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Abstract We propose Twin Boosting which has much bet-
ter feature selection behavior than boosting, particularly
with respect to reducing the number of false positives
(falsely selected features). In addition, for cases with a few
important effective and many noise features, Twin Boosting
also substantially improves the predictive accuracy of boost-
ing. Twin Boosting is as general and generic as (gradient-
based) boosting. It can be used with general weak learners
and in a wide variety of situations, including generalized re-
gression, classification or survival modeling. Furthermore,
it is computationally feasible for large problems with poten-
tially many more features than observed samples. Finally,
for the special case of orthonormal linear models, we prove
equivalence of Twin Boosting to the adaptive Lasso which
provides some theoretical aspects on feature selection with
Twin Boosting.

Keywords Classification · Gradient descent ·
High-dimensional data · Regression · Regularization

1 Introduction

Boosting has attracted much attention in the machine
learning community (cf. Schapire 2002; Meir and Rätsch
2003, and the references therein) as well as in statistics
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(Breiman 1998, 1999; Ridgeway 1999; Friedman et al.
2000; Bühlmann and Yu 2003; Tutz and Binder 2006;
Tutz and Reithinger 2007; Bühlmann and Hothorn 2007),
mainly because of its excellent performance and compu-
tational attractiveness for large datasets. The main break-
through came with Freund and Schapire’s most successful
AdaBoost algorithm for binary classification (Freund and
Schapire 1996, 1997). Nowadays, boosting is still among
the most powerful methods for prediction, feature selection
and regularization in high-dimensional problems.

Twin boosting is a very generic boosting-based method
which most often yields better feature or variable selection
than boosting while keeping or even increasing the predic-
tion accuracy. Twin boosting proceeds roughly as follows.
A first round of “classical” boosting is done (the first twin);
then, in a second round, another boosting process is run (the
second twin) which is forced to resemble the one from the
first round. Thus, the two rounds are similar, like twins, and
hence the name Twin Boosting.

There have been some attempts to make boosting or
also related Lasso-methods (Tibshirani 1996) more power-
ful, in particular in terms of feature or variable selection
but also for prediction. The potential for improvement is
mainly given for cases with many ineffective and a few ef-
fective covariates. To deal with many ineffective features, a
strong regularization is employed in boosting or in related
Lasso-methods, creating a large estimation bias. Proposals
to effectively avoid such large biases include Sparse Boost-
ing (Bühlmann and Yu 2006), conjugate direction boosting
(Lutz and Bühlmann 2006), Lasso with relaxation (Mein-
shausen 2007) or the adaptive Lasso (Zou 2006). Our ap-
proach has some similarity to the latter as it encompasses
the adaptive Lasso in the very special case of an orthonormal
linear model. An aspect of success of some of these meth-
ods is their greater flexibility than what is possible with a
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single regularization parameter in boosting (the number of
iterations) or in related Lasso-methods (the penalty parame-
ter). Our new Twin Boosting involves two tuning parameters
which can be chosen sequentially rather than simultaneously
optimizing over a two-dimensional space of regularization
parameters.

All these recently proposed methods mentioned above,
aiming to improve over boosting or Lasso, are far less gen-
eral and generic than our Twin Boosting approach. The latter
can be easily used with any real-valued weak learner which
is a (possibly crude) estimator of the conditional mean func-
tion. In particular, Twin Boosting can be easily used with
trees and hence, it can be applied to data of mixed types with
continuous, ordinal and categorical features. Secondly, Twin
Boosting can be used for a rich class of loss functions, in-
cluding squared and absolute error for regression, logistic or
exponential loss for classification or Poisson-loss for count
data. Therefore, Twin Boosting is essentially as general and
generic as boosting.

2 Boosting algorithms

Boosting is used in supervised learning from data (Xi, Yi),

. . . , (Xn,Yn), where Xi ∈ X is a p-dimensional predictor
variable and Yi ∈ Y is a univariate response variable. The
space of predictor variables X is often a subset of R

p and the
space of response variables often a subspace of R, e.g. Y =
{−,1 + 1} for binary classification or Y = R for Gaussian
regression.

A boosting algorithm needs the specification of a loss
function and a weak learner. Regarding the former, consider
a loss function

ρ : Y × X → R

(or a subset of R; and we exclude here the case where the
range of ρ(·, ·) is multivariate). The loss function is as-
sumed to be differentiable (almost everywhere) and typi-
cally convex with respect to the second argument. Exam-
ples include squared error loss ρ(y,f ) = |y − f |2/2 with
y ∈ R for regression or the logistic loss ρ(y,f ) = log2(1 +
exp(−2yf )) with y ∈ {−1,+1} for binary classification.
The weak learner is in our setting a real-valued function es-
timator:

(X1,U1), . . . , (Xn,Un)
weak learner−→ ĝ(·),

where Xi is the p-dimensional predictor variable and
Ui ∈ R a pseudo-response variable. The notion of a pseudo-
response variable will become clear in the description of the
generic boosting algorithm below. An example of a weak
learner is a regression tree yielding a regression function
estimate ĝ(·).

It is instructive to look at the population minimizer of the
loss function:

f ∗(·) = arg min
f (·)

E[ρ(Y,f (X))]. (1)

It is itself a function and it is the target of the boosting
algorithm. For example, the squared error loss ρ(y,f ) =
|y − f |2/2 yields the well-known population minimizer
f ∗(x) = E[Y |X = x] and boosting algorithms using the
squared error loss are estimators of the regression func-
tion f ∗(·).

2.1 The generic boosting algorithm

Boosting is based on the empirical risk n−1 ∑n
i=1 ρ(Yi,

f (Xi)) and pursuing iterative steepest descent in function
space as described below for estimating the unknown func-
tion f ∗(·). This very general and useful view of boosting
has been pioneered by Breiman (1998, 1999) and further de-
veloped by Friedman et al. (2000), Rätsch et al. (2001) and
Friedman (2001).

Variable or feature selection is pursued in this paper with-
out any statistical significance testing. The selected features
is the set of variables which enter explicitly (via the boosting
algorithm) in the final function estimate f̂ (·).

Generic boosting algorithm

1. Initialize f̂ [0]: typical values are f̂ [0] ≡ Y = n−1 ∑n
i=1 Yi

or f̂ [0] ≡ 0. Set m = 0.
2. Increase m by 1. Compute negative gradient − ∂

∂f
ρ(Y,f )

and evaluate at f̂m−1(Xi):

Ui = − ∂

∂f
ρ(Y,f )|

f =f̂m−1(Xi)
, i = 1, . . . , n.

3. Fit negative gradient vector U1, . . . ,Un by the weak
learner

(X1,U1), . . . , (Xn,Un)
weak learner−→ ĝ[m](·).

Thus, ĝ[m](·) can be viewed as an approximation of the
negative gradient vector.

4. Update f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤
1 is a step-length, i.e. proceed along an estimate of the
negative gradient vector.

5. Iterate steps 2–4 until m = mstop for some stopping iter-
ation mstop.

The stopping iteration, which is the main tuning parame-
ter, can be estimated via cross-validation. The choice of the
step-size ν in step 4. is of minor importance, as long as
it is “small” such as ν = 0.1. A smaller value of ν typi-
cally requires a larger number of boosting iterations, and
thus more computing time, while the predictive accuracy has
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been found to be potentially better for ν being “sufficiently
small”, e.g. ν = 0.1 (Friedman 2001). Friedman (2001) sug-
gests to use an additional line search between steps 3 and 4
(in case of different loss functions ρ(·, ·) than squared error):
it yields a slightly different algorithm but the additional line
search seems unnecessary to pursue for achieving a good
estimator f̂ [mstop](·).

2.2 L2Boosting

L2Boosting is the generic boosting algorithm when using
the squared error loss ρ(y,f ) = |y − f |2/2. It has been
proposed by Friedman (2001) and further developed and an-
alyzed in Bühlmann and Yu (2003).

L2Boosting algorithm

1. Initialize f̂ [0]: the default value is f̂ [0] ≡ Y =
n−1 ∑n

i=1 Yi . Set m = 0.
2. Increase m by 1. Compute the residuals Ui = Yi −

f̂ [m−1](Xi) for i = 1, . . . , n.
3. Fit the residual vector U1, . . . ,Un by the weak learner

(X1,U1), . . . , (Xn,Un)
weak learner−→ ĝ[m](·).

4. Update f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤
1 is a step-length factor.

5. Iterate steps 2 to 4 until m = mstop for some stopping
iteration mstop.

The stopping iteration mstop is the main tuning parameter
which can be selected using cross-validation.

Other loss functions, e.g. the logistic loss for classifica-
tion, and corresponding boosting algorithms are described
in Sect. 5. For reasons of clarity, we will first describe all
the ideas and motivation for Twin Boosting for the case of
the squared error loss. We will then show in Sect. 5 that the
concepts easily generalize to general loss functions.

3 Twin L2Boosting for linear models

For expository simplicity, we first describe Twin Boosting
for linear models:

Yi =
p∑

j=1

βjX
(j)
i + εi, (2)

where ε1, . . . , εn are independent, identically distributed
(i.i.d.), independent from X1, . . . ,Xn, with E[εi] = 0. We
sometimes write in short:

Y = Xβ + ε

with Yn×1 = (Y1, . . . , Yn)
T , εn×1 = (ε1, . . . , εn)

T and
Xn×p = [X1, . . . ,Xn]T .

Fitting of the linear model in (2) with boosting or Twin
Boosting is based on the squared error loss (L2Boosting)
and the componentwise linear least squares weak learner, as
described in Sect. 3.1 below. Already L2Boosting itself has
been proven to be very useful for fitting linear models with
potentially many more covariates than samples (Friedman
2001; Bühlmann 2006; Bühlmann and Yu 2006) and we will
argue here in which circumstances Twin Boosting is even
better.

In the sequel, we will extensively use the following nota-
tion:

〈u,v〉 =
n∑

i=1

uivi for some vectors u,v ∈ R
n,

‖u‖2 = 〈u,u〉 =
n∑

i=1

u2
i for some vector u ∈ R

n.

Moreover, denote by X(j) the j th n× 1 column vector of X.

3.1 Componentwise linear least squares as weak learner

Consider the following weak learner based on data (X1,U1),

. . . , (Xn,Un):

ĝ(x) = γ̂Ŝ x(Ŝ),

γ̂j = 〈U,X(j)〉/‖X(j)‖2, (3)

Ŝ = arg min
1≤j≤p

n∑

i=1

(Ui − γ̂ (j)X
(j)
i )2.

It selects and fits the best predictor variable in a simple lin-
ear model in the sense of ordinary least squares fitting. For
computational implementation as well as for the construc-
tion our Twin Boosting, it is useful to represent the selected
predictor variable as:

Ŝ = arg max
1≤j≤p

|〈U,X(j)〉|2/‖X(j)‖2. (4)

The derivation of (4) is straightforward.
When using L2Boosting with this base procedure, we se-

lect in every iteration one predictor variable, not necessarily
a different one for each iteration, and we up-date the func-
tion f̂ [m](·) linearly as described in Sect. 2.2. For compo-
nentwise linear least squares, we can simply up-date the pa-
rameter vector of a linear model.

L2Boosting with componentwise linear least squares

1. Initialize β̂[0]. Set m = 0.
2. Increase m by 1. Compute the residuals Ui = Yi − Y −

(Xβ̂[m−1])i for i = 1, . . . , n.
3. Compute Ŝm as in (4) and γ̂Ŝm

as in (3).
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4. Update

β̂[m] = β̂[m−1] + ν · γ̂Ŝm
.

The notation should be read that only the Ŝmth compo-
nent of the coefficient estimate is up-dated.

5. Iterate steps 2 to 4 until m = mstop for some stopping
iteration mstop.

The selected variables are corresponding to the indices j for
which β̂[m1] 
= 0.

3.2 Twin L2Boosting with componentwise linear least
squares

Twin Boosting for linear models uses the squared error loss
and componentwise linear least squares as weak learner. For
expository simplicity, we consider standardized data where
n−1 ∑n

i=1 Yi = 0, n−1 ∑n
i=1 X

(j)
i = 0 and

∑n
i=1(X

(j)
i )2 =

1 for all j = 1, . . . , p (for unstandardized data, the algo-
rithm has to be slightly re-formulated). This can always be
achieved by centering with the empirical mean and scaling
with the empirical standard deviation.

Twin L2Boosting with componentwise linear least
squares

1. Run a first round of L2Boosting with componentwise lin-
ear least squares, using m1 iterations. Denote the esti-
mated parameter by β̂

[m1]
init .

2. For the second round, run L2Boosting with component-
wise linear least squares but replace formula (4) by

Ŝ = arg max
1≤j≤p

|〈U,X(j)〉|2|β̂[m1]
init;j |2. (5)

Note that ‖X(j)‖2 = 1 because of standardized data. Use
m2 iterations and denote the Twin L2Boosting estimator
by β̂

[m2]
TWB.

The motivation of the multiplier |β̂[m1]
init;j |2 in formula (5) is

as follows: if a prediction variable is important, it has a
larger multiplier |β̂[m1]

init;j |2 and hence, it is more likely to
be selected in the criterion (5); and vice-versa. In particu-
lar, a non-relevant variable with β̂

[m1]
init;j = 0 will not be se-

lected. We will describe in Proposition 1 that for special
cases, the selection with the multiplier in (5) is equivalent to
the adaptive Lasso, a method which has shown remarkable
success for high-dimensional feature selection (Zou 2006;
Huang et al. 2008; Bühlmann and Meier 2008). Two tun-
ing parameters m1 and m2 are involved. Instead of optimiz-
ing (e.g. cross-validating) over both parameters simultane-
ously, we use the following, computationally much faster
sequential approach: first, an estimate m̂1 is obtained from
cross-validation for L2Boosting and then, cross-validation
for Twin Boosting with fixed m̂1 in the initial estimator
yields an estimate m̂2.

3.3 Connections to the Lasso and the adaptive Lasso

There is an intriguing connection between L2Boosting with
componentwise linear least squares and the Lasso (Tibshi-
rani 1996). The latter is an �1-penalty method for regression
defined by

β̂(λ) = arg min
β

n−1
n∑

i=1

(

Yi − β0 −
p∑

j=1

βjX
(j)
i

)2

+ λ

p∑

j=1

|βj |. (6)

Efron et al. (2004) consider a version of L2Boosting,
called forward stagewise linear regression (FSLR), and they
show that FSLR with infinitesimally small step-sizes (i.e. the
value ν) produces a set of solutions which is approximately
equivalent to the set of Lasso solutions when varying the
regularisation parameter λ in Lasso (see also (6) above). The
approximate equivalence is derived by representing FSLR
and Lasso as two different modifications of their computa-
tionally efficient least angle regression (LARS) algorithm.
In special cases where the design matrix satisfies a “posi-
tive cone condition”, FSLR, Lasso and LARS all coincide
(Efron et al. 2004, p. 425).

Despite the fact that L2Boosting and Lasso are not equiv-
alent methods in general, the connection between boosting
(as a forward, greedy method) and the Lasso (involving con-
vex optimization) is interesting.

Recently, Zou (2006) has proposed the adaptive Lasso,
defined as

β̂(λ) = arg min
β

(

n−1
n∑

i=1

(

Yi − β0 −
p∑

j=1

βjX
(j)
i

)2

+ λ

p∑

j=1

|βj |
|βinit,j |

)

, (7)

where βinit is an initial estimator. Zou (2006) mainly uses
ordinary least squares as initial estimator (for cases with
reasonable ratio n/p) and he mentions the Ridge estima-
tor as one among several possible alternatives. In addi-
tion, he proposed a more general class of estimators, but
the specific form in (7) is useful and often sufficient. By
defining 0/0 = 0, the adaptive Lasso is well-defined even if
βinit,j = 0 for some j : it implies that β̂j (λ) = 0. The adap-
tive Lasso has two advantages over the Lasso. It yields con-
sistent variable selection without imposing severe restriction
on the design matrix, at least for the case with fixed pre-
dictor dimension p (Zou 2006), whereas the Lasso is in-
consistent (typically yields too large models) if the design
is roughly speaking “strongly correlated” (Meinshausen and
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Bühlmann 2006; Zou 2006; Zhao and Yu 2006). Secondly,
adaptive Lasso yields better predictions if the true underly-
ing model has many ineffective (noise) predictor variables.
Both of these advantages are closely related to the motiva-
tion of our Twin Boosting, see Sect. 1.

In case of an orthonormal linear model, i.e. the model
(2) with

∑n
i=1 X

(j)
i X

(k)
i = δjk (Kronecker δjk = 1 if j = k

and 0 otherwise), explicit connections between boosting
and Lasso exist. It has been shown (constructively) that
L2Boosting with componentwise linear least squares ap-
proximates the solution from Lasso (as ν > 0 tends to zero)
which equals the soft-threshold estimator (Bühlmann and Yu
2006). For Twin Boosting, the following holds.

Proposition 1 Consider an orthonormal linear model and
any sequence of regularization parameters (λk)k∈N for the
adaptive Lasso in (7). Then, for Twin L2Boosting with com-
ponentwise linear least squares using a step-size ν, there
exists a Twin Boosting iteration m2, typically depending on
λk , ν and the data, such that

β̂
[m2]
TWB;j = β̂

[m2]
TWB;j (ν) = β̂AdaLasso,j (γj )

as in (7) with βinit = β̂
[m1]
init ,

γj = λk(1 + ej (ν)), max
1≤j≤n

|ej (ν)| → 0 (ν → 0).

A proof is given in the Appendix. We remark that the
adaptive Lasso in the orthonormal linear model is of the
form

β̂AdaLasso,j = sign(Zj )

(

|Zj | − λ

2|β̂[m1]
init,j |

)

+
,

where (x)+ = max(0, x) is the positive part and Zj =
(XT Y)j . Together with Proposition 1, this illustrates that in
the simple case of an orthonormal linear model, Twin Boost-
ing yields in the limiting case with ν → 0 the adaptive Lasso
which equals the adaptive soft-threshold estimator. The con-
nection is interesting but the real power of Twin Boosting is
its generic applicability to very general weak learners and
loss functions.

4 General Twin L2Boosting with trees and general
weak learners

The most popular weak learners for boosting are decision
trees. Our proposal for Twin Boosting with trees is simple,
easy to implement and effective. We could represent trees in
terms of basis functions (with indicator functions of rectan-
gles) and then employ Twin Boosting methodology as for
linear models. However, such an approach becomes compu-
tationally very impractical due to the huge number of basis

functions (particularly for larger trees) and in addition, such
an approach would (adaptively) encourage sparseness in the
space of basis functions rather than sparseness in the space
of predictor variables; the latter is often much more interest-
ing for many datasets and scientific problems.

Twin Boosting with any real-valued (regression-type)
weak learner is defined as follows.

General Twin L2Boosting with general weak learner

1. Run a first round of L2Boosting and denote by f̂[m1]
init =

(f̂
[m1]
init (X1), . . . , f̂

[m1]
init (Xn)) the fitted function at the data

points and by V̂ [m1] ⊆ {1, . . . , p} the subset of indices
corresponding to selected predictor variables, both based
on m1 boosting iterations. (If the weak learner is not do-
ing any variable selection, then V̂ [m1] = {1, . . . , p} is the
full set.)

2. For the second round, initialize f̂ [0]: the default value is
f̂ [0] ≡ Y = n−1 ∑n

i=1 Yi . Set m = 0.
3. Increase m by 1. Compute the residuals Ui = Yi −

f̂ [m−1](Xi) for i = 1, . . . , n.
4. For every subset W ⊆ V̂ [m1],1 fit the residual vector

U1, . . . ,Un to XW
1 , . . . ,XW

n with the weak learner; here
XW denotes {X(j); j ∈ W }. Denote this fitted function
by ĥW (·) and by ĥW = (ĥW (X1), . . . , ĥW (Xn)). Then,
choose the best W according to:

Ŵ = arg max
W

C2
W (2〈U, ĥW 〉 − ‖ĥW ‖2),

CW = 〈f̂[m1]
init − f̂

[m1]
init , ĥW 〉/‖ĥW ‖,

f̂
[m1]
init = n−1

n∑

i=1

f̂
[m1]
init (Xi).

(8)

Denote by ĝ[m](·) = ĥŴ (·).
5. Update f̂ [m] = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1

is a step-length factor.
6. Iterate steps 3 to 5 until m = m2 for some stopping itera-

tion m2.

The stopping iteration m2 is the main tuning parameter (for
a given boosting estimator of the first round) which can be
selected using cross-validation.

From a computational point of view, it seems awkward
to consider all subsets W ⊆ V̂ [m1] in step 4. However, if
the weak learner does variable selection, selecting at most
d predictor variables (e.g. a tree with at most d + 1 terminal
nodes), we only have to consider in step 4 all subsets W hav-
ing cardinality |W | = d . For example, when using stumps,
d = 1 and step 4 becomes:

1See also below the modification with random feature subsets.
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Step 4 for stumps. For every j ∈ V̂ [m1], fit the residual vec-
tor with a stump and denote it by ĥj (·). The remain-
ing part of step 4 is then as above.

The selected variables from Twin Boosting arise from the
set of variables which occur in Ŵ from step 4 for at least
one iteration. For example with trees as weak learner, the
selected variables arise from variable selection of the tree-
type weak learner during the Twin Boosting iterations.

Using trees as weak learner, d = 1 (stumps) or d = 2
is often a good choice (see also the discussion below in
Sect. 4.2). More generally, for a tree with d + 1 terminal
nodes (d splits), the computation in step 4 is of the or-
der O(dnp|V̂ [m1]|d). It should be noted here that usually
|V̂ [m1]| ≤ min(n,p), often even � min(n,p).

In case of large trees as weak learner, we propose the
following:

General Twin L2Boosting with random feature subsets

Step 4 with random feature subsets. Generate B indepen-
dent random feature subsets W ⊆ V̂ [m1] with cardi-
nality |W | = sW where the elements of W are sam-
pled i.i.d. ∼ Uniform(V̂ [m1]). Then proceed as in
step 4 above.

The value sW is typically chosen to be of the magnitude of
the depth of the tree learner and we use B = 500 as default
value for the number of random subsets. We also emphasize
that, unlike in Random Forests (Breiman 2001), there is no
averaging operation involved over the weak learners (e.g.
trees) resulting from the fits with the random feature subsets:
here, the best (random) weak learner is selected according to
the criterion in (8).

4.1 Relation to Twin L2Boosting for linear models

We give now a motivation for the construction in step 4.
Consider Twin L2Boosting for linear models, as described
in Sect. 3.2. There, it happens automatically that the sec-
ond round of Twin Boosting considers only the set of pre-
dictor variables V̂ [m1] which has been chosen in the first
round. Next, we consider the formula (8). The residual sum
of squares is

‖U − ĥW ‖2 = ‖U‖2 − 2〈U, ĥW 〉 + ‖ĥW ‖2

= const. − (2〈U, ĥW 〉 − ‖ĥW ‖2).

L2Boosting would proceed by choosing the best W maxi-
mizing

G(W ) = 2〈U, ĥW 〉 − ‖ĥW ‖2.

For Twin Boosting, we want to multiply weights CW into
the criterion G(W ). For the form of these weights, it is

instructive to consider Twin L2Boosting for linear models
with normed predictor variables having ‖X(j)‖2 = 1: there,
W is an element of {1, . . . , p} and ĥj (Xi) = 〈U,X(j)〉X(j)

i .
Using this, we easily obtain for W = j ,

G(W ) = G(j) = |〈U,X(j)〉|2. (9)

Twin Boosting for linear models does nothing else than mul-
tiplying G(j) by the weights β2

init,j . Therefore, we want to
multiply G(W ) in (9) with the square of a suitable regres-
sion coefficient. Our CW in formula (8) is the standardized
regression coefficient when regressing the fitted function
from the first round of Twin Boosting f̂[m1] against the can-
didate estimate ĥW ; the standardization is a multiplication
by ‖ĥW ‖. The standardization is useful as it implicitly mea-
sures the regression coefficient on a scale where ĥW would
have been standardized to ‖ĥW ‖ ≡ 1 for all W . We end our
motivation of step 4 with the following result.

Proposition 2 Consider a linear model as in (2) with
∑n

i=1 X
(j)
i = 0, ‖X(j)‖ = 1 for all j = 1, . . . , p. Then, for

the general Twin L2Boosting algorithm wit the component-
wise linear least squares weak learner:

1. If the underlying regression model is orthonormal with
∑n

i=1 X
(j)
i X

(k)
i = δjk , this algorithm coincides exactly

with Twin L2Boosting for linear models, as described in
Sect. 3.2.

2. In general, this algorithm equals a modified TwinL2

Boosting algorithm for linear models, as described in
Sect. 3.2, but where we replace |β̂[m]

init;j |2 in (5) by

|∑p

k=1 β̂
[m]
init;k〈X(k),X(j)〉|2.

A proof is given in the Appendix. We have discussed in
Sect. 3.3 some connections to the adaptive Lasso, generally
defined as

β̂(λ) = arg min
β

(

n−1
n∑

i=1

(

Yi − β0 −
p∑

j=1

βjX
(j)
i

)2

+ λ

p∑

j=1

wj |βj |
)

.

Here, we consider the weights

w−1
j =

∣
∣
∣
∣
∣

p∑

k=1

β̂
[m]
init;k〈X(k),X(j)〉

∣
∣
∣
∣
∣

(10)

(instead of w−1
j = |βinit;j | as in (7)). Denote by W =

diag(w1, . . . ,wp) and XW = XW−1 the new n × p design
matrix. Then, it is straightforward to see that L2Boosting
based on the design XW and the general Twin L2Boosting
algorithm based on the original design X, as in statement
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2 of Proposition 2, coincide (up to the fact that regres-
sion coefficients need to be scaled). Likewise and easy to
see, the Lasso based on design XW and the adaptive Lasso,
with weights as in (10) and based on the original design X,
are equivalent (up to scaling of the regression coefficients).
Therefore, whenever Boosting and Lasso, both based on
XW are equivalent, the general Twin L2Boosting and the
adaptive Lasso, both based on the original design X, are
equivalent. This holds, for example, if XW is orthonormal:
more generally, there is an equivalence of forward stage-
wise linear regression (FSLR) and Lasso if XW satisfies
the positive cone condition (Efron et al. 2004). We will re-
port in Sect. 6.1.3 some empirical results comparing Twin
L2Boosting for linear models as in Sect. 3.2 (formula (5)
and general Twin L2Boosting, as arising in assertion 2 of
Proposition 2.

4.2 Stumps and larger trees as weak learners

The choice of the weak learner is usually driven by optimiz-
ing the prediction performance. In addition, some structural
properties can be another useful criterion as well.

The generic boosting and Twin Boosting estimator is a
linear combination of weak learners

f̂ [m](·) = ν

m∑

k=1

ĝ[k](·).

Therefore, structural properties of the boosting function es-
timator are given by linear combination of structural charac-
teristics of the weak leaner.

Trees are among the most popular base procedures in ma-
chine learning. They have the advantage to be invariant un-
der monotone transformations of predictor variables, i.e., we
do not need to search for good data transformations.

When using stumps, i.e., a tree with two terminal nodes,
the boosting and Twin Boosting estimate will be an addi-
tive model in the original predictor variables, because every
stump-estimate is a function of a single predictor variable
only. Similarly, boosting trees with (at most) d + 1 terminal
nodes results in a nonparametric model having at most inter-
actions of order d − 1: e.g. for d = 2, we would pick up in-
teraction terms between pairs of predictor variables. Thus, if
we want to constrain the degree of interactions, we can eas-
ily do this by constraining the (maximal) number of nodes
in the tree learner. For many real datasets, it seems that low-
order interaction (or even additive) models are sufficiently
rich for good prediction and interpretation. For example, the
naive Bayes classifier or linear discriminant analysis, based
on an additive or linear decision function respectively, works
surprisingly well in many applications (Jamain and Hand
2005; Hand 2006). Also boosting with stumps, yielding an
additive model, has proven to be successful in many areas,

e.g. winning the performance prediction challenge of the
IEEE World Congress on Computational Intelligence 2006
(Lutz 2006). Thus, we often get good performance with trees
having 2 or 3 terminal nodes (d = 1 or 2, respectively). With
such small values of d , Twin Boosting is computationally
fast, as discussed after the description of the Twin Boosting
algorithm in Sect. 4.

5 Other loss functions and generic Twin Boosting

For other loss functions than squared error (i.e. other boost-
ing algorithms than L2Boosting) we can use the gen-
eral functional gradient descent approach as described in
Sect. 2.1.

Interesting examples of loss functions include the follow-
ing. For binary classification with y ∈ {−1,+1}, the logistic
loss is

ρlogit(y, f ) = log2(1 + exp(−2yf )), (11)

and the exponential loss is

ρexp(y, f ) = exp(−yf ). (12)

Boosting with the logistic loss or exponential loss function
is essentially LogitBoost (Friedman et al. 2000) (also called
BinomialBoosting) or AdaBoost (Freund and Schapire
1996), respectively. For both loss function, the population
minimizer is

f ∗(x) = 1

2
log

(
p(x)

1 − p(x)

)

, p(x) = P[Y = 1|X = x].

For cases where Y ∈ {0,1,2, . . .}, the Poisson log-likelihood
is often appropriate:

ρ(y,f ) = −yf + exp(f ), f = log(λ).

In survival analysis, we can derive the loss function from the
partial likelihood in the Cox model (Cox 1975).

5.1 General Twin Boosting with general weak learners

If the loss function ρ(·, ·) is differentiable (almost every-
where) with respect to the second argument, the generic
boosting algorithm from Sect. 2.1 can be used.

General Twin Boosting is defined exactly as the general
Twin L2Boosting algorithm from Sect. 4, except that in step
3, instead of using residuals Ui , we will use

Ui = − ∂

∂f
ρ(Y,f )|

f =f̂m−1(Xi)
, i = 1, . . . , n,



126 Stat Comput (2010) 20: 119–138

as in the generic boosting algorithm from Sect. 2.1. In the
special case of Twin Boosting with the componentwise lin-
ear least squares learner, we would modify the residual vec-
tor U in step 2 of the algorithm in Sect. 3.2. From an im-
plementation point of view, (general) Twin Boosting with
differentiable loss functions is as simple as (general) Twin
L2Boosting.

6 Empirical results

We report here some results on Twin Boosting for regres-
sion and classification and we compare them with boosting.
We will demonstrate that Twin Boosting has a clear advan-
tage over boosting if the truth has many ineffective predic-
tor variables. Given the success of boosting algorithms in
many application areas, Twin Boosting exhibits a substan-
tial potential for further improvements over boosting. All of
our results are displayed in Figures, giving a better summary
how the methods behave as a function of boosting iterations.

6.1 Regression

The response variables Yi are real-valued and the goal is es-
timation of the function E[Y |X = x] or prediction of new
observations Y.

6.1.1 Simulated data

Consider the linear models:

model (2) with p = 500, β1 = 5,

βj = 0 (j = 2, . . . p),

Xi ∼ Np(0, I ) and εi ∼ N (0,1); (13)

model (2) with p = 500, β1 = · · · = β5 = 1.175,

βj = 0 (j = 6, . . . p),

Xi ∼ Np(0,�), �ij = 0.8|i−j |, and

εi ∼ N (0,1). (14)

Both models (13) and (14) have the same signal to noise ra-
tio E[|f (X)|2]/E[|ε|2], where f (x) = ∑p

j=1 βjx
(j). Sam-

ple size is chosen as n = 50 and the number of independent
simulation runs is 100.

We first use L2Boosting and Twin L2Boosting for lin-
ear models, using the componentwise linear least squares
weak learner. The step-length factor is chosen as ν = 0.1 and
the number of boosting iterations in the first round of Twin
Boosting is chosen as m1 = 50 which is a reasonable value
according to the performance of L2Boosting. Figure 1 dis-
plays the mean squared error (MSE) E[((β̂ −β)T Xnew)2] =
E[(β̂j − βj )

T �(β̂j − βj )], with � = Cov(X), (i.e. gener-
alization error) and the number of selected and incorrectly

Fig. 1 L2Boosting (solid line) and Twin L2Boosting (dashed line)
with componentwise linear least squares for model (13). Mean squared
error (MSE) (left), average number of selected predictor variables
(middle) and number of incorrectly selected predictor variables (right)

as a function of boosting iterations (or iterations from the second round
in Twin Boosting, respectively). Simulation accuracy is indicated by
dotted lines as 95% confidence intervals
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Fig. 2 L2Boosting (solid line) and Twin L2Boosting (dashed line) with componentwise linear least squares for model (14). Other specifications
as in Fig. 1

Table 1 Performances of boosting with componentwise linear least
squares (comp. LS) or stumps as weak learners, for models (13) and
(14), at stopping iteration which minimizes mean squared error. Mean

squared error (MSE), number of selected variables/features and num-
ber of incorrectly selected variables/features (i.e. false positives). Stan-
dard errors are given into parentheses

Model, method MSE No. variables No. incorrect variables

(13), L2Boost comp. LS 0.22 (0.015) 5.97 (0.124) 4.97 (0.124)

(13), Twin L2Boost comp. LS 0.05 (0.005) 1.01 (0.010) 0.01 (0.010)

(14), L2Boost comp. LS 0.40 (0.020) 12.41 (0.165) 7.41 (0.165)

(14), Twin L2Boost comp. LS 0.35 (0.018) 7.39 (0.167) 2.40 (0.166)

(13), L2Boost stumps 2.91 (0.087) 10.67 (0.233) 9.67 (0.237)

(13), Twin L2Boost stumps 2.25 (0.070) 4.52 (0.173) 3.52 (0.173)

(14), L2Boost stumps 3.45 (0.080) 31.98 (0.352) 26.98 (0.352)

(14), Twin L2Boost stumps 2.84 (0.069) 11.12 (0.231) 6.13 (0.213)

selected predictor variables (false positives), as a function
of boosting iterations. Figures 1 and 2 illustrate very clearly
that Twin Boosting is substantially better than boosting in
terms of variable selection. For the very sparse case in (13),
Fig. 1 also indicates relevant improvements in terms of pre-
diction. In Table 1, we report some exact numbers.

Next, we consider L2Boosting and Twin L2Boosting
with stumps. The results are displayed in Figs. 3 and 4; for
Twin Boosting, we used m1 = 50 iterations in the first round.

Although boosting (and Twin Boosting) with stumps
yields an additive model fit, the weak learner is “mis-
specified” (as is often the case in practice). This explains
why the mean squared error is much larger than with com-
ponentwise linear least squares. Also here, L2Boosting se-

lects way too many predictor variables while Twin Boosting
is very effective and substantially reduces the number of se-
lected variables. Table 1 reports some numerical values. The
results shown here are quite representative for many other
simulation settings.

We will show in Fig. 5 the sensitivity of Twin L2Boosting
to the choice of the tuning parameter m1. The final perfor-
mance of Twin L2Boosting is not heavily depending on the
choice of m1, as long as m1 is within a reasonable range, and
hence, some rough estimate of m1 will be sufficient for good
performance of Twin L2Boosting (when considering it as a
function of the second tuning parameter m2). In particular,
the found insensitivity yields some evidence that the sequen-
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Fig. 3 L2Boosting (solid line) and Twin L2Boosting (dashed line) with stumps for model (13). Other specifications as in Fig. 1

Fig. 4 L2Boosting (solid line) and Twin L2Boosting (dashed line) with stumps for model (14). Other specifications as in Fig. 1

tial cross-validation scheme described in Sect. 3.2 should
work reasonably well.

6.1.2 Real data

We consider two real data sets: Ozone concentration and
Motif regression from molecular biology. The first data set is

available from ftp://ftp.stat.math.ethz.ch/Research-Reports/
Other-Manuscripts/buhlmann/ozone.dat

The Ozone data is about daily ozone concentration in the
Los Angeles basin as a function of p = 8 meteorological
predictor variables. Sample size is n = 330. From a predic-
tion point of view, the componentwise linear least squares
weak learner is inferior than stumps. Thus, Fig. 6 reports

ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ozone.dat
ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ozone.dat
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Fig. 5 Squared prediction error of Twin L2Boosting (boxplots), as a function of m1, and mean squared error of L2Boosting (grey horizontal line).
Left: model (13); Right: model (14). Base procedure: componentwise linear least squares (top) or stumps (bottom)

only for boosting and Twin Boosting (with m1 = 100 itera-
tions in the first round) with stumps.

In addition, we look at a synthetically enlarged prob-
lem. We add 500 additional, ineffective noise predictor vari-
ables Xadd ∼ N500(0, I ). The problem has then dimension
p = 508 with at most 8 effective predictors. This will en-
able us to see whether and how many from the obviously in-
effective variables will be selected; we do not know whether
all of the 8 original predictor variables are effective or not.
We refer to an obviously incorrectly selected predictor vari-

able if it is one of the 500 synthetically added predictors.
Figure 7 reports the results (with m1 = 100 iterations in the
first round of Twin Boosting). Twin L2Boosting has slightly
better prediction performance than L2Boosting and is much
better with respect to obviously incorrectly selected vari-
ables.

The Motif regression data models gene expression as a
function of MDSCAN motif scores (Conlon et al. 2003,
p. 3343: Spellman et al. data, 15th time point). This data is
representative for many gene expression—motif scores data-
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sets, all of them being very noisy. Our data has p = 4312
motif scores (predictor variables) and sample size (number
of genes) is n = 4443. Figure 8 displays the results for the
componentwise linear least squares weak learner.

Although L2Boosting is performing as well as Twin
L2Boosting from a prediction point of view, the sparsity
of Twin L2Boosting in terms of selected variables, and
hence with a lower number of false positives, is crucial in
this application. When using about 600–800 boosting iter-
ations, L2Boosting selects 144–178 predictors while Twin

Fig. 6 L2Boosting (solid line) and Twin Boosting (dashed line) with
stumps for Ozone data. 10-fold cross-validation of: Squared error (left)
and number of selected predictor variables (right), as a function of
boosting iterations (or iterations from the second round in Twin Boost-
ing, respectively)

Boosting uses 41–53 variables only. Biological validation
of about 50 potential motifs (cis-regulatory elements) is
much more realistic than for three times as many candi-
dates. L2Boosting and Twin L2Boosting with trees did not
improve prediction performance while it selected more pre-
dictor variables than what is reported above for component-
wise linear least squares.

6.1.3 Twin L2Boosting and general Twin L2Boosting
for linear models

We briefly compare here the Twin L2Boosting algorithm for
linear models, as described in Sect. 3.2, with general Twin
L2Boosting for linear models as described in Sect. 4.1 and
assertion (ii) of Proposition 2.

The simulation model is from Zou and Hastie (2005,
model (d), Sect. 5) with strongly correlated covariates: a lin-
ear model as in (2) with n = 50, p = 40,

βj = 3 (j = 1, . . . ,15), βj = 0 (j = 16, . . . ,40),

Var(εi) = 152,

and the covariates are generated (i.i.d. with respect to all i’s)
as

X
(j)
i = Z

(1)
i + η

(j)
i , j = 1, . . . ,5,

X
(j)
i = Z

(2)
i + η

(j)
i , j = 6, . . . ,10,

Fig. 7 L2Boosting (solid line) and Twin Boosting (dashed line) with
stumps for Ozone data with synthetically enlarged predictor space
(p = 508). 10-fold cross-validation of: Squared error (left), number of

selected predictor variables (middle) and number of obviously incor-
rectly selected variables (right), as a function of boosting iterations (or
iterations from the second round in Twin Boosting, respectively)
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Fig. 8 L2Boosting (solid line) and Twin L2Boosting (dashed line)
with componentwise linear least squares for Motif regression data.
Other specifications as in Fig. 6

X
(j)
i = Z

(3)
i + η

(j)
i , j = 11, . . . ,15,

X
(16)
i , . . . ,X

(40)
i i.i.d. ∼ N (0,1),

where Z
(1)
i ,Z

(2)
i ,Z

(3)
i i.i.d. ∼ N (0,1) and η

(1)
i , . . . , η

(15)
i

i.i.d. ∼ N (0, σ 2 = 0.01).
The results in terms of the mean squared error are re-

ported in Fig. 9. We do not detect any substantial differ-
ences. This may be due to the simulation model, and we
do not know whether there are examples where one version
is clearly better than the other.

6.2 Classification

We consider some binary classification problems and use ex-
clusively the logistic loss in (11) for boosting, i.e. Binomial-
or LogitBoosting. The classifier is given by sign(f̂ (x))

where f̂ (·) is the estimated function from boosting or Twin
Boosting, respectively. This rule is equivalent to classify to
the label with larger (conditional) class-probability.

6.2.1 Simulated data

We modify model (13) as follows:

p = 500, β1 = 2, βj = 0 (j = 2, . . . p),

Xi ∼ Np(0, I ), log(πi/(1 − πi)) =
p∑

j=1

βjX
(j)
i ,

Yi ∼ Bernoulli(πi).

(15)

Sample size is again chosen as n = 50 and the number of
independent simulation runs is 100. We reduced the size of
the coefficient β1 in comparison to model (13) to decrease
the signal to noise ratio in the problem.

Figure 10 reports the results for Binomial/LogitBoosting
and its Twin Boosting version (with m1 = 10 iterations in

the first round of Twin Boosting) with componentwise lin-
ear least squares (which yields a logistic linear model). The
results are qualitatively comparable to the case of regression
in Fig. 1, demonstrating a clear advantage of Twin Boosting.

6.2.2 Real data

We consider the Sonar dataset (n = 208, p = 60) from
the Statlog project, available from ftp//ftp.stat.math.ethz.ch/
Research-Reports/Other-Manuscripts/buhlmann/sonar.dat,
the Ionosphere (n = 351, p = 34) and the monk dataset
(Monk1) (n = 432, p = 6) from the UCI machine learning
repository (http://www.ics.uci.edu/ mlearn/MLSummary.
html), and the three datasets Arcene, Madelon and Gisette
from the NIPS 2003 feature selection challenge (Guyon
et al. 2006). We note that Monk1 is a synthetic dataset:
however, it is not generated by ourselves. For the Sonar
and Ionosphere dataset, we also consider synthetically en-
larged predictor spaces where we add 500 ineffective pre-
dictor variables; for the Monk1 data, we exclusively con-
sider the case with an enlarged feature space. We consider
boosting and Twin Boosting with stumps for the Sonar,
Ionosphere, Arcene, Madelon and Gisette data while for
Monk1, we use larger trees as weak learners and the cor-
responding Twin Boosting with random feature subsets as
described in Sect. 4. Logistic linear models, fitted by using
the componentwise linear least squares weak learner, were
not competitive for all six data-sets.

For the Sonar data, we use m1 = 100 iterations in the first
round of Twin Boosting. The results are displayed in Fig. 11.
The classification accuracy is about the same for boosting
and Twin Boosting while the latter selects about 30% fewer
variables (when using reasonable stopping iterations which
differ for the two methods).

We enlarge the number of features by adding 500
additional, ineffective noise predictor variables Xadd ∼
N500(0, I ). Then, the classification problem involves dimen-
sion p = 560 with at most 60 effective predictors. We refer
to an obviously incorrectly selected predictor variable if it
belongs to one of the 500 synthetically added features. Re-
sults are given in Fig. 12.

The interpretation is similar (even more in favor of Twin
Boosting) as for the original Sonar data. In addition, Twin
Boosting is much better in terms of obviously incorrectly
selected variables.

For the Ionosphere data, m1 = 500 iterations in the first
round of Twin Boosting is a reasonable value. The results
are displayed in Fig. 13.

Twin Boosting has marginally better prediction power
while being more sparse in the selected variables. When
adding 500 additional, ineffective noise predictor variables
Xadd ∼ N500(0, I ) the problem has dimension p = 534 with
at most 34 effective predictors. Results are displayed in

http://ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/sonar.dat
http://ftp//ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/sonar.dat
http://www.ics.uci.edu/~mlearn/MLSummary.html
http://www.ics.uci.edu/~mlearn/MLSummary.html
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Fig. 9 Mean squared error for model from Sect. 6.1.3 (Zou and Hastie
2005). Top: Twin L2Boosting for linear models; Bottom: General Twin
L2Boosting for linear models. Left: Contour plots as a function of the

boosting iterations m1 and m2; Right: L2Boosting (black line) and
(general) Twin L2Boosting for various values of m1 as a function of
m2 (grey lines)

Fig. 14, based on m1 = 200 iterations in the first round of
Twin Boosting; as above for the Sonar data, the obviously
incorrectly selected variables can be determined.

Interestingly, the classification performance does not de-
grade for both boosting and Twin Boosting. The reason is
probably due to the increased resistance of overfitting (e.g.
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Fig. 10 LogitBoosting (solid line) and corresponding Twin Boosting
(dashed line) with componentwise linear least squares in model (15).
Misclassification error (left), average number of selected predictor
variables (middle) and average number of incorrectly selected predic-

tor variables (right) as a function of boosting iterations (or iterations
from the second round in Twin Boosting, respectively). Simulation
accuracy is indicated by dotted lines as 95% confidence intervals

Fig. 11 LogitBoosting (solid line) and corresponding Twin Boosting
(dashed line) with stumps for Sonar data. 10-fold cross-validation of:
Misclassification error rate (left) and number of selected predictor vari-
ables (right, as a function of boosting iterations (or iterations from the
second round in Twin Boosting, respectively)

when selecting wrong features) when using the misclassifi-
cation error (Friedman et al. 2000, pp. 400–404) and hav-
ing a situation with low noise (low misclassification error).
Regarding the quality of feature selection, however, Twin
Boosting is much better than boosting in terms of selecting
obviously incorrect predictor variables.

In addition, LogitBoosting and TwinBoosting are bench-
marked on three high-dimensional problems, the Arcene,
Gisette, and Madelon datasets, see also http://www.nipsfsc.
ecs.soton.ac.uk/ for a detailed description. Here, our interest

is to compare both algorithms in real high-dimensional situ-
ations with respect to their feature selection properties for a
varying number of initial boosting steps m1. The data comes
with separate learning and validation samples, and we report
performance measures (balanced misclassification error and
negative binomial log-likelihood) for the validation samples.

Arcene offers a binary response and p = 10′000 features,
the learning sample consists of ntrain = 100 observations,
additional nvalid = 100 observations are available for valida-
tion. The log-likelihood (Fig. 15, left panel) suggests to stop
LogitBoosting after ca. 25 iterations to prevent overfitting.
The balanced misclassification error attains it’s minimum af-
ter ca. 20–30 iterations as well. Four runs of TwinBoosting
(with m1 ∈ {25,50,75,100}) have been performed as well.
Based on the validation log-likelihood, between 15 and 20
iterations should be enough, the balanced misclassification
error for all four values of m1 is practically equivalent. Note
that the number of selected features is smaller compared to
LogitBoosting.

Roughly the same conclusions can be drawn for the
Madelon problem (ntrain = 2000, nvalid = 600, p = 500),
see Fig. 16). The optimal number of boosting iterations is
smaller for TwinBoosting whereas the prediction perfor-
mance is slightly better for Boosting. However, TwinBoost-
ing leads to a sparser model. It should be noted that the per-
formance of TwinBoosting seems to be rather robust against
different choices of m1. This is even more pronounced
for the Gisette problem (ntrain = 6000, nvalid = 1000, p =

http://www.nipsfsc.ecs.soton.ac.uk/
http://www.nipsfsc.ecs.soton.ac.uk/
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Fig. 12 LogitBoosting (solid line) and corresponding Twin Boosting
(dashed line) with stumps for Sonar data with synthetically enlarged
predictor space. 10-fold cross-validation of: Misclassification error rate
(left), number of selected predictor variables (middle) and number of

obviously incorrectly selected variables (right), as a function of boost-
ing iterations (or iterations from the second round in Twin Boosting,
respectively)

Fig. 13 LogitBoosting (solid line) and corresponding Twin Boosting
(dashed line) with stumps for Ionosphere data. Other specifications as
in Fig. 11

5000), see Fig. 17, where the four different models (based on
m1 = (100,200,300,400)) are practically not distinguish-
able. Boosting (with 400 iterations) requires more than twice
as many variables entering the model than TwinBoosting to
achieve a similar performance.

6.2.3 Large trees and random feature subsets in Twin
Boosting

For the Monk1 data, boosting and Twin Boosting with
stumps has a cross-validated misclassification error of about
0.25. Boosting with larger trees yields substantial improve-

ments with a misclassification error of 0.03. Thus, for this
problem, it is essential to allow for interactions among the
predictor variables (which is well known due to the con-
struction of the Monk1 data).

There are only little differences between boosting and
Twin Boosting with larger trees. However, when adding 500
ineffective noise variables Xadd ∈ {−1,+1}500 with inde-

pendent components and P[X(j)

add = 1] = 0.5 for all j (the
original 6 predictors are categorical, often binary), the situa-
tion is very different. As weak learners, we use trees whose
depths are at most 4 (which allows for interactions among
four predictor variables, at least). Furthermore, for Twin
Boosting, we sample B = 500 random feature subsets of
size |W | = sW = 4 (per boosting iteration), see Sect. 4. We
use m1 = 10 iterations in the first round of Twin Boosting.
In addition, we add an additional iteration to Twin Boost-
ing, termed Triple Boosting: i.e. the Twin Boosting fit (with
m2 = 50) is used as initialization and we then proceeded ex-
actly as with Twin Boosting. Figure 18 illustrates the results:
Twin Boosting improves upon boosting with respect to pre-
diction and feature selection. Furthermore, Triple Boosting
yields additional improvements over Twin Boosting.

This example with the Monk1 data (with enlarged feature
space) is demonstrating that Twin Boosting with random
feature subsets and with larger trees leads to similar quali-
tative conclusions as for Twin Boosting with stumps. More-
over, we see that further (smaller) gains can be achieved by
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Fig. 14 LogitBoosting (solid line) and corresponding Twin Boosting (dashed line) with stumps for Ionosphere data with synthetically enlarged
predictor space. Other specifications as in Fig. 12

Fig. 15 LogitBoosting (solid line) and corresponding Twin Boosting,
using various values of m1 (various dashed lines), with stumps for
Arcene data. Validation set error of log-likelihood (left) and misclas-

sification rate (middle), and number of selected variables (right), as a
function of boosting iterations (or iterations from the second round in
Twin Boosting, respectively)

pursuing Triple Boosting invoking one stage more than Twin
Boosting.

7 Conclusions

We proposed Twin Boosting which is as general and generic
as (gradient-based) boosting. It can be used with general

weak learners, for example with trees enabling the applica-
bility for mixed data types with continuous, ordinal and cat-
egorical features, and it is suitable in a wide variety of sit-
uations, including regression, classification, Poisson regres-
sion or survival analysis (using the loss function from the
partial likelihood in the Cox model). It is easy to imple-
ment and computationally feasible for large problems with
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Fig. 16 LogitBoosting (solid line) and corresponding Twin Boosting, using various values of m1 (various dashed lines), with stumps for Madelon
data. Other specifications as in Fig. 15

Fig. 17 LogitBoosting (solid line) and corresponding Twin Boosting, using various values of m1 (various dashed lines), with stumps for Gisette
data. Other specifications as in Fig. 15

potentially very many features (or predictors or covariates)
and/or large sample size. Furthermore, it is useful for high-
dimensional situations where the number of features is much
larger than sample size.

We have empirically shown that Twin Boosting has much
better feature or variable selection behavior than boosting. In
particular, Twin Boosting leads to sparser solutions which
implies a reduction in the number of false positives (fewer
falsely selected features): a low number of false positives is
sometimes highly desirable, e.g. in computational biology

where only a few features or variables (e.g. genes) will be
biologically validated in follow-up experiments. For cases
with a small number of important effective covariates and
many noise features, Twin Boosting also improves the pre-
dictive accuracy of boosting; for other situations, we never
found it substantially worse for prediction than boosting.
For the special case of orthonormal linear models, we prove
equivalence to the adaptive Lasso (Zou 2006) which pro-
vides some theoretical aspects for explaining our general
empirical findings with Twin Boosting.
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Fig. 18 LogitBoosting (solid line), corresponding Twin Boosting
(dashed line) and Triple Boosting (dashed-dotted line) with larger trees
for Monk1 data with synthetically enlarged predictor space. Twin and
Triple Boosting with random feature subsets. Other specifications as in
Fig. 12

Appendix

Proof of Proposition 1 The proof of Theorem 2 in Bühl-
mann and Yu (2006) can be adapted. The main modification
is needed for formula (22) and its previous five lines. We
denote in short by βinit = β̂

[m1]
init and β̂[m] = β̂

[m]
TWB.

The residual sum of squares of Twin L2Boosting at iter-
ation m, denoted by RSSm, decreases monotonically in m.
The difference in residual sum of squares is:

RSSm − RSSm+1 = |〈U,X(Sm+1)〉|2,

where U denotes the residual vector Y − Xβ̂[m] and Sm+1

the selected variable in iteration m+1. In every step of Twin
L2Boosting, a maximal reduction of the weighted difference
in residual sum of squares is used:

Gm+1 = (RSSm − RSSm+1)|βinit,Sm+1 |2

= |〈U,X(Sm+1)〉|2|βinit,Sm+1 |2,

and the sequence Gm+1,m = 1,2, . . . is monotonically de-
creasing (because of the definition of Twin L2Boosting, the
independence of fitting the ith component of β from the
j th component (i 
= j ) and the form of the decay of dif-
ferences of residual sum of squares). Therefore, every stop-
ping iteration corresponds to a tolerance δ2 as in formula
(22) in Bühlmann and Yu (2006), using here Gm+1 instead
of RSSm − RSSm+1. The remaining part of the proof is ex-
actly as in Bühlmann and Yu (2006): the additional factor
|βinit,i |2 leads to the assertion of Proposition 1. �

Proof Proposition 2 For both assertions, it holds that
‖X(j)‖ = 1 for all j = 1, . . . , p. By formula (9), we only
have to deal with the form of the coefficient CW = Cj

in (8). Denote by γ̂j = 〈U,X(j)〉 the estimated regression
coefficient of U versus X(j). Then,

Cj = 〈f̂[m1]
init , γ̂j X(j)〉/‖γ̂j X(j)‖ (16)

=
〈

p∑

k=1

β̂
[m1]
init,kX(k), γ̂j X(j)

〉

/‖γ̂j X(j)‖. (17)

For assertion (i), we re-write (16) using orthonormality

Cj = β̂
[m1]
init,j γ̂j /|γ̂j |

and hence C2
j = (β̂

[m1]
init,j )

2 equaling the factor in formula (5).

For assertion (ii), using that ‖X(j)‖ = 1, (16) yields

C2
j =

(
p∑

k=1

β̂
[m1]
init,kX(k), γ̂j X(j)〉

)2

which equals the multiplier in formula (5) from asser-
tion (ii). �
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