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Abstract

Graphical models have become increasingly popular to analyze full conditional
(in-)dependencies between random variables. However, full conditional relationships
between variables can be only accurately estimated if the number of observations is
relatively large in comparison to the number of variables. If this prerequisite is not
fulfilled and the graphical model cannot be learned with adequate accuracy, simpler
models have to be relied on to determine dependencies between random variables.

Here, we present such a simplified graphical modeling approach, called tri-graph,
in which full conditional modeling is carried out in small subgraphs with three vertices
only. These subgraphs are then combined into the full model. We analyze the proba-
bilistic properties of the tri-graph and demonstrate in a simulation study that despite
its simplicity, the tri-graph is a good estimator of the full conditional independence
pattern between random variables.

Possible applications of our approach include the analysis of microarray gene ex-
pression profiles which usually comprise many variables (genes) but few observations.
As an example, we use the tri-graph to estimate the conditional dependence structure
between 40 genes to infer a genetic regulatory network for the isoprenoid biosynthesis
in Arabidopsis thaliana.

Heading: Modified graphical modeling
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1 Introduction

Graphical models (Edwards, 2000; Lauritzen, 1996) form a probabilistic tool to analyze
and visualize conditional dependence between random variables. Random variables are
represented by vertices of a graph and conditional relationships between them are encoded
by edges. Conditional independence between two variables is always in relation to other
existing and missing edges. The inclusion or removal of a single edge can change the
independence pattern of the complete graph.

Graphical modeling of full conditional dependencies are powerful for a small number of
random variables. Based on maximum likelihood methods with a model selection penalty,
the independence structure of the graph can be learned. As the number of variables
increases, however, only a small subset of the super-exponentially growing number of
models can be tested (Wang et al., 2003). More importantly, for many random variables,
accurate estimation of conditional dependencies requires many more observations than are
sometimes available (for example in gene expression profiling). The corresponding high
rate of false positive and false negative edges then makes the interpretation of the graph
within the Markov property framework (Edwards, 2000; Lauritzen, 1996) rather difficult
(Husmeier, 2003; Waddell & Kishino, 2000).

These problems may be circumvented using a simpler approach with better estima-
tion properties to characterize the dependence structure between random variables. The
simplest method would be to model the marginal dependence structure in a so called
covariance graph (Cox & Wermuth, 1993, 1996). The covariance structure of random
variables can be accurately estimated and easily interpreted even with a large number of
variables and a small sample size. However, the covariance graph contains only limited
information since the effect of other variables on the relationship between two variables is
ignored.

The full conditional independence graph and the covariance graph play dual (opposite)
roles with respect to interpretation and estimation properties in graphical modeling. Our
aim is to design a simple yet powerful approach in-between both forms of modeling. It
should allow to study dependence patterns in a more complex and exhaustive way than
with only pairwise correlation-based relationships while maintaining high accuracy even
for few observations. For this purpose, we propose not to condition on all variables at a
time. Instead, we apply graphical modeling only to small subgraphs with three vertices
to explore the dependence between two of the variables conditional on the third one.
These subgraphs are then combined for inference on the complete graph, which we call
the “tri-graph”.

A possible application of our approach would be in gene expression profiling where
the activity of thousands of genes is monitored over relatively few samples. Despite the
aforementioned problems, graphical models have become increasingly popular for infer-
ring genetic regulatory networks based on the conditional dependence structure of gene
expression levels (Wang et al., 2003; Friedman et al., 2000; Hartemink et al., 2001; Toh
& Horimoto, 2002). The conditional tri-graph can improve upon the accuracy of the
estimated dependencies by focusing on simpler aspects of conditional dependence.

We analyze here probability and estimation properties of the tri-graph and demonstrate
its usefulness to discover conditional dependence patterns. As our main interest is to apply
our approach in gene expression profiling, we focused on simulated networks with genetic

2



and metabolic topologies, and we also present an example where we infer a gene network
for isoprenoid biosynthesis in Arabidopsis thaliana.

2 Definition of the modified graphical model

Consider p random variables X1, . . . , Xp which we sometimes denote by the random vector
X = (X1, . . . , Xp). Full conditional dependence between two variables Xi and Xj refers to
the conditional dependence between Xi and Xj given all other variables Xk, k ∈ {1, . . . , p}\
{i, j}. Conditional independence between Xi and Xj denoted by Xi ⊥⊥ Xj | X \ {Xi, Xj}
states that there is no direct relationship between Xi and Xj .

Describing all conditional (in-)dependencies is often a desirable goal. However, esti-
mating and interpreting the conditional dependence pattern of p variables is often a very
difficult task, due to the complexity of p-dimensional distributions. In particular, the lat-
ter applies when p is relatively large. Therefore, it may be desirable to rely on simpler
models than the full conditional dependence structure of all p variables. The tri-graph
in which the dependence pattern between two variables is explored by conditioning sep-
arately on one of the remaining variables Xk, for each k ∈ {1, . . . , p} \ {i, j}, represents
such a simplified model. Its precise definition is given in Section 2.3.

In graphical modeling, the dependence pattern between variables is associated with a
graph in which vertices encode the random variables and edges encode conditional depen-
dence between variables. In the full conditional independence graphs, two variables are
connected if and only if these two variables are conditionally dependent given all remain-
ing variables. Figure 2.1 shows an example of the dependence patterns between variables
X1, . . . , X4 and the corresponding full conditional independence graph. All edges in the
graph are undirected.

X1 ⊥⊥ X4 | (X2, X3)
X2 ⊥⊥ X3 | (X1, X4)
X2 ⊥⊥ X4 | (X1, X3)

X3

X1

X4

X2

Figure 2.1: Conditional independence model and associated graph

For continuous random variables X that follow a multivariate normal distribution with
mean IE(X) = µ and covariance matrix Cov(X) = Σ,

X ∼ N (µ,Σ),

we now give the probabilistic definitions for graphical modeling based on the full condi-
tional independence graph, the covariance graph, and our tri-graph.
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2.1 The full conditional independence graph

In the full conditional independence graph, an edge between vertex i and j is drawn if
and only if Xi and Xj are conditionally dependent given all other variables {Xk; k ∈
{1, . . . , p} \ {i, j}}. Due to the Gaussian assumption, this means that the vertices Xi and
Xj (i 6= j) are connected if and only if the partial correlation coefficients

ωij 6= 0, ωij =
Σ−1

ij√
Σ−1

ii Σ−1
jj

(2.1)

where Σ−1
ij are the elements of the inverse covariance matrix (precision matrix).

To learn the conditional independence structure of the graph, it is therefore necessary
to determine which elements of the precision matrix Σ−1 are estimated to be 0. Since this
is commonly carried out jointly for all edges in a likelihood approach, super-exponentially
(2p(p−1)/2) many tests have to be conducted to find the best model for the data. For a large
number of variables, this is hardly feasible. Instead, non-exhaustive search algorithms such
as backward and forward selection procedures are used to learn the model.

Furthermore, since the computation of the partial correlation coefficients includes ma-
trix inversion of the covariance matrix, a relatively large sample size n is necessary for
their accurate estimation (Lauritzen, 1996). For certain applications like genomics, such
a sample size is typically not available. Conditional independence graphs learned from
such data will then be rather unreliable with a high false positive and high false negative
rate. We will show that the much simpler concepts such as the covariance graph and the
tri-graph can be estimated with higher accuracy. However, among the latter two, only the
tri-graph can capture the conditional independence structure well.

2.2 The covariance graph

In the covariance graph, an edge between vertex i and j (i 6= j) is drawn if and only if the
correlation coefficient

ρij 6= 0, ρij =
Σij√
ΣiiΣjj

. (2.2)

The covariance graph as a representation of the marginal dependence structure between
variables is simple to interpret and has the advantage that it can be accurately estimated
from finite-sample data even if p is very large in comparison to sample size n, see Section
3.1. However, this graph is often not sufficient to capture more complex conditional
dependence patterns.

2.3 Tri-graph: a modified graphical model

Our modified graph construction combines statistical features from the covariance and the
conditional independence graph. In this respect, it can be viewed as being between the
covariance and the full conditional dependence graph.

To explore some dependence structure between two variables Xi and Xj , we propose
not to jointly condition on all remaining variables at a time. Instead, we consider sepa-
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rately all pairwise partial correlations

ωij|k =
ρij − ρikρjk√

(1− ρ2
jk)(1− ρ2

ij)

of Xi and Xj given one of the remaining variable Xk. These partial correlation coefficients
are then combined to draw conclusions on some aspect of the dependence between Xi and
Xj .

Definition 1 (Tri-graph)
Draw an edge between vertex i and j (i 6= j) if and only if

ρij 6= 0 and ωij|k 6= 0 for all k ∈ {1, . . . , p} \ {i, j}.
The name “tri-graph” refers to the fact that all partial correlations among triples of

random variables are involved. Let Tij = {ρij , ωij|k; k ∈ {1, . . . , p} \ {i, j}} be the set of
the correlation and partial correlation coefficients for Xi and Xj . As parameter τij for an
edge between Xi and Xj , we can use the element of Tij with minimum absolute value. We
assign an edge if and only if

τij = arg min
τ∈Tij

(|τ |) > 0

A tri-graph still reflects some measure of conditional dependence given each other vari-
able separately, and thus describes a more complex dependence pattern than a covariance
graph. In fact, we can show that it can capture the full conditional independence structure
well and sometimes even exactly, see Theorem 1. On the other hand, it is still reasonably
simple to interpret. An edges between two variables Xi and Xj represents a dependence
that cannot be explained by any of the other variables Xk. From a statistical perspective,
a tri-graph can be accurately estimated from data even if p is large relative to sample size
n, see Section 3.1. Furthermore, estimation of tri-graphs is based on an exhaustive com-
putation, see Section 3, and one does not have to rely on approximate search algorithms
as for full conditional dependence graphs.

2.4 Some examples and a rigorous property

We are describing here with some simple examples and a theorem in how far the full
independence graph, the tri-graph and the correlation graph relate to each other.
Example 1: Consider 4 random variables X = (X1, X2, X3, X4) ∼ N(0, Σ) with

Σ =




1 −1 −1 −1
−1 2 1 1
−1 1 2 1
−1 1 1 2


 and Σ−1 =




4 1 1 1
1 1 0 0
1 0 1 0
0 0 0 1


 .

Based on the inverted covariance matrix Σ−1, we obtain a conditional independence model
as shown in Figure 2.2. In such a setting, tri-graph and independence graph are exactly
the same whereas the covariance graph is the full graph. A similar situation can be found
for the example given in Figure 2.1. Tri-graph and independence graph show the same
structural dependence whereas the covariance graph is again full. In general, we have the
following theorem.
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X2 ⊥⊥ X3 | (X1, X4)
X2 ⊥⊥ X4 | (X1, X3)
X3 ⊥⊥ X4 | (X1, X2)

X3

X1

X4

X2

Figure 2.2: A conditional independence model for which tri-graph and full conditional graph are
the same.

Theorem 1 If the full conditional independence graph does not contain any cycles then
the tri-graph coincides with the full conditional independence graph.

A proof is given in the Appendix.

Example 2: Consider 4 random variables X = (X1, X2, X3, X4) ∼ N(0, Σ) with

Σ =




4 −7 −5 6
−7 13 9 −11
−5 9 7 −8
6 −11 −8 10


 and Σ−1 =




5 2 1 0
2 2 0 1
1 0 2 1
0 1 1 2


 .

The full conditional independence graph includes all edges except those between the pairs
(X1, X4) and (X2, X3) as shown in Figure 2.3. From Σ we see that the covariance graph

X2 ⊥⊥ X3 | (X1, X4)
X1 ⊥⊥ X4 | (X2, X3)

X1

X4

X2 X3

Figure 2.3: A conditional independence model for which the cyclic full conditional independence
graph is contained in the tri-graph

includes all edges. The tri-graph also includes all edges since for example, X2 and X3 are
not conditionally independent on either X1 or X4 alone.

2.5 More complex situations

For modeling Gaussian graphs with a large number of nodes, we have to rely on simulations
to explore the relationships between the full conditional independence graph, the tri-graph
and the covariance graph. Our focus for application is on sparse graphs with a modular
topology such as metabolic, genetic regulatory or protein interaction networks. For these
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Xi ⊥⊥ Xj | T
XjXi

T

Figure 2.4: Conditional independence model and associated graph for Xi, Xj and the latent variable
T .

networks, it has been repeatedly suggested that the connectivity of the vertices follows
a power law with exponents γ between 2 and 3 (Jeong et al., 2000; Maslov & Sneppen,
2002). In our simulations, we adopt this modular network structure by sampling the
number of edges for each node independently from a power-law distribution p(k) = k−γ

ζ(γ)

with exponent γ = 2.5. The normalization constant ζ(γ) is the Riemann zeta function.
The graphs that we obtain by this method are very sparse and usually contain fewer edges
than the number of nodes (see Table 2.1). In order to simulate graphs with more edges,
we also generate graphs with exponent γ = 1.5 and 0.5.

Edges are then randomly assigned to other nodes (with equal probabilities). This
random graph structure is used to define the zeros in the precision matrix: Σ−1

ij = 0 if
there is no edge between i and j. In order to model the non-zero elements of Σ−1 (and
the partial correlation coefficients), we first look at two nodes only. We assume that the
conditional dependence between two random variables Xi and Xj is introduced by an
underlying latent random variable T . If we only consider the three variables Xi, Xj and
T , we could model the effect of T on Xi and Xj in a conditional independence graph
(Figure 2.4) with precision matrix

Σ−1
Xi,Xj ,T =




1 0 −βij

1+β2
ij+β2

ji

0 1 −βji

1+β2
ij+β2

ji−βij

1+β2
ij+β2

ji

−βji

1+β2
ij+β2

ji
1


 .

Magnitude and sign of the coefficients βij and βji determine how strong the effect of T is
on Xi and Xj respectively. After T is integrated out, the precision matrix for the variables
Xi and Xj is

Σ−1
Xi,Xj

=




1 −βijβjiq
1+β2

ij

q
1+β2

ji

−βijβjiq
1+β2

ij

q
1+β2

ji

1


 .

We can therefore write
Σ−1

Xi,Xj
=
√

D(Id + BBt)
√

D (2.3)

with

B =
(

βij

−βji

)
and D =




1q
1+β2

ij

0

0 1q
1+β2

ji


 .
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If we model partial correlation coefficients for all variables X1, . . . , Xp, we also use the
scheme as described in (2.3). Let {ekl} be the edges in the graph where the indices k < l
refer to the indices of the variables Xk and Xl that are connected by ekl. Let further e be
the total number of edges and B a p× e matrix with elements

biekl
=





βil if i = k

−βki if i = l

0 otherwise.

Then we find

(BBt)ij =
∑
ekl

biekl
bjekl

=





∑
eik

β2
ik +

∑
eki

β2
ki if i = j

−βijβji if i 6= j and there is an edge between i and j

0 if i 6= j and there is no edge between i and j

and the partial correlation coefficient for two conditionally dependent variables Xi and Xj

can be modeled as (Equations (2.1) and (2.3))

ωij =
βijβji√

1 +
∑

eik
β2

ik +
∑

eki
β2

ki

√
1 +

∑
ejk

β2
jk +

∑
ekj

β2
kj

.

Our scheme to generate partial correlation coefficient for a pre-specified independence
graph has the advantage that the sampled precision matrix is always positive definite.
Therefore, the random graph structure and B define a normal distribution N(0, Σ). The
magnitude and sign of the coefficients βij determine the magnitude and sign of the partial
correlation coefficients. In our simulations, we sampled the coefficients βij from three
different uniform distributions U(−βmax, βmax) with βmax = 1, 5, 100.

With this model, we generated 100 graphs and covariance matrices each for graphs
with p =5, 10, 20, and 40 vertices and connectivity parameter γ =2.5, 1.5 and 0.5. For
each p and each γ, we compared the structure of the independence graph, the covariance
graph and the tri-graph. In Table 2.1, the mean and standard deviations for the number
of edges per graph is shown. For decreasing γ, the number of edges increases in the full
conditional independence graphs. The edges of the conditional independence graph almost
always formed a subset of the tri-graph. For graphs with low connectivity (γ = 2.5), the
tri-graph contained only few additional edges. However, for γ = 0.5, the tri-graphs were
considerably larger than the corresponding independence graphs. The covariance graphs
always contained many more edges than both the other graphical models.

We also monitored the difference between the correlation and partial correlation coef-
ficients (ρij −ωij) and the difference between tri-graph and partial correlation coefficients
(τij − ωij) for unconnected (ωij = 0) and connected (ωij 6= 0) vertices i and j (see Table
2.2 for the root mean squared errors (RMSE) averaged over all i < j). Most edges in the
tri-graph that are not part of the conditional independence graph have coefficients in the
vicinity of 0. In fact, for ωij = 0 the 5%- and 95%-quantile of the distribution of tri-graph
coefficients were located within the interval [-0.05, 0.05] for all simulation settings. For
ωij 6= 0, the 5%-95%-quantile ranges were always larger. This indicates that the tri-graph
can capture the conditional independence structure quite well.
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number number of edges in the
of γ independence tri- covariance

variables graph graph graph

2.5 3.53(0.70) 3.56(0.81) 6.52(2.98)
p=5 1.5 4.14(1.04) 4.38(1.57) 7.84(2.89)

0.5 5.59(1.19) 6.47(2.07) 9.82(1.03)

2.5 7.46(1.51) 7.76(2.31) 20.68(14.38)
p=10 1.5 10.87(2.67) 15.02(7.70) 38.46(11.42)

0.5 18.86(3.82) 33.02(7.45) 45.00(0.00)

2.5 15.48(2.91) 16.87(8.08) 56.68(46.09)
p=20 1.5 24.42(4.32) 51.27(23.96) 166.45(43.82)

0.5 44.97(6.70) 130.00(26.17) 190.00(0.00)

2.5 30.45(3.80) 31.08(7.40) 115.66(91.62)
p=40 1.5 49.70(6.79) 173.03(85.08) 680.35(162.73)

0.5 88.34(8.74) 498.33(82.76) 780.00(0.00)

Table 2.1: Mean number of edges (and standard deviation) for the three different graphical models
in Section 2.5 as a function of γ and p.

3 Estimation from data

For a pair of edges i, j, we can test all null-hypotheses

H0(i, j|k) : ωij|k = 0 for k /∈ {i, j}

versus the alternatives H1(i, j|k) : ωij|k 6= 0.
Such hypotheses can be tested with the likelihood ratio test under the Gaussian as-

sumption
Xi, Xj , Xk ∼ N3(µ,Σ).

The null hypotheses are (Σ−1)12 = 0 (which is equivalent to ωij|k = 0) and the alternatives
are Σ unconstrained. Under the null-hypotheses and the assumption that the data are
i.i.d. realizations from a p-dimensional normal distribution, the log-likelihood ratios are
asymptotically χ2-distributed (Lauritzen, 1996) and every likelihood ratio test of H0(i, j|k)
versus H1(i, j|k) yields a P-value

P (i, j|k).

Furthermore, the likelihood ratio test of the null hypothesis for the marginal correlation

H0(i, j| ∅) : ρij = 0 versus H1(i, j| ∅) : ρij 6= 0

yields a P-value P (i, j| ∅).
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number RMSE
of γ covariance graph tri-graph

variables ωij = 0 ωij 6= 0 ωij = 0 ωij 6= 0

2.5 0.221 0.144 0.002 0.029
p=5 1.5 0.268 0.189 0.009 0.04

0.5 0.251 0.178 0.02 0.056

2.5 0.161 0.16 0.004 0.046
p=10 1.5 0.168 0.151 0.01 0.046

0.5 0.118 0.1 0.018 0.042

2.5 0.105 0.155 0.001 0.044
p=20 1.5 0.111 0.136 0.007 0.05

0.5 0.065 0.066 0.011 0.031

2.5 0.075 0.162 0.001 0.045
p=40 1.5 0.076 0.127 0.005 0.051

0.5 0.046 0.058 0.006 0.028

Table 2.2: RMSE averaged over all i < j with ωij = 0 and averaged over all i < j with ωij 6= 0
between correlation coefficients ρij and partial correlation coefficient ωij (right columns) and RMSE
between tri-graph coefficients τij and partial correlation coefficients ωij (left columns). βmax = 5.

Recall that an edge in a tri-graph between vertex i and j exists if H0(i, j| ∅) is rejected
and H0(i, j| k) is rejected for all vertices k /∈ {i, j}. Thus, there is evidence for an edge
between vertex i and j if

max
k∈{∅,1,2,...,p}\{i,j}

P (i, j| k) < α,

where α is the significance level. For deciding about a single edge between vertices i, j, it
is not necessary to correct for the p− 1 multiple testing over all conditioning vertices k.

Proposition 1 Consider the single hypothesis (for some fixed pair (i, j)),

H0(i, j): at least one H0(i, j| k∗) is true for some k∗ ∈ {∅, 1, 2, . . . , p} \ {i, j}.
Assume that for all k ∈ {∅, 1, 2, . . . , p} \ {i, j} the individual test satisfies

IPH̃0(i,j|k) [H0(i, j| k) rejected ] ≤ α,

where H̃0(i, j|k) = {H0(i, j|k) true } ∩ {H0(i, j|k′) true or false (and compatible with
H0(i, j|k) for all k′ 6= k}. Then, the type I error

IPH0(i,j) [H0(i, j| k) are rejected for all k ∈ {∅, 1, 2, . . . , p} \ {i, j}] ≤ α.

A proof is given in the Appendix. Note that the log-likelihood ratio test described
above satisfies asymptotically the assumption of Proposition 1. It will be necessary though
to correct over the p(p−1)/2 multiple tests over all pairs of vertices (i, j). The estimation
algorithm is as follows.
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Estimation algorithm

1. For all i, j ∈ {1, . . . , p}, i 6= j and k ∈ {1, 2, . . . , p}\{i, j}, compute P-values P (i, j|k)
from the log-likelihood ratio test with respect to the model Xi, Xj , Xk ∼ N (0,Σ)
with null hypothesis H0(i, j|k): Σ−1

ij = 0 and alternative H1(i, j|k): Σ−1
ij 6= 0. Also,

compute P (i, j|∅) from the log-likelihood ratio test with null hypothesis H0(i, j|∅):
Σij = 0 and alternative H1(i, j|∅): Σij 6= 0. Note the symmetry P (i, j|k) = P (j, i|k).

2. For all pairs (i, j) = (j, i) compute the maximum P-values (note the correspondence
to Proposition 1)

Pmax(i, j) = max
k∈{∅,1,2,...,p}\{i,j}

P (i, j|k).

3. Correct the maximum P-values Pmax(i, j) over the p(p − 1)/2 multiple tests for all
pairs of vertices. For example, use the Benjamini-Hochberg correction (Benjamini
& Hochberg, 1995) for controlling the false discovery rate. Denote the corrected
maximal P-values by

Pmax,corr(i, j).

4. Draw an edge between vertex i and j if and only if

Pmax,corr(i, j) < α,

for some pre-specified significance level such as α = 0.05.

The corrected maximum P-values Pmax,corr(i, j) can be used as a measure of signifi-
cance for an edge between nodes i and j. It is worth pointing out that our estimation for
a tri-graph is done in an exhaustive manner. This is in sharp contrast to full conditional
dependence graphs where it is often necessary to use non-exhaustive computations in huge
graph spaces, e.g. random search methods, greedy stepwise algorithms, or stochastic sim-
ulation in the Bayesian framework (Madigan & Raftery, 1994; Giudici & Green, 1999;
Dobra et al., 2004).

3.1 Asymptotic consistency for large number of variables

We present here some theory which reflects at least from an asymptotic point of view that
tri-graphs can be accurately estimated even if the number p of vertices is large relative to
sample size.

Denote the data by X1, . . . ,Xn (Xi ∈ Rp) which are assumed to be i.i.d. random
vectors. The estimators for the mean µ = IE[X], the covariance matrix Σ = Cov(X), the
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correlation coefficients ρij and the partial correlation coefficients ωij|k are as follows:

µ̂(n) = n−1
n∑

i=1

Xi,

Σ̂(n) = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T

ρ̂ij =
Σ̂(n)ij√

Σ̂(n)iiΣ̂(n)jj

ω̂(n)ij|k =
ρ̂ij − ρ̂ikρ̂jk√

(1− ρ̂2
ik)(1− ρ̂2

jk)
, 1 ≤ i < j ≤ p, k 6= i, j. (3.4)

We are giving below some uniform consistency results for these estimators when the
dimensionality p is large relative to sample size. The set-up is as follows. We assume that
the data are realizations from a triangular array of random vectors of dimension p = pn

where pn is allowed to grow as sample size n →∞:

X(n),1, . . . ,X(n),n i.i.d. ∼ P(n), (3.5)

where P(n) denotes some probability distribution in Rpn . We denote by µ(n) = IE[X(n)]
and by Σ(n) = Cov(X(n)); these moments exist by the following assumption.

(A1) supn∈N,1≤j≤pn
IE|(X(n))j |4s < ∞ for some s ≥ 1/2.

Proposition 2 The data are as in (3.5), satisfying assumption (A1) for some s ≥ 1/2.
Assume that pn = o(ns/2) (n →∞). Then,

max
1≤j≤pn

|µ̂(n)j − µ(n)j | = oP (n−3s/2) (n →∞),

max
1≤i<j≤pn

|Σ̂(n)ij − Σ(n)ij | = oP (1) (n →∞).

A proof is given in the Appendix. In case where X ∼ Npn(µ(n),Σ(n)), we could allow
of a faster growth rate pn satisfying log(pn)/n → 0.

For uniform consistency of partial correlations, we make an additional assumption:

(A2) infn∈N,1≤j≤pn
Σ(n)jj > 0, and

supn∈N,1≤i<j≤pn
|ρ(n)ij | < 1, where ρ(n)ij = Σ(n)ij/

√
Σ(n)iiΣ(n)jj .

The first assumption in (A2) means that none of the variables becomes degenerate as
n → ∞, i.e. having a variance tending to zero. The second assumption says that all the
variables are linearly identifiable, i.e. none of the variables is an exact linear function of
another one.

Theorem 2 The data are as in (3.5), satisfying assumption (A1) for some s ≥ 1/2 and
(A2). Assume that pn = o(ns/2) (n →∞). Then,

max
1≤i<j≤pn;1≤k≤pn,k 6=i,j

|ω̂(n)ij|k − ω(n)ij|k| = oP (1) (n →∞).
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A proof of Theorem 2 is given in the Appendix. Also here, in case where X ∼
Npn(µ(n),Σ(n)), we could allow of a pn satisfying log(pn)/n → 0. Theorem 2 describes
a uniform convergence result with respect to all partial correlations: for a small number
δ > 0 and with high probability, all estimated partial correlations are within δ-distance
from the true partial correlations if the sample size is sufficiently large. This is much
stronger than a pointwise result. Since a tri-graph involves all partial correlations, see
Definition 1, our uniform consistency result, saying that we can simultaneously estimate
all partial correlations reasonably well, implies that we can estimate a tri-graph reasonably
well even if the number of vertices p is much larger than sample size n. In fact, consistent
estimation of high-dimensional tri-graphs is possible if true non-zero partial and marginal
correlations are bounded away from zero.

It should be stated clearly that the bound in Theorem 2 is generally worse, although
still oP (1), than in Proposition 2 for the covariances. Clearly, the result from Theorem
2 could be generalized to partial correlations ω(Xi, Xj |{Xk1 , . . . , Xkm}) (k1, . . . km 6= i, j)
for a fixed m with respect to sample size n (although a uniform bound for such partial
correlations is expected to become worse as the the value of m increases). If m = mn would
grow with sample size, we would have to further restrict the growth of the dimensionality
pn.

The extreme case is the estimate of Σ(n)−1 when inverting the estimate Σ̂(n) from
(3.4). This can only be done if pn < n and pointwise consistency |(Σ̂(n))−1

ij − Σ(n)−1
ij | =

oP (1) (1 ≤ i < j ≤ pn) only holds if pn = o(n) (n → ∞) (Lauritzen, 1996). Thus, the
unconstrained graphical Gaussian model can only be estimated if the dimensionality is
“small” relative to the sample size. This is in sharp contrast to tri-graphs, where pn is
allowed to grow much faster than n, as described in Theorem 2. For example, by neglecting
the constants in Theorem 2, the following dimensionalities are allowed for n = 100 and 4s
existing moments for the components of X:

n = 100 4s = 8 4s = 12 4s = 16 4s = 20
p = o(n1/2) o(100) o(1′000) o(10′000) o(100′000)

.

When assuming sparseness of the true conditional indendence graph, regularization meth-
ods could be used to cope with large p (Dobra et al., 2004; Meinshausen & Bühlmann,
2004). In comparison, consistent tri-graph estimation is not subject to a sparsity assump-
tion.

4 Numerical results for simulated data

4.1 Results with sampled data

From each of the simulated models, we sampled i.i.d. data from N (0, Σ) where Σ is
the covariance matrix of the corresponding model parameters as described in Section 2.5.
Depending on the size of the graph, we sampled data with few and many observations
(see Table 4.3). The effect of the sample sizes on the estimates of the partial correlation
coefficients ω̂ij , tri-graph coefficients τ̂ij and correlation coefficients ρ̂ij can be seen in
Figures 4.5-4.8.

Figure 4.5 shows the root mean squared error (RMSE) between true coefficients and
the corresponding estimates of the different graphical modeling approaches. Results are
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number of number of
variables p observations n

5 10,20,30,50,100,500,1000,5000
10 20,30,50,100,500,1000,5000
20 30,50,100,500,1000,5000
40 50,100,500,1000,5000

Table 4.3: Number of observations n used to sample data from the original graphs with p vertices

shown for γ = 1.5 and βmax = 5. It can be seen that for small n, the RMSE of the
coefficients ωij|k does not differ much from the RMSE of the correlation coefficients ρijand
that both coefficients can be more accurately estimated than the full partial correlation
coefficients ωij . As the number of observations n increases, the RMSEs for all coefficients
decrease to 0. In all simulation settings, we found the same underlying pattern as in Figure
4.5. For βmax = 1, however, the RMSE of the coefficients differed only slightly, even when
n was small. Interestingly, estimates of the tri-graph coefficients τij are even better than
the estimates of the coefficients ρij and ωij|k. This indicates that the minimum of ρij and
ωij|k for k ∈ {1, 2, . . . , p} \ {i, j} can be much more reliably estimated than each of the
coefficients ρij and ωij|k for k ∈ {1, 2, . . . , p} \ {i, j}} separately. Theorem 2 can therefore
be viewed as providing a conservative upper bound for the estimation accuracy of the
tri-graph coefficients.

We also monitored how well the estimates of the full partial correlation coefficients
ω̂ij , the tri-graph coefficients τ̂ij and the correlation coefficients ρ̂ij represent the true
full partial correlation coefficients ωijof the original conditional independence graph. In
Figure 4.6, the RSME between the sampled partial correlation coefficients, the sampled
tri-graph coefficients, the sampled correlation coefficients and the true partial correlation
coefficients are shown. For small to moderate n, the full conditional independence graph
is better represented by the estimated tri-graph coefficients than the estimated partial
correlation coefficients. Therefore, although being a rather simple estimator of complex
dependence patterns, tri-graph coefficients can outperform partial correlation coefficients
in detecting conditional dependence/independence.

Figure 4.7 shows the cumulative distribution functions (CDF) of the different coef-
ficients for pairs of vertices with and without edges. Again, one can clearly see that a
small to moderate sample size (n = 50) leads to rather unreliable estimates ω̂ij for the
conditional independence graph (reflected by a gradual slope of the CDF of ω̂ij − ωij at
0) whereas estimates of the tri-graph coefficients τ̂ij are much more stable (steeper slope
of the CDF of τ̂ij − ωij).

In graphs with many nodes, the main purpose of a study may not be to find all connec-
tions between nodes but to find some true connections, hopefully the most important ones.
In such a procedure, one would only consider gene pairs whose absolute partial correlation
coefficient or tri-graph coefficient would be above a certain threshold t. By counting the
number of true and false positives, true and false negatives for all values t ∈ [0, 1], one
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Figure 4.5: Root mean squared error (RMSE) averaged over all i < j between the sampled and
true partial correlation coefficients ω̂ij and ωij (◦), sampled and true correlation coefficients ρ̂ij and
ρij (4), ω̂ij|k and ωij|k (¦) and sampled and true tri-graph coefficients τ̂ij and τij (+) for different
network sizes p and different number of observations n.

obtains the so called ROC curves by plotting the sensitivity (true positive rate) against the
complementary specificity (false positive rate) for each t. The upper panel of Figure 4.8
displays the average ROC curves for the conditional independence graph, the covariance
graph and the tri-graph for p=40 and βmax = 100. We also included the ROC curves for
learning the full conditional independence graph based on backward selection within the
maximum likelihood framework, as implemented in the MIM package (2003). For small
complementary specificities, the ROC curve of the tri-graph has a steeper slope than the
other ROC curves suggesting the best performance in detecting true positive edges of the
full conditional independence graph.

The tri-graph outperforms all the other methods (including the backward selection
approach) for a small (n=100) and a large (n=1000) number of observation. For n=1000
observations, however, the ROC curves of the tri-graph, the full conditional independence
graph and the backward selection approach differ only marginally. Our findings are further
substantiated when we look at the false discovery rate (FDR) as a function of the selected
edges. Again, the FDR of the tri-graph is smaller than the ones of the other methods.
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Figure 4.6: Root mean squared error (RMSE) averaged over all i < j between sampled partial
correlation coefficients ω̂ij and true partial correlation coefficients ωij (◦), sampled correlation
coefficients ρ̂ij and ωij (4) and tri-graph coefficients τ̂ij and ωij (+) for different network sizes p
and different number of observations n.

5 An example with gene expression microarray data

In this section, we will demonstrate and further motivate the usefulness of the tri-graph
in an application to gene expression profiling. Our aim is to infer aspects of a genetic
regulatory network for isoprenoid biosynthesis (left panel of Figure 5.9) in Arabidopsis
thaliana.

Isoprenoids serve numerous biochemical functions in plants, e.g. as components of
membranes (sterols), as photosynthetic pigments (carotenoids and chlorophylls) or as hor-
mones (gibberellins). They are synthesized through condensation of the 5 carbon inter-
mediates isopentenyl diphosphate/dimethylallyl diphosphate (IPP). In higher plants, two
distinct pathways for the formation of IPP exist, one in the cytosol (MVA pathway) and
the other in the chloroplast (MEP pathway). Although both pathways operate fairly
independently under normal conditions, interaction between them has been repeatedly
reported (Laule et al., 2003; Rodriguez-Concepcion et al., 2004).

In order to gain better insight into the crosstalk between both pathways on the tran-
scriptional level, gene expression patterns were monitored under various experimental
conditions using 118 GeneChip r© (Affymetrix) microarrays. For the construction of the
genetic regulatory network, we focused on 40 genes, 16 of which were assigned to the
cytosolic pathway, 19 to the plastidal pathway and 5 encode proteins located in the mi-
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Figure 4.7: Cumulative distribution function (CDF) of the difference between sampled partial
correlation coefficient ω̂ij and true partial correlation coefficients ωij (black line), between sampled
correlation coefficients ρ̂ij and ωij (dashed pale grey line) and sampled tri-graph coefficients τ̂ij and
ωij (dotted grey line) for p = 40 and n = 50 (upper panel) or n = 5000 (lower panel) observations.

tochondrion (left panel of Figure 5.9). These 40 genes comprise not only genes of known
function but also genes whose encoded proteins exhibited high homology to proteins of
known functions. For reference, we adopt the notation from (Lange & Ghassemian, 2003).

The genetic interaction network among these genes was first constructed employing
graphical Gaussian modeling with backward selection under the Bayesian Information
Criterion (BIC) (Schwarz, 1978). This was carried out with the MIM 3.1 program (MIM,
2003). The obtained network had 178 (out of 780) edges - too many to single out biolog-
ically relevant structures. Therefore, bootstrap resampling was applied to determine the
statistical confidence of the edges in the model. For the bootstrap edge probabilities, only
a cutoff level as high as 0.8 led to a reasonably low number of selected edges (31 edges,
right panel of Figure 5.9). However, a comparison between bootstrap edge probabilities
and the pairwise correlation coefficients suggested that for such a high cutoff level, many
true edges may be missed. For example, the gene AACT2 appears to be completely in-
dependent from all genes in the model although it is strongly correlated to MK, MPDC1
and FPPS2.

One conjecture for this finding would be that the simultaneous conditioning on many
variables increases both the false positive and the false negative rate. Our tri-graph is
expected to improve upon this drawback. Figure 5.9 shows the network model obtained
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Figure 4.8: ROC curves (upper panel) and the False Discovery Rate (FDR) as a function of the
number of selected edges (lower panel) for the covariance graph (dashed pale grey line), the tri-
graph ( dash-dotted grey line), the full conditional independence graph (black line) and the full
conditional independence graph learned under backward selection (dotted dark grey line). Here,
p = 40.

from the tri-graph. Since we find a module with strongly interconnected genes in each of
the two pathways, we split up the graph into two subgraphs each displaying the subnetwork
of one module and its neighbors.

In the MEP pathway, the genes DXR, MCT, CMK, and MECPS are nearly fully
connected (left panel of Figure 5.9). From this group of genes, there are a few edges to
genes in the MVA pathway. Among these genes, AACT1 and HMGR1 form candidates
for a crosstalk between the MEP and the MVA pathway because these genes have no
further connection to the MVA pathway. Their correlation to DXR, MCT, CMK, MECPS
is always negative.

Similarly, the genes AACT2, HMGS, HMGR2, MK, MPDC1, FPPS1 and FPPS2 share
many edges in the MVA pathway (right panel of Figure 5.9). The subgroup AACT2, MK,
MPDC1, FPPS2 is completely interconnected. From these genes, we find edges to IPPI1
and GGPPS12 in the MEP pathway. Whereas IPPI1 is positively correlated to AACT2,
MK, MPDC1 and FPPS2, GGPPS12 displays negative correlation to these four genes.

In the conventional graphical modeling with backward selection, we could only identify
the gene module in the MEP pathway. The genes in the MVA pathway did not form a
separate regulatory structure, even when the bootstrap cutoff level was lowered and as
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Figure 5.9: Left panel: Isoprenoid (MEP and MVA) pathway, right panel: Bootstrapped graphical
model of the isoprenoid pathway (backward selection and BIC were used, bootstrap cutoff 0.8).
Dotted directed edges mark the metabolic network and are not part of the model.

many edges as in the tri-graph were included in the model. In the tri-graph, the detection of
the additional gene module in the MVA pathway is in good agreement with earlier findings
that within a pathway, potentially many consecutive or closely positioned genes are jointly
regulated (Ihmels et al., 2004). Also, the aforementioned high level of coexpression between
the genes AACT2, MK, MPDC1, FPPS2 suggests a separate regulatory module in the
MVA pathway. In view of this and the relatively better performance of the tri-graph with
respect to the false positive rate, there is some evidence for the detected structures. The
biological relevance of our results will be discussed elsewhere.

6 Conclusions

Graphical Gaussian modeling suffers from unreliable estimates of the full partial correla-
tion coefficients if the number of observations is relatively small in comparison with the
number of random variables in the model. In order to still be able to analyze the condi-
tional dependence structure between variables, we introduced a simplified measure based
on separate conditioning on variables. The tri-graph coefficients proved to be powerful in
two ways: First, we showed theoretically that the tri-graph coefficients show nearly the
same good estimation properties as the more simple correlation coefficients. In simula-
tions, we could even demonstrate that estimates of the tri-graph coefficients τ̂ij can be
more accurate than those of the correlation coefficients. Second, for small sample sizes in
our simulation framework, the estimated tri-graph coefficients were on average better esti-
mators of the full partial correlation coefficients than the estimated full partial correlation
coefficients themselves. In ROC curves, tri-graph estimates often performed better than
more conventional graphical modeling. This finding suggests that although full partial
correlation coefficients take the effect of many other variables into account, only few of
these variables have a large effect on the dependence structure. In fact, Theorem 1 says
that for graphs without cycles, the tri-graph and the full conditional independence graph
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Figure 5.10: Tri-graph of the isoprenoid pathways. Left panel: subgraph of the gene module in the
MEP pathway, right panel: subgraph of the gene module in the MVA pathway.

coincide.
Our tri-graph approach carries resemblance to the first two steps in the SGS and PC

algorithm (Spirtes et al., 2000). In both algorithms, the conditional dependence between
two variables is examined based on all subsets of the remaining p− 2 variables. In the tri-
graph, the modeling is limited to subnetworks with three vertices. By this simplification,
we neither have to carry out the statistically unreliable and computationally costly search
for conditional independence in large subsets as in the SGS algorithm nor do we have to
remove edges in a stepwise fashion as in the PC algorithm. Yet, our approach is powerful
in uncovering some conditional dependence pattern between variables and we provide
corrected P-values for assigning significance to edges.

By generating the number of edges in a graph according to a power law, we aimed
at simulating network topologies found in biological networks. Other examples include
computer and social interaction networks (Barabasi & Albert, 1999). With this restriction,
only a subclass of sparse conditional independence models is considered. However, the
restriction enabled us to consistently study the effect of the sample size, the number of
vertices, the level of sparsity and the level of conditional dependencies on the various
graphical modeling approaches.

7 Appendix

For the proof of Theorem 1, we will use a lemma that follows directly from the global
Markov property for graphical Gaussian models (Lauritzen, 1996).

Lemma 1 If there is no path between vertices i and j, then

ωij|k = 0

for all subsets k ⊆ {∅, 1, . . . , p} \ {i, j}. Moreover, if the full partial correlation coefficient
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satisfies ωij = 0 and if there is exactly one path Pij between vertices i and j, then

ωij|k∪m = 0

for every single node m ∈ Pij \ {i, j} and for all subsets k ⊆ {∅, 1, . . . , p} \ {Pij}.

Proof of Theorem 1:
1) There is no edges between i and j: ωij = 0
Then there is either no path between i and j or exactly one path between i and j. Because
of Lemma 1, there must be at least one node m such that ωij|m = 0. Therefore, we have
τij = 0.

2) There is an edge between i and j: ωij 6= 0
Let us assume that τij = 0, which will lead to a contradiction. For τij = 0, we have
ρij = 0 or ωij|k = 0 for a k ∈ {1, . . . , p} \ {i, j}. Thus, we have ωij|k = 0 for a subset
k ∈ {∅, 1, . . . , p} \ {i, j}. We will show that ωij|k∪m = 0 for all m ∈ {1, . . . , p} \ {i, j,k}.

For every node m, there is at most one path Pim and at most one path Pjm and we
either have j ∈ Pim or i ∈ Pjm, since by assumption, the full conditional independence
graph contains no loops. Now, it follows directly from Lemma 1 that ωim|k∪j = 0 or
ωjm|k∪i = 0. Without restriction, we assume ωim|k∪j = 0. From this and from the
recursive formula for the partial correlation coefficients (see (Spirtes et al., 2000))

ωim|k∪j =
ωim|k − ωij|kωjm|k√
1− ω2

ij|k
√

1− ω2
jm|k

, (7.6)

we obtain that ωim|k = ωij|kωjm|k. With this equation, the recursive formula (7.6) applied
to ωij|k∪m transforms to

ωij|k∪m =
ωij|k − ωim|kωjm|k√
1− ω2

im|k
√

1− ω2
jm|k

=
ωij|k(1− ω2

jm|k)
√

1− ω2
im|k

√
1− ω2

jm|k
,

which proves that ωij|k∪m = 0 if ωij|k = 0. By induction, we can conclude that

ωij = ωij|{1,...,p}\{i,j} = 0,

which is in contradiction to the initial assumption that i and j are connected. ¤

Proof of Proposition 1: Consider the hypothesis

H0 = H0(i, j) : at least one H0(i, j|k∗) is true for some k∗.

The probability for a type I error is

IPH0 [H0(i, j|k) rejected for all k] = IPH0 [∩k{H0(i, j|k) rejected}]
≤ min

k
IPH0 [H0(i, j|k) rejected] ≤ IPH0 [H0(i, j|k∗) rejected] ≤ α,

where the last inequality follows from the assumption in Proposition 1. ¤
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Proof of Proposition 2: We follow the notation from Section 3.1. Consider

µ̂(n)j = n−1
n∑

i=1

X(n),ij , X(n),ij = (X(n),i)j .

By Markov’s inequality, for γ > 0,

IP[|µ̂(n)j − µ(n)j | > γ] ≤ γ−4sIE|n−1
n∑

i=1

X(n),ij − µ(n)j |4s,

and then by Rosenthal’s inequality (cf (Petrov, 1975)) and our assumption (A1),

IE|n−1
n∑

i=1

X(n),ij − µ(n)j |4s ≤ Cn−2s,

where C > 0 is a constant independent from j and n. Therefore, for γ > 0,

IP[ max
1≤j≤pn

|µ̂(n)j − µ(n)j | > γ] ≤ pnγ−4sCn−2s = o(n−3s/2),

due to our assumption about pn, which proves the first claim.
For the second assertion, note that

Σ̂(n)ij = n−1
n∑

r=1

(X(n),ri − µ̂(n)i)(X(n),rj − µ̂(n)j)

can be asymptotically replaced by

Σ̃(n)ij = n−1
n∑

r=1

(X(n),ri − µ(n)i)(X(n),rj − µ(n)j),

since by the first assertion of Proposition 2, it can be easily shown that

max
1≤i<j≤pn

|Σ̂(n)ij − Σ̃(n)ij | = oP (1). (7.7)

Similarly as for the mean, we get for γ > 0,

IP[|Σ̃(n)ij − Σ(n)ij | > γ] ≤ γ−2sIE|n−1
n∑

r=1

Yr(i, j)|2s,

Yr(i, j) = (X(n),ri − µ(n)i)(X(n),rj − µ(n)j)− Σ(n)ij ,

and by Rosenthal’s inequality (cf (Petrov, 1975)) and assumption (A1),

IE|n−1
n∑

r=1

Yr(i, j)|2s ≤ Cn−s,

where C > 0 is a constant, independent of j. Note that our assumption (A1) implies that
the moments of order 2s of the Yr(i, j) variables are uniformly bounded. Therefore

IP[ max
1≤i<j≤pn

|Σ̃(n)ij − Σ(n)ij | > γ] ≤ p2
nγ−2sCn−s = o(1),
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by our assumption about pn. This, together with (7.7) completes the proof for the second
assertion of the Proposition. ¤

Proof of Theorem 2: The first assumption in (A2) and the uniform convergence from
Proposition 2 imply that

max
1≤i<j≤pn

|ρ̂(n)ij − ρ(n)ij | = oP (1) (n →∞). (7.8)

Furthermore, we can use a Taylor expansion for the partial correlations:

ω̂(n)ij|k − ω(n)ij|k =
x− yz

uv
− x0 − y0z0

u0v0
=

x− x0

u0v0
− yz − y0z0

u0v0
− 1

ũ2ṽ2
(uv − u0v0)(x− yz),

where |ũṽ−u0v0| ≤ |uv−u0v0|, and x = ρ̂(n)ij , y = ρ̂(n)ik, z = ρ̂(n)jk, u =
√

1− ρ̂(n)2ik, v =√
1− ρ̂(n)2jk and x0, y0, z0, u0, v0 the corresponding true population quantities. We now

get the assertion of Theorem 2 by the uniform convergence of the correlations in (7.8)
and by using the second assumption in (A2) which guarantees that the denominator in
1/(u0v0) is bounded and that 1

ũ2ṽ2 = oP (1) uniformly with respect to i, j, k. ¤
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