.5)

where L(β) denotes the log-likelihood function, ξ ≥ 0 a penalty parameter and

‖β‖1 =
∑

j |βj|. Or in more practical terms, the whole range of Lasso solutions

in (3.5) when varying the penalty parameter ξ is similar to the solutions from the

coordinatewise gradient descent method when varying the stopping iteration M

over a large range of values. This is in the spirit of an approximate path-following

algorithm (Rosset and Zhu, 2007).

3.2 Supporting asymptotics

We will argue that the estimation algorithm from Section 3 is approximating a

general squared volatility process σ2
t = V ar(Xt | Ft−1) = f(Xt−1, σ

2
t−1) as in formula

(2.3).
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We assume that the process log(σ2
t )t∈Z can be approximated by a stationary

process St;p = gp(Xt−1, Xt−2, . . . , Xt−p) (t ∈ Z) such that

IE|St;p − log(σ2
t )|

2 → 0 (p → ∞). (3.6)

That is, we make the mild regularity condition that the true nonparametric GARCH(1,1)

conditional variance process can be approximated by a nonparametric ARCH(p)

model.

Furthermore, we assume that gp(·, . . . , ·) is sufficiently smooth and can be approx-

imated by a B-spline basis. We can parameterize R
p with tensor-product B-spline

basis functions as in Section 2,

Bj1,j2,...,jp
(x1, . . . , xp) = Bj1(x1)Bj2(x2) · · ·Bjp

(xp). (3.7)

Then, our assumption becomes

IE|St;p −
k∑

j1=1,...,jp=1

βj1,j2,...,jp
Bj1(Xt−1)Bj2(Xt−2) · · ·Bjp

(Xt−p)|
2 → 0 (k → ∞). (3.8)

Due to the approximations in (3.6) and (3.8), we will base our reasoning on an

ARCH(p) model which is parameterized by a B-spline basis:

Xt = σtZt, log(σ2
t ) = gp(β; Xt−1, . . . , Xt−p) (t ∈ Z),

gp(β; x1, . . . , xp) =

k∑

j1=1,...,jp=1

βj1,j2,...,jp
Bj1(x1)Bj2(x2) · · ·Bjp

(xp), (3.9)

where (Zt)t∈Z is as in the model (2.1).

The estimation algorithm from Section 3 can be adapted in a straightforward

way to the model in (3.9). The coordinatewise gradient descent method is an ap-

proximation of the following prototype Gauss-Southwell algorithm which has been

formulated by Bickel et al. (2006). Consider the empirical risk

w(gp(β)) = n−1
n∑

t=p+1

λ(Xt, gp(β; Xt−1, . . . , Xt−p)), (3.10)
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where λ(·, ·) is as in (3.2). The prototype algorithm up-dates the parameter vector

β̂m as follows:

β̂m,Ŝm
= β̂m−1,Ŝm

+ κm (κm ∈ R),

β̂m,d = β̂m−1,d for d 6= Ŝm,

such that w(gp(β̂m)) ≤ min
κ∈R,d

w(gp(β̂m−1 + κδd)). (3.11)

Here, δd denotes a vector whose entries are 1 for index d and zero elsewhere. The

prototype estimation procedure is a greedy algorithm striving for maximal reduction

of the empirical risk when up-dating β̂m linearly with a (selected) B-spline basis

function.

We make the following assumptions for the model in (3.9).

(A1) The process (Xt)t∈Z is strictly stationary and α-mixing with geometrically

decaying mixing coefficients α(j) ≤ Cρj for some 0 < C < ∞ and some

0 < ρ < 1.

(A2) The innovations satisfy IE|Zt|2 < ∞.

(A3) The knots of the B-spline basis functions are in a compact sub-space of R
p

and the parameter-space C with β ∈ C, is a compact sub-space of R
kp.

Then, the following holds.

Theorem 1. Consider the prototype estimation algorithm as described in formula

(3.11). Assume that (Xt)t∈Z is as in model (3.9) and conditions (A1)-(A2) hold.

Then, for any 0 < p < ∞, there exists a stopping iteration M such that

IEY [λ(Yt, gp(β̂M ; Yt−1, . . . , Yt−p))] = ω0 + oP (1) (n → ∞),

ω0 = inf
β∈C

IE[λ(Yt, gp(β; Yt−1, . . . , Yt−p))], (3.12)

where C is as in (A3), β̂M is based on the observed sample X1, . . . , Xn and (Yt)t∈Z

is an independent copy from (Xt)t∈Z.
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A proof is given in Appendix A. Theorem 1 says that the out-of-sample loss of

the estimated model converges to the minimal achievable loss; note that the risk is

a convex function of the parameters β and the minimal risk is unique. The result

can be extended to include growing dimensionality of the β-vector as sample size

increases, corresponding to a growing number of knots for the B-spline basis and a

growing dimension p as n → ∞, corresponding to the approximations in (3.6) and

(3.8).

4 Numerical results

We consider the spline-GARCH(1,1) model, introduced in (2.1)-(2.5), on simulated

and real data. We compare performance measures with those obtained from a sim-

ple, parametric GARCH(1,1) fit (Bollerslev, 1986) and from an univariate functional

gradient descent (FGD) estimation as proposed by Audrino and Bühlmann (2003).

The first comparison is important, since the classical GARCH(1,1) model is recog-

nized to be a benchmark model for financial volatility which is difficult to outper-

form significantly, see for example Lunde and Hansen (2005). Further more, the

FGD method is an excellent competitor using a nonparametric estimation methods.

We always report with the use of mesh ∈ {4, 8} as described in Section 2 and a

shrinkage factor κ ∈ {0.1, 0.2} as introduced in Section 3: these specifications have

lead to very reasonable spline-GARCH(1,1) forecasts.

4.1 Simulated data

We report here goodness-of-fit results for synthetic data. We generate 2000 observa-

tions generated from a model which is able to mimic well stylized facts of financial

daily return data. We always use the first 1000 simulated data as in-sample period

to estimate the model and the successive 1000 values as out-of-sample testing period.
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This is repeated for 100 independent model simulations.

The data generating process for the squared volatility dynamics is a two-regime

process with the first lagged return as a threshold variable being and a threshold

value fixed at 0. The local time-varying conditional variance dynamics in the two

regimes evolve according to a FIGARCH(1,d,1) model (see Baillie et al., 1996) and

the model from Audrino and Bühlmann (2001) which is not of GARCH-type form.

In detail, we consider a squared volatility function σ2
t = f(Xt−1, Xt−2, σ

2
t−1) (which

we use instead of f(Xt−1, σ
2
t−1) in model (2.1)) given by

f(x1, x2, σ
2) =





0.12 + 0.3σ2 + [1 − 0.3L − (1 − 10−6L)(1 − L)d]x2

1 , if x1 ≤ d1 = 0,

(0.4 + 0.28|x1|3) · exp(−0.15x2
2) , if x1 > d1 = 0.

(4.1)

Here, in the first expression, L denotes the lag or backshift operator and the

fractional differencing operator (1 − L)d has a binomial expansion which is most

conveniently expressed in terms of the hypergeometric function F : (1 − L)d =

F (−d, 1, 1; L); for more details, see Baillie et al. (1996). In our simulations, we fix

d = 0.4. Therefore, the resulting process is a nonparametric GARCH(2,1) and it

allows for long memory in second moments and for asymmetric (leverage) effects in

volatility in response to past positive and negative returns. These are all stylized

facts exhibited by real financial return time series. Note that our spline-GARCH(1,1)

is misspecified in terms of the order of the ARCH part.

The distribution of innovations is chosen as standard normal, i.e. Zt ∼ N (0, 1)

and we set µt = IE[Xt|Ft−1] ≡ 0 in (2.1). In Figure 2 we show the above mentioned

features of the squared volatility dynamics for one simulated sample from model

(4.1).

FIGURE 2 ABOUT HERE.
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For quantifying the goodness of fit, we consider various measures:

IS-Lp =
1

T

T∑

t=1

| σ2
t − σ̂2

t |p, p = 1, 2, (in-sample loss) (4.2)

the in-sample and out-of-sample log-likelihood given in (3.1), (4.3)

OS-Lp =
1

T

T∑

t=1

| σ2
t − σ̂2

t (X
2T
T+1) |

p, p = 1, 2, (out-sample loss), (4.4)

where for the out-of-sample measures, σ̂2
t (X

2T
T+1) uses the model estimated from the

data XT
1 but evaluates it on the successive test data X2T

T+1, T = 1000. Both, the

out-of-sample OS-Lp and the out-of-sample log-likelihood statistic are measures for

predictive performance. The IS- and even more the OS-Lp-statistic are interesting

measures for our simulations, but note that we cannot calculate them for real data

since the true volatility σt is unknown. In the real data analysis shown in the next

Section 4.2, we will overcome this problem by substituting realized volatility for the

true volatility, where the former is constructed exploiting the information from high

frequency data.

Detailed results averaged over 100 independent realizations from model (2.1)

with conditional variance function f given in (4.1) are reported in Table 1.

TABLE 1 ABOUT HERE.

The spline-GARCH(1,1) method consistently outperforms both competitor approaches.

In particular, the out-of-sample gains over the standard GARCH(1,1) model are

about 10% with respect to both OS-Lp statistics. The reason for this may be as-

signed to the lack of ability of the (symmetric) GARCH(1,1) model for estimating

an asymmetric volatility process. However, more or less the same out-of-sample

gains occur over the nonparametric (not-symmetric) FGD model. In addition, the

spline-GARCH(1,1) model fitting needs about 30% less computing time than the

FGD.

Detailed results for the OS-L1 statistic across the 100 simulations are shown in
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Figure 3. Qualitatively identical figures could be plotted for the other performance

measures, too.

FIGURE 3 ABOUT HERE.

In the left panel of Figure 3, the OS-L1 results are plotted against the relative

gains over the classical GARCH(1,1) model. The better forecasting accuracy of the

spline-GARCH(1,1) model across the simulations is clearly evident: only in one case

(out of 100), the spline-GARCH(1,1) method performs worse than the GARCH(1,1)

model. Gains over the GARCH(1,1) model range up to 30%. In the right panel of

Figure 3, the same plot is made for the relative gains over the FGD method. Also

in this case, the better forecasting potential of the spline-GARCH(1,1) method is

easily seen, although the number of times that the FGD method yields better OS-L1

results raises to 8 (out of 100). Gains over the FGD model are again up to 30%, as

before when comparing with a GARCH(1,1) model.

4.2 Two real data examples

We consider two financial instruments with 3376 daily log-returns (in percentages,

annualized): from the US S&P500 index and from the 30-years US Treasury Bonds

between January 1990 and October 2003. Note that we consider here annualized

returns whereas the simulation model in Section 4.1 is on the scale of daily returns.

We use the first 2212 observations (i.e. January 1990 to December 1998) as in-sample

estimation period and the successive remaining 1164 observations as out-of-sample

test data. For this data, some additional high-frequency tick-by-tick observations are

available to construct realized volatilities which we use as a highly accurate measure

for the unknown underlying true volatility. In particular, we employ the multi-

scale DST realized volatility estimator proposed by Curci and Corsi (2003) which

consists in a multi-frequency regression based approach robustified by a Discrete Sine
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Transform filter that optimally de-correlates the price signal from microstructure

noise. We then compute the same performance statistics (4.2)-(4.4) introduced

in Section 4.1 by substituting underlying true volatilities with realized volatilities.

Using realized volatilities we are less exposed to the danger of getting wrong rankings

due to noisy proxies for volatilities and biased performance measures; see, among

others, Hansen and Lunde (2006) and Patton (2006).

To begin the analysis, Figure 4 shows the optimal conditional variance estimates

(in-sample) obtained using our spline-GARCH(1,1) approach.

FIGURE 4 ABOUT HERE.

Both estimated conditional variance functions (for the S&P500 and Treasury-bond

returns) are highly non-linear, asymmetric in past lagged returns of the series. As

expected, a sort of leverage effect is visible in both series, in particular for high values

of past lagged returns: negative past shocks increase conditional variance more than

positive past shocks of the same size. A simple, additive structure of the logarithm

of the conditional variance function in terms of past volatilities and lagged returns is

clearly not supported from our spline-GARCH(1,1) model: in fact, almost all terms

in the additive expansions are products of functions of the two predictor variables.

Performance results where squared volatility estimates and forecasts are obtained

from a standard GARCH(1,1) fit, the univariate FGD fit (Audrino and Bühlmann,

2003) and the spline-GARCH(1,1) model are summarized in Table 2.

TABLE 2 ABOUT HERE.

As for simulated data, the spline-GARCH(1,1) model consistently outperforms both

competitors. In both real data analyses under investigation, the predictive gains over

the classical GARCH(1,1) model and the univariate FGD procedure range from 1

to 6%, depending on the performance measure. Note in particular that when fitting

the models on 30-years US Treasury Bond returns, the FGD approach is not able to
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improve the out-of-sample results obtained from a GARCH(1,1) fit, in contrast to

the spline-GARCH(1,1) model which again improves upon the classical GARCH(1,1)

fit.

The reported gains could be considered as marginal and too small only. However,

such small differences are to be expected for real data because of the high noise

component. To verify whether the gains are statistically relevant, we perform a series

of classical superior predictive ability (SPA) tests, firstly introduced by Diebold and

Mariano (1995).3 The results are summarized in Table 3. Positive values of the

statistic are always in favor of our spline-GARCH(1,1) model.

TABLE 3 ABOUT HERE.

Table 3 confirms the higher predictive ability of our approach in terms of conditional

variance prediction power over the competitors. Only in the case of the S&P500

returns, the FGD and the spline-GARCH(1,1) approach yield similar results.

To end this section, we compare the computational costs of the FGD approach

with the spline-GARCH(1,1) method. We find similar results as reported for the

simulated data: the spline-GARCH(1,1) model is about a factor 1.5 faster. It is also

important to remark that among the large number of parameters used in the general

description of the spline model, only few of them are estimated to be different from

zero.

5 Conclusions

We propose the use of B-splines for approximating a general nonparametric GARCH(1,1)-

type squared volatility process of a financial time series. Our model is flexible and

involves a relatively large dimension of the unknown parameters, e.g. in the dozens

3Note that in this analysis we are not interested in building model confidence sets (see Hansen

et al., 2003, for all details), but only in pairwise comparisons.

19



or even in the hundreds. For accurate prediction and estimation, regularization is

essential: we advocate the use of a coordinatewise functional gradient descent al-

gorithm, in the spirit of boosting methods which are very popular in the area of

machine learning. We present some supporting asymptotics of our estimation algo-

rithm and we demonstrate, using simulated and real data, the excellent prediction

capacity of our method.

Our modeling and computational framework can be extended to the case of

multivariate time series, although most financial institutions still use univariate

models for their applications; see, for example, the study by Berkowitz and O’Brien

(2001). Nevertheless, we can easily incorporate our spline-GARCH(1,1) procedure

for univariate conditional variances in a standard DCC-GARCH setting (see Engle,

2002). For a N -dimensional time series (N can be also very large), first estimate

N univariate spline-GARCH models for the individual conditional variances. Then

estimate conditional correlations in the classical way. Another extension is for non-

stationary models with time-varying parameters (and hence time-varying volatility

function). Exemplifying this approach, which would be in the spirit of Engle and

Rangel (2005), we could easily replace the parameter vector β in (2.4) (and also the

parameter vector θ0 of the starting function) by a slowly changing function which

is again parameterized by a B-spline basis: that is,

βj1,j2(t) =
∑

r

αr;j1,j2Br(t), (5.5)

where Br(·) is a B-spline basis function for the time point t. Plugging this into (2.4),

we would get a trivariate B-spline basis (product of three B-spline basis functions)

and a larger parameter vector whose estimation would be pursued with the same

methodology as described in Section 3.
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A Proof of Theorem 1

We first argue that the population version of the prototype estimation algorithm

(i.e. with T = ∞) converges to the minimizer

ω0 = inf
β∈C

IE[λ(Yt, gp(β; Yt−1, . . . , Yt−p))], (A.1)

where C is a compact set. This claim follows from verifying in a straightforward way

the condition (GS1) from Bickel et al. (2006). Thereby, we use that the B-spline

basis is bounded by placing the knots in a compact subset of R
p.

Thus, for ǫ > 0, there exists a stopping iteration M = M(ǫ) for the population

algorithm such that

IE[λ(Yt, gp(βM ; Yt−1, . . . , Yt−p))] ≤ ω0 + ǫ. (A.2)

Here, the Mth iterate of the population algorithm is denoted by βM .

Hence, we only need to control the errors due to finite sample size n for the first

M(ǫ) iterations. Since there are only finitely many B-spline basis functions and due

to the finite iteration number M(ǫ), a uniform law of large numbers

sup
β∈C

|(T−p)−1

T∑

t=p+1

λ(Yt; gp(β; Yt−1, . . . , Yt−p))−IE[λ(Yt; gp(β; Yt−1, . . . , Yt−p))]| = oP (1)

(A.3)

is sufficient to complete the proof. To show that (A.3) holds, note that

(T − p)−1

T∑

t=p+1

λ(Yt; gp(β; Yt−1, . . . , Yt−p)) − IE[λ(Yt; gp(β; Yt−1, . . . , Yt−p))]

=
1

2

k∑

j1=1,...,jp=1

βj1,...jp

(
Bj1(Yt−1) . . . Bjp

(Yt−p) − IE[Bj1(Yt−1) . . .Bjp
(Yt−p)]

)

+
1

2(T − p)

T∑

t=p+1

(Z2
t − IE[Z2

t ]).

(A.4)
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For the first part, we can invoke the uniform law of large numbers, as implied

by Theorem 2.2 and Corollary 2.3 from Andrews and Pollard (1994), using our

assumption (A1) and the fact that we have a Lipschitz-continuous (i.e. linear in the

parameters β) family of functions. For the second part, which is independent of the

β-parameter, a standard law of large numbers yields convergence to zero. Hence,

formula (A.3) holds and the proof of Theorem 1 is complete. 2

B A brief description of B-splines

We first give a formal definition.

Definition. Let ξ = {ξi}
l+1
1 be a strictly increasing sequence of points, and let k

be a positive integer. If P1, . . . , Pl is any sequence of l polynomials, each of order k

(that is of degree < k), we define the corresponding piecewise polynomial function

(pp function) f of order k by

f(x) = Pi(x) if ξi ≤ x < ξi+1; i = 1, . . . , l. (B.1)

The points ξi are called breaks of f . Whenever convenient, we think of such a

function f as defined on the whole real line R by extending the first and the last

piece.

We say that two pp functions agree if and only if they consist of the same

polynomial pieces and the same brakes. We denote the collection of all pp functions

of order k (or degree < k) with break sequence ξ = {ξi}
l+1
1 by Πk,ξ. In addition,

the function f ∈ Πk,ξ is assumed to have a certain number of continuous derivatives

at the break points ξ. Formalization of such homogeneity conditions leads to a new

subspace

Πk,ξ,ν (B.2)
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for some vector ν = {νi}l
2 of nonnegative integers. Here, νi denotes the number of

continuity conditions required at ξi. In particular, νi = 0 means that no continuity

condition is imposed at ξi (“pure jump”). In our study we require at least continuity

of the function.

We can construct a basis for Πk,ξ,ν using B-splines, defined by the following

recursion. Consider a nondecreasing sequence of knots t = {tj}(which may be

infinite). Let

Bj,1,t =





1, if tj ≤ x < tj+1,

0, otherwise

be the characteristic function of the jth knot interval. Note that the Bj functions

form a partition of the unity (see Property 3 below). In particular, if tj+1 = tj then

Bj,1,t = 0. Starting with these first-order B-splines, we can construct higher-order

B-splines by using the recurrence relation: for k > 1,

Bj,k,t = wj,k,tBj,k−1,t + (1 − wj+1,k,t)Bj+1,k−1,t, with wj,k,t(x) =
x − tj

tj+k−1 − tj
. (B.3)

Thus, the second-order B-spline is given by

Bj,2,t = wj,2,tBj,1,t + (1 − wj+1,2,t)Bj+1,1,t,

and hence consists, in general, of two nontrivial linear pieces which join continuously

to form a piecewise linear function that vanishes outside the interval [tj , tj+1). For

this reason, Bj,2,t is called a linear B-spline. In general,the following holds.

Property 1. (Support and positivity). The B-spline Bj,k,t is a pp function of order

k with breaks tj , . . . , tj+k. Hence, it is made up of at most k nontrivial polynomial

pieces, vanishes outside the interval [tj , tj+k), and is positive on the interior of that

interval.

Another interesting property of B-splines is given below. Note that we already

described that property for first-order B-splines.
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Property 2. (Partition of unity). The sequence {Bj,k,t} with t = (t1, . . . , tn+k)

provides a positive and local partition of unity, that is, each Bj,k,t is positive on

(tj , tj+k), is zero outside [tj , tj+k], and
∑

j Bj,k,t = 1 on [tk, tn+1].

We assume (as usual) that the first and last knot in the sequence have multiplicity

equal to k. The actual smoothness of Bj,k,t depends on the multiplicity of the break

ξi appearing in the knot sequence (tj, . . . , tj+k). A general result, proved first by

Curry and Schoenberg (1966), is as follows.

Property 3. For a given strictly increasing sequence ξ = {ξi}
l+1
1 , and a given

nonnegative integer sequence ν = {νi}l
2 with νi < k for all i, set

n = k +
l∑

i=2

(k − νi) = kl −
l∑

i=2

νi = dim(Πk,ξ,ν)

and let t = {ti}
n+k
1 be the nondecreasing sequence obtained from ξ by the following

two requirements:

(i) for i = 2, . . . , l, the number ξi occurs exactly k − νi times in t;

(ii) t1 ≤ t2 ≤ . . . ≤ tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ . . . ≤ tn+k.

Then, the sequence B1, . . . , Bn of B-splines of order k for the knot sequence t is a

basis for Πk,ξ,ν, considered as functions on [tk, tn+1].

Property 3 enables the construction of a B-spline basis for any particular pp

space Πk,ξ,ν, by providing a recipe for an appropriate knot sequence t. This choice

of t translates the desired amount of smoothness at a break (as specified by ν) into a

corresponding number of knots at that site, with fewer knots corresponding to more

continuity conditions. In our empirical analysis, we always take each break only

once in the knot sequence, therefore allowing for maximal smoothness conditions at

each break.
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Finally, Property 3 allows us to represent pp functions (and therefore to approx-

imate any continuous function) in terms of B-splines, the so-called B-form for a pp

function.

Definition. The B-form for f ∈ Πk,ξ,ν consists of

(i) the integers k and n, giving the order of f and the number of linear parameters,

respectively;

(ii) the vector t = {ti}
n+k
1 containing the knots (constructed from ξ and ν as in

Property 3) in increasing order;

(iii) the vector β = {βi}n
1 of the coefficients of f with respect to the B-spline basis

{Bi}n
1 (with the knot sequence t) for Πk,ξ,ν.

In terms of these quantities, the value of f at x in [tk, tn+1] is given by

f(x) =
n∑

i=1

βiBi(x). (B.4)

For more details, proofs and the multivariate generalization of these results we refer

the reader to de Boor (2001), Chapters 7-9 and 17.
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Figure 1: Quadratic B-splines for the predictor variable Xt−1, i.e. the lagged return.

The data are annualized log-returns of the S&P500 index for the time period between

January 1990 and December 1998 (2212 daily observations). Break points are em-

pirical α-quantiles of the predictor variables with α = i/mesh , i = 1, . . . , mesh − 1,

and mesh= 4. Explicitly, the breaks are {−7.664, 0.701, 8.848}.
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Figure 2: Returns, conditional variances, autocorrelation function of returns and

absolute returns for one simulated sample of 2000 observations from the general non-

parametric GARCH(2,1)-model with volatilities generated according to the thresh-

old model (4.1). The local volatility dynamics follows a FIGARCH(1,d,1) model if

the past lagged return is non-positive, and a model which is not of GARCH-type

form if the past lagged return is positive.
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Figure 3: Plot of mean absolute errors (OS-L1 statistic) for the (squared) volatilities

estimated using the spline-GARCH(1,1) model against relative gains of mean abso-

lute errors over the classical GARCH(1,1) model (left panel) and the FGD approach

(right panel). Results are reported for 100 independent simulations from the general

nonparametric GARCH(2,1) model with volatility function specified in (4.1).
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Figure 4: Conditional variance estimates of the S&P500 returns (upper panels)

and 30-years US Treasury-bond returns (lower panels) obtained using the spline-

GARCH(1,1) model for the in-sample time period between January 1990 and De-

cember 1998. The conditional variance estimates are plotted against the lagged

returns (left panels) and against lagged estimated conditional variances (right pan-

els).
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Model M̂opt

Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 1132.782 0.16025 0.19954 1143.809 0.15955 0.13663

FGD 13.29 1126.902 0.15846 0.19806 1143.426 0.15876 0.13573

Spline-GARCH(1,1) 30.32 1120.341 0.13865 0.17196 1138.879 0.14074 0.12308

Table 1: Performance results averaged over 100 independent simulations from the

general nonparametric GARCH(2,1) model with volatility dynamics specified in

(4.1). In-sample (IS) and out-of-sample (OS) mean absolute errors (L1), mean

squared errors (L2) and log-likelihood statistic. M̂opt is the optimal stopping pa-

rameter averaged over the 100 simulations in the functional gradient descent (FGD)

methodology and the spline-GARCH(1,1) model introduced in Section 3. The FGD

algorithm is estimated using regression trees with three end-nodes as base learners,

shrinkage factor κ = 0.1 and the correct number of predictor variables (two) given by

the last two-lagged past returns. The tuning parameters in the spline-GARCH(1,1)

estimation procedure are chosen as mesh= 8 for univariate splines constructed on

past lagged returns, mesh= 4 for those constructed on past (squared) volatilities,

and shrinkage κ = 0.1.
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Panel A: S&P500 returns

Model M̂opt # par.
Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 5 8661.73 90.4795 40569.5 5053.23 148.882 80281.4

FGD 23 118 8588.21 90.5723 39611.5 5047.80 144.161 76931.9

Splines 45 95 8606.69 85.7587 34316.7 5047.69 143.427 75644.3

Panel B: 30-years US Treasury Bond returns

Model M̂opt # par.
Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 5 7760.16 36.6546 2895.50 4189.61 34.9955 3102.79

FGD 1 10 7754.80 36.9716 2915.56 4198.67 35.7989 3159.56

Splines 11 35 7743.19 34.7944 2890.44 4186.44 33.8643 3046.64

Table 2: Performance results for the S&P500 annualized returns (panel A) and the

30-years US Treasury Bond annualized returns (panel B) between January 1990

and October 2003 for a total of 3376 daily observations (in-sample until December

1998, 2212 observations). In-sample (IS) and out-of-sample (OS) mean absolute

errors (L1), mean squared errors (L2) and log-likelihood statistic. M̂opt denotes the

optimal stopping parameter in the functional gradient descent (FGD) and spline-

GARCH(1,1) estimation procedures, and # par reports the total number of pa-

rameters. The L-statistics are computed using realized volatilities as a proxy for

the “true” unknown volatilities. The FGD algorithm is estimated using regres-

sion trees with three end-nodes as base learners, shrinkage factor κ = 1 and the

last five-lagged past returns as predictor variables. The tuning parameters in the

spline-GARCH(1,1) estimation procedure are mesh= 8 for both univariate splines

constructed on past lagged returns and past (squared) volatilities for the S&P500

data, and we use mesh= 4 for the US Bond examples. The shrinkage factor is for

both data-sets κ = 0.2.
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Panel A: Tests for superior predictive ability: S&P500

Models OS-log-lik. OS-L1 OS-L2

GARCH(1,1) vs. Splines 0.7381 (0.2302) 1.7411 (0.0408∗∗) 1.9931 (0.0231∗∗)

FGD vs. Splines 0.0655 (0.4740) 0.3201 (0.3744) 0.4973 (0.3095)

Panel B: Tests for superior predictive ability: 30-years US T-Bond

Models OS-log-lik. OS-L1 OS-L2

GARCH(1,1) vs. Splines 1.3453 (0.0892∗) 0.9995 (0.1588) 1.4604 (0.0721∗)

FGD vs. Splines 5.0553 (≈ 0∗∗∗) 2.3210 (0.0101∗∗) 1.9231 (0.0272∗∗)

Table 3: Tests on differences of out-of-sample negative log-likelihood (log-lik.), L1

and L2 performance terms for the S&P500 returns (Panel A) and the 30-years US

Treasury Bond returns (Panel B). The out-of-sample period goes from January 1999

to October 2003, for a total of 1164 daily observations. Positive values of the statistic

are always in favor of the spline-GARCH(1,1) model. p-values are reported between

parentheses, with ∗, ∗∗, ∗∗∗ denoting significance at the ≤ 10%, 5% and 1% level,

respectively.
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