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Abstract

We propose a flexible GARCH-type model for the prediction of volatility in financial time
series. The approach relies on the idea of using multivariate B-splines of lagged observations
and volatilities. Estimation of such a B-spline basis expansion is constructed within the
likelihood framework for non-Gaussian observations. As the dimension of the B-spline basis
is large, i.e. many parameters, we use regularized and sparse model fitting with a boosting
algorithm. Our method is computationally attractive and feasible for large dimensions.
We demonstrate its strong predictive potential for financial volatility on simulated and real
data, also in comparison to other approaches, and we present some supporting asymptotic
arguments.

Keywords: Boosting, B-splines; Conditional variance; Financial time series; GARCH model;
Volatility

1 Introduction

In the last 30 years there has been a growing literature on financial volatility with a huge number
of new models proposed to predict volatility. The reason why researchers have devoted such an
attention to this particular topic can be explained by the central role that volatility plays in
most financial applications in practice. Most of the models that have been proposed are simple
with a small number of parameters only. In general, we are confronted with finding a good trade-
off between parameter parsimony and model flexibility. The main research stream on financial
volatility has focused more on the former, also by the desire for econometric interpretation. More
flexible approaches can be found in the non-parametric setting: see, for example, Gourieroux
and Monfort (1992), Härdle and Tsybakov (1997), Hafner (1998), Yang et al. (1999), Audrino
(2005), and Andersen et al. (2005) for a survey of methods for nonparametric volatility modeling.

We propose a flexible model based on a high-dimensional parameterization from a B-spline
basis expansion. So far, to our knowledge, the only other study that used splines to estimate
financial volatility is from Engle and Rangel (2005) who introduced the Spline GARCH model.
However, the use of splines in their work is completely different from ours: they find that
an exponential spline is a convenient non-negative parameterization for the slow changes over
time of the unconditional variance whereas we use B-spline basis functions for approximating
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the general conditional variance function. One of the novelties of our approach is to bring
regularized and sparse model fitting into the field of volatility estimation: even when having
over-parameterized the model a-priori, our estimation method will regularize by selecting the
relevant basis functions only and shrinking all others exactly or close to zero. B-splines have been
mathematically justified for function approximation, see for example de Boor (2001). In fact,
B-splines represent piecewise polynomial functions and consequently, they can approximate any
given continuous function of interest. Moreover, B-splines also give rise to an easy interpretation
of the model. For example, if we construct the additive expansion for the conditional variance
with B-splines of order one (i.e. constant functions equal to one in different regions of the
predictor variables), the model can be interpreted as a threshold-regime model for the volatility,
where regimes are associated with different regions of the predictor space and the conditional
variance is locally constant. Another nice feature of our approach is that it is computationally
feasible despite that the number of parameters to be estimated can be large. The computations
rely on fitting a possibly over-complete dictionary of basis functions, in our case from B-splines,
using a greedy boosting algorithm: the approach is related to the work by Bühlmann (2006) but
with a loss function tailored for volatility estimation.

We validate the goodness of our model on simulated and real data. We collect strong
empirical evidence for superiority of our model in comparison with two other approaches: the first
one being the standard, widely used parametric GARCH(1,1) model and the second one being
the univariate nonparametric functional gradient descent method in Audrino and Bühlmann
(2003). The use of the former as a benchmark model is motivated by the remarkable consensus
that it is appropriate to describe the dynamics of financial volatility, despite its simplicity, and
by the empirical evidence that it is very difficult to beat the GARCH(1,1) model with more
sophisticated methods (Lunde and Hansen, 2005). The choice of the latter approach has been
motivated by comparing with a very competitive nonparametric estimator. Our proposed B-
splines method outperforms the competitors with respect to different performance statistics,
both for simulated and real data.

2 The model

As a starting point, we consider a non-parametric GARCH(1,1) model for the dynamics of the
time series of interest, for example from the log-returns Xt = log(Pt) − log(Pt−1) ≈ (Pt −
Pt−1)/Pt−1 of a financial instrument with prices Pt:

Xt = µt + σtZt (t ∈ Z),

σ2
t = f(Xt−1, σ

2
t−1), f : R× R+ → R+, (2.1)

were (Zt)t∈Z is a sequence of independent identically distributed innovation variables with zero
mean and variance equal to one, independent from {Xs; s < t}. Therefore, µt = IE[Xt | Ft−1]
and σ2

t = Var(Xt | Ft−1), where Ft−1 is the σ-algebra generated from the random variables
{Xs; s ≤ t− 1}. Generally, in financial applications, there is no need to allow for a large degree
of flexibility in the dynamics of the conditional mean. We assume that

µt = α0 + α1Xt−1 (2.2)

follows a simple AR(1) equation. Much more attention must be devoted to the modeling of
the time-varying dynamics of the so-called volatility σt =

√
Var(Xt | Ft−1). The estimation and

prediction of volatility is a central task in the financial field because of its primary importance in
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many practical applications. Models for financial volatility must be as accurate as possible due
to the major effects of volatility prediction on the computation of risk measures and portfolio
choices. Therefore, we first consider the general (squared) volatility function in a nonparametric
GARCH(1,1) model,

σ2
t = Var(Xt | Ft−1) = f(Xt−1, σ

2
t−1). (2.3)

The unknown function f(·, ·) ∈ R+ above may be non-linear or even not smooth. Nonparametric
techniques can be used for the estimation of f(·, ·). Their advantages include generality which
is often discounted by decreased or non-improved average prediction performance. Even worse,
nonparametric methods exhibit poor performance at edges which represent the periods of high
volatility that are of major interest in practical applications. Additional difficulties are due to
the strong sensitivity of choosing smoothing parameters.

Our approach is in the spirit of a sieve approximation with a potentially high-dimensional
parametric model (i.e. several dozens up to hundreds of parameters) for the non-parametric
function f(·, ·). As we will describe in Section 3, our estimation technique is computationally
efficient and addresses in an elegant way a major obstacle of estimating many parameters in
a non-linear model. We model the dynamics of the logarithm of the squared volatility σ2

t as
an additive expansion of simple bivariate B-spline basis functions on a predictor space R× R+

arising from the lagged values (Xt−1, σ
2
t−1). Using the log-transform allows to get rid of positivity

restrictions and enables the use of a convex loss function λ(·, ·) in formula (3.2). In details, we
model

log(σ2
t (θ)) = log(fθ(Xt−1, σ

2
t−1(θ)) = gθ0(Xt−1, σ

2
t−1(θ)) +

k1∑
j1=1

k2∑
j2=1

βj1,j2Bj1,j2(Xt−1, σ
2
t−1(θ)),

(2.4)
where gθ0(·, ·) is a simple, parametric starting function and θ denotes the parameter set composed
by {θ0, βj1,j2 , j1 = 1, . . . , k1, j2 = 1, . . . , k2}. We propose to take gθ0(·, ·) from a parametric
GARCH(1,1) process, see Bollerslev (1986). We may view our specification in (2.4) as a sieve
approximation which is parametrically guided by gθ0(·, ·). If all βj1,j2 ≡ 0, which may arise in
our sparse estimation procedure from Section 3, we obtain the classical parametric GARCH(1,1)
model; in general, we try to improve using the second term

∑k1
j1=1

∑k2
j2=1 βj1,j2Bj1,j2(Xt−1, σ

2
t−1(θ))

with the bivariate B-spline basis functions Bj1,j2(Xt−1, σ
2
t−1(θ)).

Multivariate B-splines can be written as products of univariate B-splines and, therefore, can
be computed in an easy way. In our particular case, we have

Bj1,j2(Xt−1, σ
2
t−1(θ)) = Bj1(Xt−1)Bj2(σ

2
t−1(θ)), j1 = 1, . . . , k1, and j2 = 1, . . . , k2. (2.5)

The definition of univariate B-splines and some of their nice mathematical properties are de-
scribed in Appendix B. In fact, B-splines represent piecewise polynomial functions and conse-
quently, they can be used to approximate a general continuous, nonparametric volatility function
in (2.3). B-splines allow for a large flexibility in the shape of the volatility function, depending
on how we choose the following two tuning parameters: the degree and the number of breaks (or
the knots) of each univariate B-spline basis function. In our particular case, we have two predic-
tors given by past lagged returns and past lagged squared volatilities. We allow that the squared
volatility function can be quadratic in Xt−1 and thus, we fix the degree of the Bj1(Xt−1)-splines
to be equal to 3. Furthermore, we choose a piecewise linear relation in σ2

t−1 and thus, we fix
the degree of the Bj2(σ

2
t−1)-splines to be equal to 2. The number of breaks is a measure for

the approximation accuracy: with a larger number of breaks, we obtain a better approximation
but a higher variability due to larger complexity. In our empirical analysis, we always choose as
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break points the empirical α-quantiles of the corresponding predictor variables with α = i/mesh
, i = 1, . . . ,mesh − 1, and mesh∈ N.1 A concrete example of univariate B-splines for the pre-
dictor variable Xt−1 (t = 1, . . . , n − 1) is shown in Figure 1. The data are annualized daily
log-returns of the S&P500 index for the time period between January 1990 and December 1998
(2212 observations). Results are reported for degree= 3 (i.e. quadratic splines) and mesh= 4,
resulting in k1 = 6 basis functions.

FIGURE 1 ABOUT HERE.

We see from Figure 1 that each Bj-spline, j = 1, . . . , 6 is piecewise parabolic. The breaks
(or knots) are clearly visible as places of discontinuity in the derivatives of the B-spline. In
particular, in our example, the three breaks are {−7.664, 0.701, 8.848}. Over the whole range of
the data, the sum of the B-splines at every possible value x for Xt−1 is equal to one. Last, for
every point x, there are always exactly three Bj-splines that are different from zero. A more
detailed description about the properties of B-splines that are of interest in our context are
presented in Appendix B.

3 The estimation algorithm and its properties

We estimate the model specified in (2.1)-(2.5) by pseudo-maximum-likelihood, using a Gaussian
assumption for the innovations. Due to the potentially large number of parameters, we employ
additional regularization in terms of a boosting algorithm. This will lead to improved prediction
performance but also ensures computational feasibility in high dimensions. Assuming that the
innovations Zt in (2.1) are standard normally distributed, the negative log-likelihood in the
model is given by

− log L(α, θ;XT
2 ) =

T∑
t=1

1
2

(
log(2π) + log(σ2

t (θ)) +
(Xt − µt(α))2

σ2
t (θ)

)
=

T∑
t=1

1
2

(
log(2π) + gθ(Xt−1, σ

2
t−1(θ)) +

(Xt − µt(α))2

exp(gθ(Xt−1, σ2
t−1(θ)))

)
, (3.1)

where gθ(Xt−1, σ
2
t−1(θ)) = log(σ2

t (θ)). The log-likelihood is always considered conditional on X1

and some reasonable starting value σ2
1(θ), e.g. σ2

1(θ) = Var(X1).
We estimate the (many) parameters in the model using essentially the functional gradient

descent algorithm from Friedman (2001) which belongs to the class of boosting procedures.
Three ingredients are required: a loss function and its partial derivative, a base procedure or
weak learner and an initial starting estimate. We choose the loss function from the likelihood
framework above, i.e.

λ(y, g) =
1
2
(
log(2π) + g +

y2

eg

)
, (3.2)

where y = (x − µ), see also Audrino and Bühlmann (2003). Note that when summing the
values of the loss function (3.2) over the data sample, i.e. the empirical risk, we get the negative
log-likelihood in (3.1). To proceed with the minimization, we need the partial derivative of the

1In general, one can also use a third tuning parameter to control the smoothness of the approximation at each
break, i.e. the knot’s multiplicity. We impose our approximation to be continuous and smooth at each break.
This means that we set the knot’s multiplicity to be equal to 1 for all knots except for the first and last one; for
more details see Appendix B.
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loss function with respect to the log squared volatility g. This is the direction of g that yields
the best improvements in the pseudo-maximum-likelihood optimization:

∂λ(y, g)
∂g

=
1
2
(
1− y2

eg

)
. (3.3)

As a weak learner or base procedure, we propose the use of a componentwise least squares
method, which fits one B-spline basis function at a time. Finally, as an initial starting estimate
g0(θ), we propose the use of the estimates from the simple parametric GARCH(1,1) model.

In more details, our estimation algorithm is as follows.

Coordinatewise gradient descent algorithm

Step 1 (initialization). Choose the starting parameters α̂ and θ̂0 from a simple parametric
AR(1) or GARCH(1,1) model, respectively. Denote by

µ̂(t) = α̂1 + α̂2Xt−1

and by
ĝ0(t) = θ̂0,1 + θ̂0,2X

2
t−1 + θ̂0,3 exp(ĝ0(t− 1)).

Set m = 1.
Step 2 (projection of the gradient to the B-splines). Compute the negative gradient vector

Ut = −1
2

(
1− Xt − µ̂t

eĝm−1(t)

)
, t = 2, . . . , T.

Then, fit the negative gradient vector with individual bivariate B-spline basis functions. Here,
we will exclusively consider the componentwise linear least-squares base procedure

Ŝm = argmin1≤d≤k

T∑
t=2

[
Ut − β̂dBd

(
Xt−1, e

ĝm−1(t−1)
)]2

,

where d = (d1, d2) is a bivariate index, β̂d is the least-squares estimated coefficient when re-
gressing Ut versus the spline basis function Bd(Xt−1, e

ĝm−1(t−1)) (t = 2, . . . , T ) and k = (k1, k2)
is the bivariate order of the B-splines.

Step 3 (line search). Perform a one-dimensional optimization for the step-length when up-
dating ĝm−1:

β̂Ŝm
= argminw

T∑
t=2

λ
(
Xt − µ̂t, ĝm−1(t) + wBŜm

(Xt−1, e
ĝm−1(t−1)

)
.

Up-date
ĝm(t) = ĝm−1(t) + β̂Ŝm

BŜm
(Xt−1, exp(ĝm−1(t− 1))).

Step 4 (iteration and stopping). Increase m by one and iterate Steps 2 and 3 until stopping
with m = M . This produces the estimate

ĝM (t) = ĝ0(t) +
M∑

m=1

β̂Ŝm
BŜm

(Xt−1, exp(ĝm−1(t− 1)))
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for the log (squared) volatility function in (2.4).
Analogously to Audrino and Bühlmann (2003), the stopping value M is chosen to optimize

a cross-validated empirical risk with the first 70% of the data as training and the remaining
30% as test data. Note that this stopping parameter M is of fundamental importance to avoid
overfitting and to obtain reliable results in an out-of-sample analysis.

Furthermore, it is often desirable to introduce shrinkage to zero in Step 3, to reduce the
variance of the estimated B-spline components. The up-date β̂Ŝm

BŜm
in Step 3 of the algorithm

above is then replaced by
κβ̂Ŝm

BŜm
, with 0 < κ ≤ 1.

In our empirical analysis, we find that values κ ∈ {0.1; 0.2} are very reasonable.
A final remark on the algorithm is about the choice of the breaks (or the knots) in the

two predictors of the bivariate B-splines. In our empirical analysis we choose break points
corresponding to empirical quantiles of the predictor variables. Since volatility is not observable,
we fix the structure (i.e. the break sequence) of the B-splines for σ2

t−1(θ) as the quantiles of the
estimates exp(ĝ0(t)) from the simple GARCH(1,1) starting model.

3.1 Connections to penalized maximum likelihood

The estimation algorithm from Section 3 above yields sparse solutions and a regularized max-
imum likelihood estimate, depending on the stopping iteration M . The sparsity is induced by
the nature of the coordinatewise procedure: it fits only one parameter (i.e. β̂Ŝm

in the mth
iteration) at a time. Due to early stopping (i.e. a “small” M), the estimated parameter vector
β̂ will be sparse, in terms of the number of non-zero elements or also in terms of the `1-norm
‖β̂‖1 =

∑
j |β̂j |.

In case of the squared error loss function with λ(y, g) = (y−g)2, there is a striking similarity
of a coordinatewise gradient descent and the `1-penalized squared error regression, i.e. the
Lasso (Tibshirani, 1996), see Efron et al. (2004). An extension of this result for more general
cases than squared error loss has been given by Zhao and Yu (2005). It is argued that under
some conditions on the design matrix, the solutions from the coordinatewise gradient descent
algorithm approximate, as κ → 0, the solutions from the Lasso which is defined as

θ̂(ξ) = argminβ(−2L(β) + ξ‖β‖1), (3.4)

where L(β) denotes the log-likelihood function, ξ ≥ 0 a penalty parameter and ‖β‖1 =
∑

j |βj |.
The whole range of Lasso solutions when varying the penalty parameter ξ can be approximated
by the coordinatewise gradient descent method when varying the stopping iteration M over a
large range of values. This is in the spirit of a path-following algorithm (Rosset and Zhu, 2007).

It is worth emphasizing that our algorithm proceeds with a computationally efficient up-
dating rule in Step 4 (using the notation θ for the entire parameter vector):

σt(θnew) = σt(θold) · h(Xt−1, σt−1(θold)), (3.5)

where h(Xt−1, σt−1(θold)) = BŜm
(Xt−1, exp(ĝm−1(t − 1)) using the notation from Step 4 in

iteration m. That is, the up-date is very fast and does not require O(t) operation counts for
recursive computation of σt(θnew) in the parameterization (2.4).

3.2 Supporting asymptotics

We will argue that the estimation algorithm from Section 3 is approximating a general volatility
process σ2

t = V ar(Xt | Ft−1) = f(Xt−1, σ
2
t−1) as in formula (2.3).
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We assume that the process log(σ2
t )t∈Z can be approximated by a stationary process St;p =

gp(Xt−1, Xt−2, . . . , Xt−p) (t ∈ Z) such that

IE|St;p − log(σ2
t )|2 → 0 (p →∞). (3.6)

That is, we make the mild regularity condition that the true nonparametric GARCH(1,1) volatil-
ity process can be approximated by a nonparametric ARCH(p) model.

Furthermore, we assume that gp(·, . . . , ·) is sufficiently smooth and can be approximated by
a B-spline basis. We can parameterize Rp with tensor-product B-spline basis functions as in
Section 2,

Bj1,j2,...,jp(x1, . . . , xp) = Bj1(x1)Bj2(x2) · · ·Bjp(xp). (3.7)

Then, our assumption becomes

IE|St;p −
k∑

j1=1,...,jp=1

βj1,j2,...,jpBj1(Xt−1)Bj2(Xt−2) · · ·Bjp(Xt−p)|2 → 0 (k →∞). (3.8)

Due to the approximations in (3.6) and (3.8), we will base our reasoning on an ARCH(p)
model which is parameterized by a B-spline basis:

Xt = σtZt, log(σ2
t ) = gp(β;Xt−1, . . . , Xt−p) (t ∈ Z),

gp(β;x1, . . . , xp) =
k∑

j1=1,...,jp=1

βj1,j2,...,jpBj1(x1)Bj2(x2) · · ·Bjp(xp), (3.9)

where (Zt)t∈Z is as in the model (2.1).
The estimation algorithm from Section 3 can be adapted in a straightforward way to the

model in (3.9). The coordinatewise gradient descent method is an approximation of the follow-
ing prototype Gauss-Southwell algorithm which has been formulated by Bickel et al. (2006).
Consider the empirical risk

w(gp(β)) = n−1
n∑

t=p+1

λ(Xt, gp(β;Xt−1, . . . , Xt−p)), (3.10)

where λ(·, ·) is as in (3.2). The prototype algorithm up-dates the parameter vector β̂m as follows:

β̂m,Ŝm
= β̂m−1,Ŝm

+ κm (κm ∈ R),

β̂m,d = β̂m−1,d for d 6= Ŝm,

such that w(gp(β̂m)) ≤ min
κ∈R,d

w(gp(β̂m−1 + κδd)). (3.11)

Here, δd denotes a vector whose entries are 1 for index d and zero elsewhere. The prototype
estimation procedure is a greedy algorithm striving for maximal reduction of the empirical risk
when up-dating β̂m linearly with a (selected) B-spline basis function.

We make the following assumptions for the model in (3.9).

(A1) The process (Xt)t∈Z is strictly stationary and α-mixing with geometrically decaying mixing
coefficients α(j) ≤ Cρj for some 0 < C < ∞ and some 0 < ρ < 1.

(A2) The innovations satisfy IE|Zt|2 < ∞.
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(A3) The knots of the B-spline basis functions are in a compact sub-space of Rp and the
parameter-space C with β ∈ C, is a compact sub-space of Rkp.

Then, the following holds.

Theorem 1. Consider the prototype estimation algorithm as described in formula (3.11). As-
sume that (Xt)t∈Z is as in model (3.9) and conditions (A1)-(A2) hold. Then, for any 0 < p < ∞,
there exists a stopping iteration M such that

IEY [λ(Yt, gp(β̂M ;Yt−1, . . . , Yt−p))] = ω0 + oP (1) (n →∞),
ω0 = inf

β∈C
IE[λ(Yt, gp(β;Yt−1, . . . , Yt−p))], (3.12)

where C is as in (A3), β̂M is based on the observed sample X1, . . . , Xn and (Yt)t∈Z is an inde-
pendent copy from (Xt)t∈Z.

A proof is given in Appendix A. Theorem 1 says that the out-of-sample loss of the estimated
model converges to the minimal achievable loss; note that the risk is a convex function of the
parameters β and the minimal risk is unique. The result can be extended to include growing
dimensionality of the β-vector as sample size increases, corresponding to a growing number
of knots for the B-spline basis and a growing dimension p as n → ∞, corresponding to the
approximations in (3.6) and (3.8).

4 Numerical results

We consider the spline-GARCH(1,1) model, introduced in (2.1)-(2.5), on simulated and real data.
We compare performance measures with those obtained from a simple, parametric GARCH(1,1)
fit (Bollerslev, 1986) and from an univariate functional gradient descent (FGD) estimation as
proposed by Audrino and Bühlmann (2003). The first comparison is important, since the clas-
sical GARCH(1,1) model is recognized to be a benchmark model for financial volatility which is
difficult to outperform significantly, see for example Lunde and Hansen (2005). Further more,
the FGD method is an excellent competitor using a nonparametric estimation methods. We
always report with the use of mesh ∈ {4, 8} as described in Section 2 and a shrinkage factor
κ ∈ {0.1, 0.2} as introduced in Section 3: these specifications have lead to very reasonable
spline-GARCH(1,1) forecasts.

4.1 A simulation exercise

We report here goodness-of-fit results for synthetic data. We generate 2000 observations gen-
erated from a model which is able to mimic well stylized facts of financial daily return data.
We always use the first 1000 simulated data as in-sample period to estimate the model and the
successive 1000 values as out-of-sample testing period. This is repeated for 100 independent
model simulations.

The data generating process for the volatility dynamics is a two-regime process with the first
lagged return as a threshold variable being and a threshold value fixed at 0. The local time-
varying volatility dynamics in the two regimes evolve according to a FIGARCH(1,d,1) model (see
Baillie et al., 1996) and the model from Audrino and Bühlmann (2001) which is not of GARCH-
type form. In detail, we consider a squared volatility function σ2

t = f(Xt−1, Xt−2, σ
2
t−1) (which

we use instead of f(Xt−1, σ
2
t−1) in model (2.1)) given by

f(x1, x2, σ
2) =

{
0.12 + 0.3σ2 + [1− 0.3L− (1− 10−6L)(1− L)d]x2

1 , if x1 ≤ d1 = 0,
(0.4 + 0.28|x1|3) · exp(−0.15x2

2) , if x1 > d1 = 0.
(4.1)
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Here, in the first expression, L denotes the lag or backshift operator and the fractional differenc-
ing operator (1 − L)d has a binomial expansion which is most conveniently expressed in terms
of the hypergeometric function F : (1 − L)d = F (−d, 1, 1;L); for more details, see Baillie et al.
(1996). In our simulations, we fix d = 0.4. Therefore, the resulting process ia a nonparametric
GARCH(2,1) and it allows for long memory in second moments and for asymmetric (leverage)
effects in volatility in response to past positive and negative returns. These are all stylized facts
exhibited by real financial return time series. Note that our spline-GARCH(1,1) is misspecified
in terms of the order of the ARCH part.

The distribution of innovations is chosen as standard normal, i.e. Zt ∼ N (0, 1) and we set
µt = IE[Xt|Ft−1] ≡ 0 in (2.1). In Figure 2 we show the above mentioned features of the volatility
dynamics for one simulated sample from model (4.1).

FIGURE 2 ABOUT HERE.

For quantifying the goodness of fit, we consider various measures:

IS-Lp =
1
T

T∑
t=1

| σ2
t − σ̂2

t |p, p = 1, 2, (in-sample loss) (4.2)

the in-sample and out-of-sample log-likelihood given in (3.1), (4.3)

OS-Lp =
1
T

T∑
t=1

| σ2
t − σ̂2

t (X
2T
T+1) |p, p = 1, 2, (out-sample loss), (4.4)

where for the out-of-sample measures, σ̂2
t (X

2T
T+1) uses the model estimated from the data XT

1

but evaluates it on the successive test data X2T
T+1, T = 1000. Both, the out-of-sample OS-Lp

and the out-of-sample log-likelihood statistic are measures for predictive performance. The IS-
and even more the OS-Lp-statistic are interesting measures for our simulations, but note that
we cannot calculate them for real data since the true volatility σt is unknown. In the real data
analysis shown in the next Section 4.2, we will overcome this problem by substituting realized
volatility for the true volatility, where the former is constructed exploiting the information from
high frequency data.

Detailed results averaged over 100 independent realizations from model (2.1) with volatility
function f given in (4.1) are reported in Table 1.

TABLE 1 ABOUT HERE.

The spline-GARCH(1,1) method consistently outperforms both competitor approaches. In par-
ticular, the out-of-sample gains over the standard GARCH(1,1) model are about 10% with
respect to both OS-Lp statistics. The reason for this may be assigned to the lack of ability of
the (symmetric) GARCH(1,1) model for estimating an asymmetric volatility process. However,
more or less the same out-of-sample gains occur over the nonparametric (not-symmetric) FGD
model. In addition, the spline-GARCH(1,1) model fitting needs about 30% less computing time
than the FGD.

Detailed results for the OS-L1 statistic across the 100 simulations are shown in Figure 3.
Qualitatively identical figures could be plotted for the other performance measures, too.

FIGURE 3 ABOUT HERE.

In the left panel of Figure 3, the OS-L1 results are plotted against the relative gains over the
classical GARCH(1,1) model. The better forecasting accuracy of the spline-GARCH(1,1) model
across the simulations is clearly evident: only in one case (out of 100), the spline-GARCH(1,1)
method performs worse than the GARCH(1,1) model. Gains over the GARCH(1,1) model range
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up to 30%. In the right panel of Figure 3, the same plot is made for the relative gains over
the FGD method. Also in this case, the better forecasting potential of the spline-GARCH(1,1)
method is easily seen, although the number of times that the FGD method yields better OS-L1

results raises to 8 (out of 100). Gains over the FGD model are again up to 30%, as before when
comparing with a GARCH(1,1) model.

4.2 Two real data examples

We consider two financial instruments with 3376 daily log-returns (in percentages, annualized):
from the US S&P500 index and from the 30-years US Treasury Bonds between January 1990
and October 2003. Note that we consider here annualized returns whereas the simulation model
in Section 4.1 is on the scale of daily returns. We use the first 2212 observations (i.e. January
1990 to December 1998) as in-sample estimation period and the successive remaining 1164
observations as out-of-sample test data. For this data, some additional high-frequency tick-by-
tick observations are available to construct realized volatilities which we use as a highly accurate
measure for the unknown underlying true volatility. We then compute the same performance
statistics (4.2)-(4.4) introduced in Section 4.1 by substituting underlying true volatilities with
realized volatilities. For details about the construction of realized volatilities from tick-by-tick
data see for example Andersen et al. (2001), (2003) and (2005), or Curci and Corsi (2003).

Performance results where volatility estimates and forecasts are obtained from a standard
GARCH(1,1) fit, the univariate FGD fit (Audrino and Bühlmann, 2003) and the spline-GARCH(1,1)
model are summarized in Table 2.

TABLE 2 ABOUT HERE.

As for simulated data, the spline-GARCH(1,1) model consistently outperforms both competi-
tors. In both real data analyses under investigation, the predictive gains over the classical
GARCH(1,1) model and the univariate FGD procedure range from 1 to 6%, depending on
the performance measure. Note that when fitting the models on 30-years US Treasury Bond
returns, the FGD approach is not able to improve the out-of-sample results obtained from a
GARCH(1,1) fit, in contrast to the spline-GARCH(1,1) model which again improves upon the
classical GARCH(1,1) fit. When comparing the computational costs of the FGD approach with
the spline-GARCH(1,1) method, we find similar results as reported for the simulation exercise:
the spline-GARCH(1,1) model is about a factor 1.5 faster. It is also important to remark that
among the large number of parameters used in the general description of the spline model, only
few of them are estimated to be different from zero.

5 Conclusions

We propose the use of B-splines for approximating a general nonparametric GARCH(1,1)-type
volatility process of a financial time series. Our model is flexible and involves a relatively large
dimension of the unknown parameters, e.g. in the dozens or even in the hundreds. For accurate
prediction and estimation, regularization is essential: we advocate the use of a coordinatewise
functional gradient descent algorithm, in the spirit of boosting methods which are very popular
in the area of machine learning.

We present some supporting asymptotics of our estimation algorithm and we demonstrate,
using simulated and real data, the excellent prediction capacity of our method.

Our modeling and computational framework can be easily extended to the case of multivari-
ate time series or a non-stationary model with time-varying parameters (and hence time-varying

10



volatility function). Exemplifying the latter, which would be in the spirit of Engle and Rangel
(2005), we could easily replace the parameter vector β in (2.4) (and also the parameter vector
θ0) by a slowly changing function which is again parameterized by a B-spline basis: that is,

βj1,j2(t) =
∑

r

αr;j1,j2Br(t), (5.5)

where Br(·) is a B-spline basis function for the time point t. Plugging this into (2.4), we would
get a trivariate B-spline basis (product of three B-spline basis functions) and a larger parameter
vector whose estimation would be pursued with the same methodology as described in Section
3.

A Proof of Theorem 1

We first argue that the population version of the prototype estimation algorithm (i.e. with
T = ∞) converges to the minimizer

ω0 = inf
β∈C

IE[λ(Yt, gp(β;Yt−1, . . . , Yt−p))], (A.1)

where C is a compact set. This claim follows from verifying in a straightforward way the condition
(GS1) from Bickel et al. (2006). Thereby, we use that the B-spline basis is bounded by placing
the knots in a compact subset of Rp.

Thus, for ε > 0, there exists a stopping iteration M = M(ε) for the population algorithm
such that

IE[λ(Yt, gp(βM ;Yt−1, . . . , Yt−p))] ≤ ω0 + ε. (A.2)

Here, the Mth iterate of the population algorithm is denoted by βM .
Hence, we only need to control the errors due to finite sample size n for the first M(ε)

iterations. Since there are only finitely many B-spline basis functions and due to the finite
iteration number M(ε), a uniform law of large numbers

sup
β∈C

|(T − p)−1
T∑

t=p+1

λ(Yt; gp(β;Yt−1, . . . , Yt−p))− IE[λ(Yt; gp(β;Yt−1, . . . , Yt−p))]| = oP (1) (A.3)

is sufficient to complete the proof. To show that (A.3) holds, note that

(T − p)−1
T∑

t=p+1

λ(Yt; gp(β;Yt−1, . . . , Yt−p))− IE[λ(Yt; gp(β;Yt−1, . . . , Yt−p))]

=
1
2

k∑
j1=1,...,jp=1

βj1,...jp

(
Bj1(Yt−1) . . . Bjp(Yt−p)− IE[Bj1(Yt−1) . . . Bjp(Yt−p)]

)
+

1
2(T − p)

T∑
t=p+1

(Z2
t − IE[Z2

t ]). (A.4)

For the first part, we can invoke the uniform law of large numbers, as implied by Theorem 2.2
and Corollary 2.3 from Andrews and Pollard (1994), using our assumption (A1) and the fact
that we have a Lipschitz-continuous (i.e. linear in the parameters β) family of functions. For the
second part, which is independent of the β-parameter, a standard law of large numbers yields
convergence to zero. Hence, formula (A.3) holds and the proof of Theorem 1 is complete. 2
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B A brief description of B-splines

We first give a formal definition.

Definition. Let ξ = {ξi}l+1
1 be a strictly increasing sequence of points, and let k be a positive

integer. If P1, . . . , Pl is any sequence of l polynomials, each of order k (that is of degree < k),
we define the corresponding piecewise polynomial function (pp function) f of order k by

f(x) = Pi(x) if ξi ≤ x < ξi+1; i = 1, . . . , l. (B.1)

The points ξi are called breaks of f . Whenever convenient, we think of such a function f as
defined on the whole real line R by extending the first and the last piece.

We say that two pp functions agree if and only if they consist of the same polynomial pieces
and the same brakes. We denote the collection of all pp functions of order k (or degree < k)
with break sequence ξ = {ξi}l+1

1 by Πk,ξ. In addition, the function f ∈ Πk,ξ is assumed to
have a certain number of continuous derivatives at the break points ξ. Formalization of such
homogeneity conditions leads to a new subspace

Πk,ξ,ν (B.2)

for some vector ν = {νi}l
2 of nonnegative integers. Here, νi denotes the number of continuity

conditions required at ξi. In particular, νi = 0 means that no continuity condition is imposed
at ξi (“pure jump”). In our study we require at least continuity of the function.

We can construct a basis for Πk,ξ,ν using B-splines, defined by the following recursion. Con-
sider a nondecreasing sequence of knots t = {tj}(which may be infinite). Let

Bj,1,t =
{

1, if tj ≤ x < tj+1,
0, otherwise

be the characteristic function of the jth knot interval. Note that the Bj functions form a
partition of the unity (see Property 3 below). In particular, if tj+1 = tj then Bj,1,t = 0. Starting
with these first-order B-splines, we can construct higher-order B-splines by using the recurrence
relation: for k > 1,

Bj,k,t = wj,k,tBj,k−1,t + (1− wj+1,k,t)Bj+1,k−1,t, with wj,k,t(x) =
x− tj

tj+k−1 − tj
. (B.3)

Thus, the second-order B-spline is given by

Bj,2,t = wj,2,tBj,1,t + (1− wj+1,2,t)Bj+1,1,t,

and hence consists, in general, of two nontrivial linear pieces which join continuously to form a
piecewise linear function that vanishes outside the interval [tj , tj+1). For this reason, Bj,2,t is
called a linear B-spline. In general,the following holds.

Property 1. (Support and positivity). The B-spline Bj,k,t is a pp function of order k with
breaks tj , . . . , tj+k. Hence, it is made up of at most k nontrivial polynomial pieces, vanishes
outside the interval [tj , tj+k), and is positive on the interior of that interval.

Another interesting property of B-splines is given below. Note that we already described
that property for first-order B-splines.
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Property 2. (Partition of unity). The sequence {Bj,k,t} with t = (t1, . . . , tn+k) provides a
positive and local partition of unity, that is, each Bj,k,t is positive on (tj , tj+k), is zero outside
[tj , tj+k], and

∑
j Bj,k,t = 1 on [tk, tn+1].

We assume (as usual) that the first and last knot in the sequence have multiplicity equal to
k. The actual smoothness of Bj,k,t depends on the multiplicity of the break ξi appearing in the
knot sequence (tj , . . . , tj+k). A general result, proved first by Curry and Schoenberg (1966), is
as follows.

Property 3. For a given strictly increasing sequence ξ = {ξi}l+1
1 , and a given nonnegative

integer sequence ν = {νi}l
2 with νi < k for all i, set

n = k +
l∑

i=2

(k − νi) = kl −
l∑

i=2

νi = dim(Πk,ξ,ν)

and let t = {ti}n+k
1 be the nondecreasing sequence obtained from ξ by the following two require-

ments:

(i) for i = 2, . . . , l, the number ξi occurs exactly k − νi times in t;

(ii) t1 ≤ t2 ≤ . . . ≤ tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ . . . ≤ tn+k.

Then, the sequence B1, . . . , Bn of B-splines of order k for the knot sequence t is a basis for
Πk,ξ,ν , considered as functions on [tk, tn+1].

Property 3 enables the construction of a B-spline basis for any particular pp space Πk,ξ,ν ,
by providing a recipe for an appropriate knot sequence t. This choice of t translates the desired
amount of smoothness at a break (as specified by ν) into a corresponding number of knots at that
site, with fewer knots corresponding to more continuity conditions. In our empirical analysis,
we always take each break only once in the knot sequence, therefore allowing for maximal
smoothness conditions at each break.

Finally, Property 3 allows us to represent pp functions (and therefore to approximate any
continuous function) in terms of B-splines, the so-called B-form for a pp function.

Definition. The B-form for f ∈ Πk,ξ,ν consists of

(i) the integers k and n, giving the order of f and the number of linear parameters, respectively;

(ii) the vector t = {ti}n+k
1 containing the knots (constructed from ξ and ν as in Property 3)

in increasing order;

(iii) the vector β = {βi}n
1 of the coefficients of f with respect to the B-spline basis {Bi}n

1 (with
the knot sequence t) for Πk,ξ,ν .

In terms of these quantities, the value of f at x in [tk, tn+1] is given by

f(x) =
n∑

i=1

βiBi(x). (B.4)

For more details, proofs and the multivariate generalization of these results we refer the reader
to de Boor (2001), Chapters 7-9 and 17.
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Figure 1: Quadratic B-splines for the predictor variable Xt−1, i.e. the lagged return. The
data are annualized log-returns of the S&P500 index for the time period between January 1990
and December 1998 (2212 daily observations). Break points are empirical α-quantiles of the
predictor variables with α = i/mesh , i = 1, . . . ,mesh− 1, and mesh= 4. Explicitly, the breaks
are {−7.664, 0.701, 8.848}.
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Figure 2: Returns, conditional variances, autocorrelation function of returns and abso-
lute returns for one simulated sample of 2000 observations from the general nonparametric
GARCH(2,1)-model with volatilities generated according to the threshold model (4.1). The lo-
cal volatility dynamics follows a FIGARCH(1,d,1) model if the past lagged return is non-positive,
and a model which is not of GARCH-type form if the past lagged return is positive.
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Figure 3: Plot of mean absolute errors (OS-L1 statistic) for the (squared) volatilities estimated
using the spline-GARCH(1,1) model against relative gains of mean absolute errors over the
classical GARCH(1,1) model (left panel) and the FGD approach (right panel). Results are
reported for 100 independent simulations from the general nonparametric GARCH(2,1) model
with volatility function specified in (4.1).
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Model M̂opt
Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 1132.782 0.16025 0.19954 1143.809 0.15955 0.13663
FGD 13.29 1126.902 0.15846 0.19806 1143.426 0.15876 0.13573
Spline-GARCH(1,1) 30.32 1120.341 0.13865 0.17196 1138.879 0.14074 0.12308

Table 1: Performance results averaged over 100 independent simulations from the general non-
parametric GARCH(2,1) model with volatility dynamics specified in (4.1). In-sample (IS) and
out-of-sample (OS) mean absolute errors (L1), mean squared errors (L2) and log-likelihood statis-
tic. M̂opt is the optimal stopping parameter averaged over the 100 simulations in the functional
gradient descent (FGD) methodology and the spline-GARCH(1,1) model introduced in Section
3. The FGD algorithm is estimated using regression trees with three end-nodes as base learners,
shrinkage factor κ = 0.1 and the correct number of predictor variables (two) given by the last
two-lagged past returns. The tuning parameters in the spline-GARCH(1,1) estimation proce-
dure are chosen as mesh= 8 for univariate splines constructed on past lagged returns, mesh= 4
for those constructed on past (squared) volatilities, and shrinkage κ = 0.1.
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Panel A: S&P500 returns

Model M̂opt # par.
Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 5 8661.73 90.4795 40569.5 5053.23 148.882 80281.4
FGD 23 118 8588.21 90.5723 39611.5 5047.80 144.161 76931.9
Splines 45 95 8606.69 85.7587 34316.7 5047.69 143.427 75644.3

Panel B: 30-years US Treasury Bond returns

Model M̂opt # par.
Averaged IS- Averaged OS-

log-lik. L1 L2 log-lik. L1 L2

GARCH(1,1) 5 7760.16 36.6546 2985.50 4189.61 34.9955 3102.79
FGD 1 10 7754.80 36.9716 2915.56 4198.67 35.7989 3159.56
Splines 13 35 7743.19 34.7944 2890.44 4186.44 33.8643 3046.64

Table 2: Performance results for the S&P500 annualized returns (panel A) and the 30-years US
Treasury Bond annualized returns (panel B) between January 1990 and October 2003 for a total
of 3376 daily observations (in-sample until December 1998, 2212 observations). In-sample (IS)
and out-of-sample (OS) mean absolute errors (L1), mean squared errors (L2) and log-likelihood
statistic. M̂opt denotes the optimal stopping parameter in the functional gradient descent
(FGD) and spline-GARCH(1,1) estimation procedures, and # par reports the total number of
parameters. The L-statistics are computed using realized volatilities as a proxy for the “true”
unknown volatilities. The FGD algorithm is estimated using regression trees with three end-
nodes as base learners, shrinkage factor κ = 1 and the last five-lagged past returns as predictor
variables. The tuning parameters in the spline-GARCH(1,1) estimation procedure are mesh= 8
for both univariate splines constructed on past lagged returns and past (squared) volatilities for
the S&P500 data, and we use mesh= 4 for the US Bond examples. The shrinkage factor is for
both data-sets κ = 0.2.
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