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Abstract

Background: We focus on microarray data where experiments monitor the
gene expression of different tissues and where each experiment is equipped
with an additional response variable such as a cancer type. While the number
of measured genes is in the thousands, it is assumed that only a few marker
components of gene subsets determine the type of a tissue. In this paper, we
present a novel method for finding such groups of genes by directly incorpo-
rating the response variables into the grouping process, therefore yielding a
supervised clustering algorithm for genes.

Results: An empirical study on eight publicly available microarray datasets
shows that our algorithm identifies gene clusters with excellent predictive po-
tential, often superior to classification with state-of-the-art methods based on
single genes. Permutation tests and bootstrapping provide evidence that the
output is reasonably stable and more than a noise artifact.

Conclusions: In contrast to other methods such as hierarchical clustering,
our algorithm identifies several gene clusters whose expression levels clearly
discriminate the different tissue types. The identification of such gene clusters
is potentially useful for medical diagnostics and may at the same time reveal
insights into functional genomics.

Software: Is available at http://stat.ethz.ch/~dettling/supercluster
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1 Introduction

The recently developed microarray technology allows for measuring expression levels of
thousands of genes simultaneously and is expected to contribute significantly to advances
in fundamental questions of biology and medicine. We focus on the case where the experi-
ments monitor the gene expression of different tissue samples, and where each experiment
is equipped with an additional categorical outcome variable, describing e.g. a cancer type.
An important problem in this setting is to study the relation between gene expression
and tissue type. While microarrays monitor thousands of genes, it is assumed that only a
few underlying marker components of gene subsets account for nearly all of the outcome
variation, i.e. determine the type of a tissue. The identification of these functional groups
is crucial for tissue classification in medical diagnostics, as well as for understanding how
the genome as a whole works.

As afirst approach, unsupervised clustering techniques have been widely applied to find
groups of co-regulated genes on microarray data. Hierarchical Clustering [1, 2] identifies
sets of correlated genes with similar behavior across the experiments, but yields thousands
of clusters in a tree-like structure. This makes the identification of functional groups very
difficult. In contrast, Self-Organizing-Maps [3] require a prespecified number and an initial
spatial structure of clusters, but this may be hard to come up with in real problems. These
drawbacks were improved by a novel graph theoretical clustering algorithm [4], but as all
other unsupervised techniques, it usually fails to reveal functional groups of genes that are
of special interest in tissue classification. This is because genes are clustered by similarity
only, without using any information about the experiment’s response variables.

We focus here on Supervised Clustering, defined as grouping of variables (genes), con-
trolled by information about the Y variables, i.e. the tumor types of the tissues. Previous
work in this field encompasses Tree Harvesting [5], being a 2-step method which consists
of generating numerous candidate groups by unsupervised hierarchical clustering. Second,
the average expression profile of each cluster is considered as a potential input variable
for a response model and the few gene groups that contain the most useful information
for tissue discrimination are identified. Only this second step makes the clustering su-
pervised, since the selection process relies on external information about the tissue types.
An interesting supervised clustering approach that directly incorporates the response vari-
ables Y in the grouping process is the Partial Least Squares (PLS) procedure [6, 7], an
often applied tool in the chemometrics literature, which in a supervised manner constructs
weighted linear combinations of genes that have maximal covariance with the outcome.
PLS has the drawback that the fitted components involve all (usually thousands of) genes,
which makes them very difficult to interpret.

In this paper, we present a promising new method for searching functional groups, each
made up of only a few genes whose consensus expression profiles provides useful informa-
tion for tissue discrimination. As PLS, it is a 1-step approach which directly incorporates
the response variables Y into the grouping process, thus an algorithm for Supervised Clus-
tering of Genes. Due to the combinatorial complexity when clustering thousands of genes,
we rely on a greedy strategy. It optimizes an empirical objective function that quickly
and efficiently measures the cluster’s ability for phenotype discrimination. Inspired by
[8], we choose Wilcoxon’s test statistic for two unpaired samples [9], refined by a novel
second criterion, the margin function. Our supervised algorithm can be started with or
without initial groups of genes, and then clusters genes in a stagewise forward and back-
ward search, as long as their differential expression in terms of our objective function can
be improved. This yields clusters typically made up of 3-9 genes, whose coherent average



expression levels allow perfect discrimination of tissue types. In an empirical study, the
clusters show excellent out-of-sample predictive potential, and permutation and random-
ization techniques show that they are reasonably stable and clearly more than just a noise
artifact. The output of our algorithm is thus potentially beneficial for cancer type diagno-
sis. At the same time it is very accessible for interpretation, since the output consists of a
very limited number of clusters, each summarizing the information of a few genes. Thus,
it may also reveal insights into biological processes and give hints on explaining how the
genome works.

The plan for the rest of this paper is as follows. In section 2 the algorithm for supervised
clustering of gene expression data is described. In section 3, the new clustering procedure
is applied to eight publicly available microarray datasets and the results are tested for
their predictive potential, their stability and their relevance. Conclusions and an outlook
are given in section 4.

2 Supervised Clustering of Genes

This section presents an algorithm for supervised learning of similarities and interactions
among predictor variables for classification in very high dimensional spaces, and hence is
predestinated for searching functional groups of genes on microarray expression data.

2.1 The Partitioning Problem

Our basic stochastic model for microarray data equipped with categorical response is given
by a random pair

(X,Y) with values in R” x Y,

where X € RP denotes a log-transformed gene expression profile of a tissue sample, stan-
dardized to mean zero and unit variance. Y is the associated response variable, taking
numeric values in Y = {0,1,..., K — 1}. A usual interpretation is that ¥ codes for one
of K cancer types. For simplicity and a concise description of the algorithm, we first
assume that K = 2, so that the response is binary. A generalization of the setting for
multi-categorical response (K > 2) is given below in section 2.3.

To account for the fact that not all p genes on the chip individually, but rather a few
functional gene subsets determine nearly all of the outcome variation and thus the type
of a tissue, we model the conditional probability as

PlY =1|X] = f (X¢,, Xews - -, Xe,) 5 (1)

where f(-) is a nonlinear function mapping from R? to [0,1], {C1,...,Cq} with ¢ < p
are functional groups or clusters of genes which form a disjoint and usually incomplete
partition of the index set: {U!_,C;} € {1,...,p} and C; N C; =0, i # j. Finally, X¢, € R
denotes a “representative” expression value of gene cluster C;. There are many possibilities
to determine such group values X¢,, but since we would like to shape clusters that contain
similar genes, a simple linear combination is an accurate choice, see [5, 10]:

1

Xr =
“ el

Z ag X, with oy € {—1,1}. (2)
geC;

Due to the use of log-transformed, mean centered and standardized expression data, we
as a novel extension allow the contribution of a particular gene g to the group value X¢,



also to be given by its “sign-flipped” expression value —X,. This means that we treat
under- and overexpression symmetrically and prevents that the differential expression of
genes with different polarity - i.e. one with low expression for class 0 and the other with
low expression for class 1 - cancels out when they are averaged. But even by using such
simple cluster expression values as in (2), finding a partition of the index set {1,...,p}
into subsets or clusters {Ci,...Cy} that virtually determine the probability structure is
still highly nontrivial and the design of a procedure which reveals the exact partition
according to (1) is too ambitious. Thus, we develop a computationally intensive procedure
that approximately solves (1) and empirically yields good results.

2.2 Clustering with Scores and Margins

A practical heuristic for gene clustering is the Cluster Affinity Search Technique (CAST)
[4]. Our approach is algorithmically similar and also relies on growing the cluster incre-
mentally by adding one gene after the other. Subsequent cleaning steps help us to remove
spurious genes that were incorrectly added to the cluster at earlier stages. As in CAST, we
repeat growth and removal until the cluster stabilizes and then start a new cluster. The
main and very important difference is that we do not augment (shorten) the cluster by the
gene that suits best (least) into the current cluster in terms of an unsupervised similarity
measure, but base our strategy for supervised clustering of genes on adding (removing)
the gene that improves the differential expression of the current cluster most, according
to an empirical objective function for the representative group values from (2). To be
more explicit, we assume now that we are given n independent and identically distributed
realizations

(x1,91), -, (Tn,Yn), with z; € RP and y; € {0,1}, (3)

of the random vector (X,Y’), whose expression profiles «; are centered to mean zero and
scaled to unit variance. The objective function needs to be a quantitative and efficiently
computable measure of a cluster’s ability to discriminate the tissues. Since we aim for
subsets of genes with accurate separation in binary problems, we rely on Wilcoxon’s test
statistic for two unpaired samples [9], which has been also applied as a nonparametric
rank-based score function for genes in [8]. The score of a single gene i is computed from

its n-dimensional vector of observed values & = (21, ..., Tin),
Score(fi) = S(§z> = Z Z l[xiijil]a (4>
JEND lEN]

where z;; is the expression value of gene ¢ for tissue j and N, represents the set of the
ny tissues € {1,...,n} being of type k € {0,1}. The score uses information about the
type of the tissues and is thus a criterion for supervised clustering. It can be interpreted
as counting, for each experiment having response value 0, the number of tissues from
class 1 that have smaller expression values, and summing up these quantities. Computing
the score for a gene cluster C; goes likewise via its observed representative values ¢, =
(xzc,1,---,%c,n). Viewing the score as Wilcoxon’s test statistic, it allows to order genes and
clusters according to their potential significance for tissue discrimination. If the expression
values of a particular gene or cluster yield exact separation of the classes, the expression
values for all tissue samples having response 0 are uniformly lower than the ones belonging



Supervised Clustering Algorithm

1. Start with the entire p x n expression matrix X. Its rows are genes, and its columns
are observations of 2 different tissue types, having zero mean and unit variance.

2. Determine the score of every gene i, i.e. every n-dimensional row of observed expres-
sion values & = (x;1,...,%) in X as in (4). Flip the sign of each gene expression
vector &; that has score s(&) > Smar/2 by multiplying it with (-1),

o e &7 if 3(§z> < Smax/2a
& B algl N { _éiy if S(E’L) > Smax/Q-

This operation changes the score to (&) = min(s(&), Smaz — $(&))-

3. Composition of the starting values
a) If no initial cluster C is given, identify the gene i* having the lowest score s@) If
more than one is found, the gene i* with the largest margin m@) as in (6) is chosen.

Set the initial cluster mean &¢ equal to the expression vector &« of the chosen gene.
b) If an initial cluster C is given, average the expression of the genes therein,

1 ~ 1
éc—@Z@—@

geC

Zag (xg1,y .o Tgn)

geC

4. Forward Search
Average the current cluster expression profile {¢ with each individual gene i,

1 ~ ~
bori=—— &G+ D &, i=1...,p.
IC] +1 poers

Identify the winning gene i* as arg min; s({c+), i.e. the gene that leads to the lowest
score. If not unique, identify the winning gene ¢* as the one that optimizes score
and margin, i.e. i* = argmin; s({cy;) as well as * = argmax; m(&c44) -

5. Repeat step 4 until the identified gene ¢* is no longer accepted to enter the cluster.
This is said to happen, if the score of the updated cluster expression vector ¢4+
worsens, i.e. s({cyi+) > s(&e), or if the score remains unchanged and the margin
deteriorates, i.e. s({cqi+) = s(&c) as well as m(&eqi+) < m(&e)

6. Backward Search
Exclude each gene ¢ of the current cluster C separately and average the expression
vectors of the remaining genes,

1 ~ .
é“c-i=7|c|_1 > &), iec.

geC\{i}

Compute score and margin of each £-_;. Identify (as in step 4) that gene i* whose
exclusion optimizes the score, or if not unique, optimizes score and margin.

7. Repeat step 6 until the exclusion of the identified gene i* is (according to the for-
mulation in step 5) no longer accepted.

8. Repeat steps 4 — 7 until the cluster converges and the objective function is optimal.

9. If more than one cluster C is desired, discard the genes in the former clusters from X
and restart the algorithm at step 3 with the reduced, sign-flipped expression matrix.

Figure 1: Algorithm for supervised clustering of binary problems with scores and margins.
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to class 1, or vice versa. In the former case, the score function returns its minimal value
Smin = 0, in the latter case the maximum score s,,,; = ngni is assigned.

We rely on the use of log-transformed, mean centered and standardized gene expression
data and thus need to prevent that averaging two discriminatory genes with different
polarity - i.e. one with low expression for class 0 and the other with low expression for
class 1 - cancels out the differential expression of their mean. Therefore, we aim for low
expression values pointing to class 0 for all genes, which is achieved by using the sign-
flipped expression & for all genes i € {1,...,p},

Y (131'17 cee 7:E’in)a if S(gz) < Smax/2>
= & = . 5
i ii { (i1, oy —Tin),  if $(&) > Smaz/2. (5)
The sign-flip is equivalent to setting oy = —1 in equation (2) for all genes that tend to

have lower expression values for the tissues of type 1 than for tissues of type 0. After the
sign-flip, the scores of all individual genes ¢ in the expression matrix are equal to

S(gz) = min(s(&), Smax — (&)

and since all genes now have the same polarity, we can safely average them to compute
group expression values. It is important to notice that the biological interpretation is
not impeded by the sign-flips. Nevertheless for interpretational purposes, the information
about them should be recorded.

During the clustering process, we typically come across different gene or cluster expres-
sion vectors that have equal score (often zero) and hence the same quality according to
our objective function. This is due to the discrete range of the score function. To achieve
uniqueness in the decisions which gene or cluster is optimal, we need a refinement of our
objective function. We thus introduce the margin function, a continuous and real-valued
measure for the strength of tissue discrimination of a sign-flipped gene expression vector
Ei where low expression values point towards the tissues of class 0,

Margin(&;) = m(&;) = llgjl\g (wq) — max (zi5), (6)

where Ny, N7 and z;; are as in (4). The margin function is positive if and only if the score
is zero and §~Z then perfectly separate the tissues, otherwise it is negative. It measures the
size of the gap between the lowest expression value from tissues with response 1, and the
highest gene expression corresponding to class 0. The larger this gap and hence the value
of the margin function, the easier and clearer the discrimination of the two classes. The
computation of the margin is again likewise for clusters via {¢,. Whenever various gene or
cluster expression profiles have equal score, their quality is judged by the margin function.
Our objective function thus has two components. The score function is regarded with first
priority, whereas the margin function serves as a criterion with second priority to achieve
uniqueness.

Our clustering algorithm is detailed in figure 1. It begins with the sign-flip operation
described in (5) to bring all genes to the same polarity. The clustering process can be
started with or without initial gene clusters. If none are given, we start the procedure
with the single gene that optimizes the objective function. Otherwise, the representative
value of the starting cluster is determined. We then proceed by constructing the cluster
incrementally. By searching among all genes, we merge and average the current cluster
with one single gene, such that the augmented cluster optimizes our objective function,
i.e. has the lowest score, or (in case of “ties”) the largest margin. The merging process



is repeated until the objective function can no longer be improved. To remove spurious
elements out of the current cluster, we then continue with a backward pruning stage,
where genes are excluded step by step so that the objective function is optimized by every
single removal. This cleaning stage aims to root out genes that were wrongly added to the
cluster before. Accordingly, the forward and backward stages are repeated until the cluster
converges, i.e. no further improvement of the objective function by adding or removing
single genes is possible.

If one wishes to have more than ¢ = 1 cluster for a binary class distinction, the genes
forming the first cluster are discarded from the expression matrix, and the clustering pro-
cess is restarted, again with or without an initial cluster. The algorithm’s computations
are feasible for dimensions p and sample sizes n which are clearly beyond today’s com-
mon orders and hence also applicable for microarray experiments from the future. The
computing time for searching ¢ = 5 clusters in the binary leukemia dataset with n = 72
observations and p = 3,571 genes on a Linux PC with an Intel Pentium IV 1.6 GHz pro-
cessor is about 5 seconds only. Software for the supervised clustering algorithm is available
for free as an R-Package at http://stat.ethz.ch/~dettling/supercluster.

Summarizing, our cluster algorithm is a combination of variable (gene) selection for
cluster membership and forming a new predictor by possible sign-flipping and averaging
the gene expressions within a cluster as in (2). The cluster membership is determined
with a forward and backward searching technique that optimizes the predictive score and
margin criteria in (4) and (6), which both involve the supervised response variables from
the data.

2.3 Generalization for Multiclass Problems

Here we explain the extension of the supervised clustering algorithm to multi-categorical
(K > 2) problems, where the response comprises more than two tissue types. We rec-
ommend to compare each response class separately against all other classes. This one-
against-all approach for reduction to K binary problems is very popular in the machine
learning community, since many algorithms are solely designed for binary response. It
works by defining

(k) _ 1, ifY =k,
Y {0, else

and running K times the supervised clustering algorithm on (xl,yik)), ce (xn,ygk)) as
explained above. The interpretation is that we, as in (1), model the conditional probability
for discrimination of the kth class versus all the other response categories as depending
on a few gene subsets only,

P [Y(k> — 1\X} — fi (ch,Xcg,...,Xcg) for k=0,...,K —1,

where f;(-) are nonlinear functions mapping from R? to [0,1]. CF,... ,C(’; are the ¢ < p
functional groups of genes and ch, . ,XC‘I; are their representative group values, defined
as in (2). When the supervised clustering algorithm is applied to each of the K binary
class distinctions, this results in totally K - ¢ clusters, which can then be used to model
the conditional probability for the K-class response,

P[Y = k| X] :f(XC(I),...,Xcg,...,chfl,...,chfl).



It is important to notice that instead of considering each class against all the other classes,
many more ways to reduce a multiclass problem to multiple binary problems exist, see
[11, 12] for a thorough discussion. We assume that problem dependent solutions which
utilize deeper knowledge about the biological relation among the tissue types could be
even more accurate for reducing multi-categorical to binary problems.

3 Numerical Results

3.1 Data

e Leukemia dataset

This dataset contains gene expression levels of n = 72 patients either suffering from
acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid leukemia (AML,
25 cases) and was obtained from Affymetrix oligonucleotide microarrays. For more
information see [13]; the data are available at http://www.genome.wi.mit.edu/MPR.
Following exactly the protocol in [14], we preprocess them by thresholding, filtering,
a logarithmic transformation and standardization, so that the data finally comprise
the expression values of p =3,571 genes.

e Breast cancer dataset

This dataset, described in [15], monitors p =7,129 genes in 49 breast tumor samples.
The data were obtained by applying the Affymetrix technology and are available at
http://www.genetics.duke.edu/microarray/Published’,20work.htm. We thresh-
olded the raw data with a floor of 100 and a ceiling of 16,000 before applying a base
10 logarithmic transformation. Finally, each experiment was standardized to zero
mean and unit variance. The response variable describes the status of the estrogen
receptor (ER). According to [15], two samples failed to hybridize correctly and were
excluded from their analysis. In five cases, two different clinical tests for determi-
nation of the ER status yielded conflicting results. These five plus another four
randomly chosen samples were also separated from the rest of the data, so that a
dataset of n = 38 samples remained, of which 18 were ER+ and 20 ER—.

e Colon cancer dataset

In this dataset, expression levels of 40 tumor and 22 normal colon tissues for 6,500
human genes are measured using the Affymetrix technology. A selection of 2,000
genes with highest minimal intensity across the samples has been made in [16]. The
data are available at http://www.molbio.princeton.edu/colondata. As for all
other datasets, we process these data further by carrying out a base 10 logarithmic
transformation and standardizing each tissue sample to zero mean and unit variance
across the genes.

e Prostate cancer dataset

The raw data are available at http://www-genome.wi.mit.edu/MPR/prostate and
comprise the expression of 52 prostate tumors and 50 non-tumor prostate samples,
obtained from the Affymetrix technology. We use normalized and thresholded data
as described in [17]. We also excluded genes whose expression varied less than 5-
fold relatively, or less than 500 units absolutely between the samples, leaving us
with the expression of p =6,033 genes. Finally, we applied a base 10 logarithmic
transformation and standardized each experiment to zero mean and unit variance
across the genes.



e SRBCT dataset

This dataset was described in [18] and contains gene expression profiles for clas-
sifying small round blue cell tumors of childhood into 4 classes (Neuroblastoma,
Rhabdomyosarcoma, Non-Hodgkin-Lymphoma, Ewing Family of Tumors) and was
obtained from ¢cDNA microarrays. A training set comprising 63 SRBCT tissues, as
well as a test set consisting of 20 SRBCT and 5 non-SRBCT samples are available at
http://www.nhgri.nih.gov/DIR/Microarray/Supplement. Each tissue sample is
associated with thoroughly preprocessed expression profile of p =2,308 genes, already
standardized to zero mean and unit variance across genes.

e Lymphoma dataset

This dataset is available at http://11lmpp.nih.gov/lymphoma/data/figurel and
contains gene expression levels of the K = 3 most prevalent adult lymphoid ma-
lignancies: 42 samples of diffuse large B-cell lymphoma (DLBCL, class 0), 9 obser-
vations of follicular lymphoma (FL, class 1), and 11 cases of chronic lymphocytic
leukemia (CLL, class 2). The total sample size is n = 62, and the expression of
p =4,026 well-measured genes, preferentially expressed in lymphoid cells or with
known immunological or oncological importance is documented. More information
on these data can be found in [19]. We imputed missing values and standardized the
data as described in [14].

e Brain tumor dataset

This dataset, presented in [20], contains n = 42 microarray gene expression profiles
from K = 5 different tumors of the central nervous system, i.e. 10 medulloblas-
tomas, 10 malignant gliomas, 10 AT/RTs, 8 PNETs and 4 human cerebella. The
raw data originated from the Affymetrix technology and are publicly available at
http://www.genome.wi.mit.edu/MPR/CNS. For data preprocessing, we followed the
protocol in the supplementary information to [20]. After thresholding, filtering, a
logarithmic transformation and standardization of each experiment to zero mean
and unit variance, a dataset comprising p=>5,597 genes remained.

e NCI dataset
This dataset comprises gene expression levels of p =5,244 genes for n = 61 human
tumor cell lines which can be divided in K = 8 classes: 7 breast, 5 central nervous
system, 7 colon, 6 leukemia, 8 melanoma, 9 non small cell lung carcinoma, 6 ovar-
ian and 9 renal tumors. A more detailed description of the data can be found on
the website http://genome-www.stanford.edu/nci60 and in [21]. We work with
preprocessed data as in [14].

3.2 Results from the supervised clustering algorithm

In this section we briefly describe the results obtained by applying the supervised clus-
tering algorithm to the above datasets. Generally, the output of the clustering procedure
is very promising. In all eight datasets we analyzed, totally comprising 24 binary class
distinctions, the average cluster expression z¢ always perfectly discriminates the two re-
sponse classes (in multiclass problems, this is one class against the rest). Hence, the scores
of all clusters are equal to zero. Moreover, the clusters have strongly positive margins,
indicating that the different tissue types are clearly separated. As an example, figure 2
impressively shows how well the average cluster expression vectors T and T2 discrimi-
nate the three response classes of the lymphoma dataset. It is intuitively clear from figure



2 that our cluster expression vectors x¢ are very suitable as predictor variables for the
tissue types and they indeed allow for error-free classification on the training data and
also yield good results on independent test datasets, see section 3.4.
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Figure 2: Lymphoma data: Average cluster expression et shaped for the separation of
response class 1 (FL), versus response classes 0 & 2 (DLBCL & CLL) on x-axis, and z¢2
formed for discrimination of class 2 versus classes 0 & 1 on y-axis.

3.3 Permutation Test

This section is concerned with assessing relevance and addresses the question whether or
not the promising output of the clustering procedure is a noise artifact. For this purpose,
we explore quality measures of clusters generated from random noise gene expression data
and compare them to the results obtained with the original data. Since the distributions
of the score function s(-) and the margin function m(-) on noise are not known, we rely
on simulations. Let (yi,...,yn) be the original set of responses. Then,

(59,2

is a “shuffled” set of responses, constructed from the original response set by a random
permutation for each ¢ = 1,..., L. We then allocate an element of the permuted response
to each of the (fixed) gene expression profiles x;, giving us independent and identically
distributed pairs

(:1:1, yiﬁw)) , (mg,y;(e)) e (a:n, y,*l(é)) foreach £ =1,...,L

as in (3). The supervised clustering procedure is then applied L = 1000 times on such
data with randomly permuted responses. For every permuted set of responses, a single
cluster (¢ = 1) was formed on the entire dataset and both its final score s*() and margin
m*(®) were recorded.
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Margins m©®  max,(m*®) medy(m*©@)  ming(m*®)
Leukemia 0.20 0.05 -0.01 -2.41
Breast Cancer | 1.29 0.23 0.04 -0.82
Prostate 0.05 0.02 -0.04 -0.90
Colon 0.08 0.05 -0.12 -1.39
SRBCT 1.00 0.11 -0.06 -1.16
Lymphoma 1.65 0.14 0.01 -1.16
Brain 1.03 0.32 0.09 -0.29
NCI 2.52 0.44 0.12 -0.91

Table 1: Margins m(®) from the original datasets, as well as maximal, median and minimal
margins m*(¥) from 1000 permuted replicates , for leukemia data (AML/ALL distinction),
breast cancer data (ER+/ER- distinction), prostate data (tumor/normal-distinction),
colon data (tumor/normal-distinction), SRBCT data (distinction of the Ewing family of
tumors versus three other tumor types), lymphoma data (distinction of DLBCL versus FL
and CLL), brain tumor data (separation of atypical teratoid/rhabdoid tumors (AT /RTSs)
against 4 other tumor types) and NCI data (distinction of leukemia against seven other
cancers).

Scores sO  ming(s*@)  max,(s*®)  #(s*O =0)/L
Leukemia 0 0 279 0.41
Breast Cancer | 0 0 43 0.91
Prostate 0 0 566 0.17
Colon 0 0 164 0.11
SRBCT 0 0 148 0.26
Lymphoma 0 0 78 0.67
Brain 0 0 11 0.98
NCI 0 0 13 0.95

Table 2: Scores s(9) from the original dataset, maximal and minimal scores s*© from
L = 1000 permuted replicates, and proportion of shuffled bootstrap trials where score 0
was achieved. The selection of data was as in table 1.

We explored the empirical distribution of the scores and margins from permuted data
to judge whether the clusters found on the original datasets are of better quality than
we would expect by chance. The results given in figure 3 and in tables 1 and 2 for a
representative selection of data (see the caption to table 1 for details on data selection)
are very satisfactory. As outlined in section 3.2, the scores s(9) on the original datasets
altogether are equal to zero, with clearly positive margins m(?). The parameters on the
randomly permuted data are worse: The final score s*() reached the minimal value of
zero in a fraction varying between 11% and 98% in different datasets (e.g. 41% in figure
3). These frequencies represent a nonsignificant result in our permutation test for the
score function. However, this is not very troubling, since the final margins m*® for the
permuted data were at best slightly positive, not indicating a clear separation of the
randomly shuffled response classes. Values in the range of the margin in the original data
were never achieved with any of the permuted data. This corresponds to a p-value of zero
in the permutation test for our entire objective function consisting of score and margin.
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We thus can “for surely” reject the hypothesis that the clusters found on the original data
by our supervised algorithm are irrelevant and just a noise artifact. Moreover, we observed
that the clusters from permuted data were much larger in size, exceeding the typical size
(see also section 3.5, table 8) on non-permuted data of between 3 to 9 genes clearly, e.g.
with a mean of 12.5 and a standard deviation of 3.2 genes for the AML/ALL-distinction
on the leukemia dataset.

The fact that the score has highly non-significant p-values is at first sight surprising.
The reason for this is that the cluster expression values x¢; in (2) are highly dependent
among the samples j = 1,...,n via the responses y; in the supervisedly estimated cluster
C =C(y1,---,Yyn) and the sign coefficients ay = a4(y1,...,yn). This strong interdepen-
dence causes the unusual phenomenon that the null-distribution, assuming no association
between the expression values X and the response Y, has a substantial probability for
score equal to zero. The margin statistics in (6) has much better power properties than
the score.

3.4 Predictive Potential

In this section, we will evaluate the predictive potential of the supervised clustering algo-
rithm’s output to see if it could successfully reveal functional groups of genes. A predictor
or classifier for K different tissue types is a function C(+) that assigns a class label g, based
on an observed feature vector . More precisely, the classification rule here will be based
on average cluster expression values & = (xcg, e ,xcf_l) as K - q features,

Q:C(.’B) :C(xcg),...,xcltl),...,.%'6571,...,:(}61(71) S {0,...,K—1}.
q

In practice, the classifier is built from a learning set of tissues whose class labels are
known. Subsequently it can be used to predict the class labels of new tissues with unknown
outcome. There are various methods to build classification rules based on past experience
and we restrict here on two relatively simple methods which are well suited for our purpose.

3.4.1 Nearest Neighbor Classification

An easy to implement and, compared to more sophisticated methods, impressively com-
petitive classifier for microarray data is the k-nearest neighbor rule [22]. It is based on
a distance function d(-,-) for pairs  and @’ of feature vectors. Since we consider here
standardized gene expression data, the Euclidean distance function

is a reasonable choice. Then, for each new feature vector, the k closest feature vectors from
the tissues in the learning data are identified and the predicted class is given by majority
vote of the associated responses of these k closest neighbors. We found a choice of k =1
neighbors to be appropriate, but more data driven approaches via cross validation for the
determination of £ would be possible.

3.4.2 Aggregated Trees

Another approach which proved to be very fruitful in our setting is as follows: When
knowing conditional probabilities py(x) = P[Y*) = 1| X = x], which specify how likely a
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tissue with feature vector @ belongs to the kth or one of the other classes, the classifier
function is

y=C(x) = argmax pg(xck,...,Zck), (7)
ke{0,....K—1} ! 1

meaning that a tissue is assigned to the class with highest probability. In practice of
course, we have to rely on estimated probabilities pi(x). An often applied method for this
task is the CART-algorithm for fitting classification trees [23]. Its drawback when using
it with our supervised clusters as input is that in case of perfect separation of the tissues
in the training data, it only uses one (the first) component Tk of the feature vector x
to determine conditional probabilities pi(x), and does not take into account any of the
useful information about the remaining (¢ — 1) input variables Lok -5 ek To improve
the tree-based probability estimates, we design a novel technique based on plurality voting
with classification trees, called aggregated trees. The idea is to fit ¢ trees, one each with
the ¢ cluster expression profiles (components of the feature vector x) that have been found
by our supervised algorithm for a particular binary class distinction. Each tree casts a
weighted vote ﬁki(mcf),i =1,...,q, for response class k against the rest. Averaging then
yields

q

D Drilwer)-

i=1

~

pk(il}) = ﬁk(xcf, ey :Iicg) =

=

as estimated conditional probabilities, which can be plugged into (7) for maximum likeli-
hood classification.

3.4.3 Empirical Study

Since except for the leukemia and SRBCT data, no genuine test sets are available, our
empirical study for exploring the classification potential is based on random divisions into
learning and test set as well as leave-one-out cross validation. For the latter, we set aside
the 7th tissue and carry out cluster identification and classifier fitting by considering only
the remaining (n — 1) data points. We then honestly predict y;, the class label of the
ith tissue sample and repeat this process for all data we have. Each observation is held
out and predicted exactly once. We can determine the test set error by calculating the
fraction of predicted class labels which differ from the true class labels. Results for the
nearest neighbor and the aggregated tree classifier and varying number of clusters ¢ are
given in table 3.

It is known from theory (e.g. [24], p.71) that error rates from leave-one-out cross
validation have low bias but large variance. Estimating error rates by repeated random
splitting of the data into training and (larger) test sets may be better in terms of mean
squared error. In table 4 we report misclassification rates which are based on N = 100
random divisions into a learning set comprising two thirds, and a test set containing the
remaining third of all n data. We took care that the class proportions were roughly
identical in learning and test set. Also here in every run, both cluster identification and
classifier construction are carried out on the training data, followed by honestly predicting
the class labels 7; for the test data with the two classifiers and various number of clusters
q. The misclassification rate is then calculated as the averaged fraction of predicted class
labels which differ from the true one.

We observe that the error estimates obtained from random splitting are on a slightly
higher level than the ones from leave-one-out cross validation. We also see that introducing
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Leukemia qg=1 q=2 q=3 q=5 ¢q=10 g=15 ¢g=20
Nearest Neighbor | 5.56% 5.56% 4.17% 2.78% 2.78% 2.78% 2.78%
Aggregated Trees | 5.56%  5.56%  1.39%  1.39%  2.78%  2.78%  2.78%
Breast qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%
Aggregated Trees | 0.00%  0.00%  0.00% 0.00% 0.00% 0.00%  0.00%
Prostate qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 13.73%  7.84% 4.90% 6.86%  4.90%  4.90% 5.88%
Aggregated Trees | 13.73% 13.73% 6.86% 8.82%  6.86% 5.88%  5.88%
Colon g=1 q=2 q=3 q=5 ¢q=10 ¢g=15 ¢=20
Nearest Neighbor | 27.42% 22.58% 22.58% 19.35% 16.13% 17.74% 19.35%
Aggregated Trees | 27.42% 29.03% 19.35% 19.35% 16.13% 17.74% 17.74%
SRBCT g=1 q=2 q=3 q=5 ¢q=10 ¢q=15 ¢=20
Nearest Neighbor | 0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 1.59%
Aggregated Trees | 3.17%  0.00%  0.00% 0.00%  1.59% 1.59%  1.59%
Lymphoma qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 3.23% 1.61% 1.61% 1.61% 0.00% 0.00% 0.00%
Aggregated Trees | 3.23% 1.61% 1.61% 1.61% 0.00% 0.00%  0.00%
Brain q=1 q=72 q=3 q=2>5 gq=10 q=15 ¢q=20
Nearest Neighbor | 30.95% 23.81% 19.05% 16.67% 19.05% 16.67% 16.67%
Aggregated Trees | 42.86% 23.81% 21.43% 19.05% 14.29% 11.90% 11.90%
NCI qg=1 q=2 q=3 q=>5 q=10 g¢g=15 ¢g=20
Nearest Neighbor | 40.98% 40.98% 36.07% 29.51% 24.59% 27.87% 26.23%
Aggregated Trees | 49.18% 47.54% 39.34% 29.51% 21.31% 21.31% 19.67%

Table 3: Misclassification rates for out-of-sample classification with ¢ gene clusters as
features, based on leave one out cross validation.

some redundancy for the discrimination process by using additional clusters, i.e. increasing
q, yields better performance; but of course, a too large value of ¢ would exhibit overfitting.

3.4.4 Comparison to Classification with Single Genes

Does the use of averaged cluster expression profiles from our supervised algorithm im-
prove the classification results compared to non-averaged, individual genes? To answer
this important question, we also classified our datasets with exactly the same genes that
were contained in the clusters, but did not average them. Instead of ¢ average expression
profiles we then have roughly five times as many single genes as predictor variables. Mis-
classification rates from repeated random splitting are given in table 5. We observe that
the aggregated tree classifier yields in 54 of 56 cases better results with cluster averages
than with individual genes as input. Also the nearest neighbor classifier is in 43 of 56 cases
better when used in conjunction with clusters than with single genes. Note that since the
events are not independent, we cannot employ a binomial test for the null hypothesis of
equal performance between clusters and single genes. An analysis of score and margin
of the individual genes that were used in the clusters shows that most of them are not
the strongest individually for predicting the tissue types, i.e. individually often only have
mediocre scores and margins, but have very good predictive power as a group. So far,
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Leukemia qg=1 q=2 q=3 q=5 ¢q=10 g=15 ¢g=20
Nearest Neighbor | 6.58% 4.62% 4.21% 3.75% 3.33% 3.38% 3.25%
Aggregated Trees | 6.58%  6.12%  3.71%  3.54%  2.79% 2.71%  2.62%
Breast qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 1.00% 0.75% 0.75% 1.00% 0.83% 1.00% 1.00%
Aggregated Trees | 1.00%  1.58%  1.67%  2.33%  2.58%  2.42%  3.00%
Prostate qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 14.47% 11.68% 9.62%  7.97% 7.26%  6.94%  6.91%
Aggregated Trees | 14.47% 16.47% 10.32% 8.79%  8.12% 8.00%  7.79%
Colon g=1 q=2 q=3 q=5 ¢q=10 ¢g=15 ¢=20
Nearest Neighbor | 23.35% 20.35% 19.10% 16.95% 16.45% 16.05% 15.95%
Aggregated Trees | 23.35% 21.80% 19.70% 18.10% 16.95% 16.20% 16.45%
SRBCT g=1 q=2 q=3 q=5 ¢q=10 ¢q=15 ¢=20
Nearest Neighbor | 1.33% 0.48% 0.43%  0.48% 0.76% 0.95% 1.05%
Aggregated Trees | 5.76%  0.95%  0.71% 1.10% 1.76% 1.90% 2.14%
Lymphoma qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 2.15% 2.20% 1.50%  0.85% 0.65% 0.50% 0.50%
Aggregated Trees | 3.45%  2.45%  1.40% 0.80% 0.25% 0.20%  0.30%
Brain q=1 q=72 q=3 q=2>5 gq=10 q=15 ¢q=20
Nearest Neighbor | 31.21% 27.50% 26.36% 24.71% 23.86% 23.71% 23.36%
Aggregated Trees | 35.43% 28.43% 24.43% 22.14% 19.64% 18.29% 16.86%
NCI qg=1 q=2 q=3 q=>5 q=10 g¢g=15 ¢g=20
Nearest Neighbor | 45.25% 40.25% 37.90% 34.80% 32.10% 30.50% 29.65%
Aggregated Trees | 51.85% 42.35% 38.05% 34.05% 29.30% 27.75% 26.50%

Table 4: Misclassification rates for out-of-sample classification with ¢ gene clusters as
features, based on N = 100 random divisions into learning set (two thirds of the data)
and test set (one third of the data).

we gained evidence that our algorithm really identifies functional groups of genes whose
average expression level has high explanatory power for the response classes.

3.4.5 Comparison to other Studies

We now classify the breast cancer validation sample of [15], which contains four randomly
chosen tissues plus five instances where two different clinical tests for determination of
the ER status yielded conflicting results. We choose the nearest neighbor method with
q = 3 clusters to be our classifier for the validation sample, since it had the best predictive
potential on the n = 38 training data. Our predictions shown in table 6 always agree with
the class label provided on the PNAS supporting information website, which corresponds
to the outcome of the immunoblot assay method.

Not only the results on the validation sample are very convincing, but also the cross
validation on the n = 38 training tissues is error free. This is different from the results in
[15] with precedent feature selection, singular value decomposition and Bayesian binary
regression, where 7 of 9 tissues in the validation sample and 36 of 38 tissues in the training
sample were accurately predicted. Moreover, our result confirms that the breast cancer
expression matrix contains a strong signal for discriminating the ER status.
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Leukemia qg=1 q=2 q=3 q=5 ¢q=10 g=15 ¢g=20
Nearest Neighbor | 6.33%  4.79%  4.50%  4.08% 3.67% 3.75%  3.79%
Aggregated Trees | 8.50%  6.04%  4.54%  3.92% 4.83% 6.79%  8.46%
Breast qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 1.08%  0.83%  0.92% 1.17% 1.33% 1.50% 1.58%
Aggregated Trees | 5.42%  2.50%  1.83% 2.42% 4.17%  5.42%  8.33%
Prostate qg=1 q=2 q=3 q=5 ¢q=10 g¢g=15 ¢g=20
Nearest Neighbor | 13.24% 10.68% 9.15%  8.44% 7.76%  8.18% 7.85%
Aggregated Trees | 25.47% 21.29% 18.56% 17.44% 16.65% 17.65% 18.94%
Colon g=1 q=2 q=3 q=5 ¢q=10 ¢g=15 ¢=20
Nearest Neighbor | 23.40% 21.95% 20.15% 18.90% 16.65% 16.25% 15.70%
Aggregated Trees | 30.95% 29.70% 30.20% 31.20% 33.55% 34.15% 34.90%
SRBCT g=1 q=2 q=3 q=5 ¢q=10 ¢q=15 ¢=20
Nearest Neighbor | 1.76%  0.86%  0.81% 1.05% 1.19% 1.43% 1.48%
Aggregated Trees | 4.38%  2.00%  2.62% 3.95% 6.48% 6.95%  8.43%
Lymphoma qg=1 q=2 q=3 q=>5 q=10 g¢g=15 ¢g=20
Nearest Neighbor | 2.43%  2.29% 1.76% 1.05% 0.81% 0.81% 0.86%
Aggregated Trees | 4.38%  2.81%  2.10% 1.00% 0.81% 1.05%  1.24%
Brain q=1 q=72 q=3 q=2>5 gq=10 q=15 ¢q=20
Nearest Neighbor | 30.79% 29.07% 29.50% 27.57% 28.50% 28.00% 27.50%
Aggregated Trees | 40.14% 35.29% 34.64% 33.50% 34.36% 34.79% 35.29%
NCI qg=1 q=2 q=3 q=>5 q=10 g¢g=15 ¢g=20
Nearest Neighbor | 39.63% 34.89% 32.84% 31.95% 30.68% 29.74% 28.95%
Aggregated Trees | 56.58% 49.53% 44.84% 42.42% 39.21% 39.05% 37.79%

Table 5: Benchmark misclassification rates for out-of-sample classification with the very
same but non-averaged genes from ¢ clusters as features, based on N = 100 random
divisions into learning set (two thirds of the data) and test set (one third of the data).

Tumor 14 31 33 44 45 46 47 48 49
Status Neg? Neg? Neg? Neg Pos? Pos? Pos Pos Neg
Prediction | Neg Neg Neg Neg Pos Pos Pos Pos Neg

Table 6: Classification of the validation sample with ¢ = 3 cluster expression profiles based
on the training sample with 38 tumors as features and aggregated trees as predictor. The
status of the tumors is according to the information provided on the PNAS-website. The
question mark means that two clinical tests yielded conflicting results. Displayed here is
the outcome of the immunoblot assay method.

Next, we use our method to classify the original 34 test samples in the leukemia
dataset. We applied the supervised clustering algorithm on the n = 38 training data,
where we also fit the best predictor from our random splitting study (aggregated trees with
g = 20 clusters as input features) as classifier for the independent sample. Our predictions
turned out to be error-free, a result which can be directly compared to [13], where 29
of 34 observations were classified correctly by a weighted voting scheme. With support
vector machines, results ranging between 30 to 32 correct classifications were reported

16



[25]. Moreover, a full leave-one-out cross validation on the n = 38 training data (results
not shown) resulted in perfect classification for various ¢’s and also the performance for
cross validation on the entire dataset with n = 72 observations is competitive, compared
e.g. to [26].

The SRBCT data contains an additional test set of 20 SRBCT and 5 non-SRBCT
samples. We first classified the 20 SRBCT tissues with the best classifier from the random
splitting study on the n = 63 training samples, the nearest neighbor method with ¢ = 3
clusters as input. The predictions turned out to be error-free, approving the perfect
classification with artificial neural networks and principal components as in [18], as well as
the correct diagnosis obtained with multi-category support vector machines in [27]. Since
aggregated trees and the 1-nearest-neighbor classifier with ¢ = 3 clusters as input are not
well suited for assessing prediction strengths on the 5 non-SRBCT samples, we applied
logistic discrimination and rejected every classification that was done with a probability
lower than 0.95. All 5 non-SRBCT’s did not exceed this threshold and were thus correctly
rejected, whereas 3 of the 20 SRBCT tissues did not exceed it and could not confidently
be classified either, though they were predicted correctly. Also this result, as well as
our error-rate from leave-one-out cross validation on the training data which achieves the
benchmark error-rate of 0% are consistent with [18, 27]. This provides more evidence that
our method can at least keep up with state-of-the-art classifiers such as neural networks
or support vector machines.

The five remaining microarray studies don’t contain genuine test sets and we thus
compare our error-rates from cross validation and random splitting against the literature.
The classification of tumor versus normal prostate tissue has been evaluated with leave-
one-out cross validation [17]. After precedent feature selection, an accuracy of “greater
than 90%” was obtained, a results which may be beaten by our error-rate of 4.90%, which
corresponds to 5 misclassifications in totally 102 samples. The colon cancer datasets
has already been considered by various authors, e.g. in [26] with classifiers based on
single genes, such as nearest neighbors, boosting and support vector machines in a cross
validation study. Our method does not clearly improve their results, although it seems to
have an edge over them. However, we could not accomplish a cross validation error-rate of
9.68%, as reported in [25] with support vector machines. The error-rates on the lymphoma,
brain tumor and NCI data provide evidence that our method based on a one-against-all
approach does a good job in multiclass problems, too. On the lymphoma data we observe
perfect classification, thus achieve the non-to-improve benchmark. On the brain tumor
data, our minimal cross validation error-rate of 11.90% is superior to the 16.67% obtained
in [20] with a weighted voting algorithm. Many more misclassifications occur on the NCI
than on the other datasets, due to the large number of classes and their heterogeneity.
However, when comparing our predictions to the results in a broad evaluation of classifiers
on the NCI data [14], they prove to be very valuable. We consistently obtained mean error-
rates of less than 30% with random splitting, the optimum is 26.50% using aggregated
trees with ¢ = 20 clusters, whereas the best median error-rates reported in [14] are in a
range around 35% and higher.

In summary, our predictions from simple classifiers based on the supervised clustering’s
output can easily keep up with sophisticated methods that are based on single genes, and as
table 7 shows, our supervised clusters beat the best reported results from the literature in
four out of eight datasets. On three further datasets, we achieve the benchmark of perfect
classification. The success of our method may be because the averaging of genes according
to (2) has a variance reducing effect and yields more stable and accurate features for
classification. Besides its good predictive potential, the cluster structure provided by our
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Leuk. Breast Prost. Colon SRBCT Lym. Brain NCI*
Sup. CL 1.39% 0.00% 4.90% 16.13%  0.00%  0.00% 11.90% 26.50%
Literature | 1.39% 5.26% 9.80% 9.68%  0.00% ? 16.67% ~35%

Table 7: Best leave-one-out cross validation error-rates from our supervised clustering
procedure compared to best reported results from the literature where directly comparable,
references are given in the main text. *The mean error-rate on the NCI data is based on
random divisions into training and test set, and compared against the median error-rate
obtained under the same framework in [14].

method is very accessible for biological interpretation and can be beneficial for functional
genomics.

3.5 Stability

The stability of the gene clusters detected by our supervised clustering algorithm is a crit-
ical issue. The output is much more useful for functional genomics if it remains unchanged
for “similar” input data. We use the bootstrap as a tool for assigning statistical signifi-
cance, see [28]. We assume to have n pairs of observations (x;,y;) with binary response
yi € {0,1}, from which we form a resampled gene expression dataset

(mla yl)*a EE) (mnv yn)*

of length n by drawing with replacement from the original data pairs. We can then apply
our supervised algorithm to extract clusters C7,...,C; out of these resampled data. For
an empirical study, we generated L = 1000 resampled gene expression datasets of size n
to explore the compositional variability of the first cluster C} in eight binary problems as
detailed in the caption of table 8.

We first analyze the variability in cluster size. The results, summarized in table 8,
show surprising stability across the eight different datasets. We observe that quite small
clusters, typically made up of 3-9 genes, were found. The standard deviation in cluster
size was fairly low in all eight datasets. As a next and more difficult step, we try to explore
the compositional variability of the clusters. To give a rough overview which proportion
of genes is actively present in the clustering process, we assess a confidence level to each
individual gene 7, which measures how likely it is to be clustered,

N, 1 & .
ﬂi:fzf‘;l[geneiecf(o}’ i=L.p (8)

where NN; is the number of the L clusters that contain gene i. The numerical results given
in table 9 show that except for the colon tumor data, only a minority of genes ever entered
a cluster. For the leukemia data this proportion was somewhat bigger, but still most of
the genes never took part in the clustering process. More importantly, only a very small
part of the genes is used frequently, i.e. more than fifty times in the thousand clusters.
We conjecture that our supervised algorithm discriminates phenotypes with a small core
of genes only, and in this sense it is reasonably stable.

We continue by assessing confidence levels to pairs of genes which gives a clue about
pairwise interactions. We count the number V;; of clusters C{ found with our bootstrapped
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Clustersize Mean Stdev Min Max
Leukemia 5.855  2.910 1 23
Breast Cancer | 4.344 2.062 1 13
Prostate 6.327 2.373 2 17
Colon 6.642 2.733 2 20
SRBCT 4.739 1.816 1 14
Lymphoma 5.485 2.679 1 16
Brain 6.094 2.751 1 19
NCI 6.174  2.930 1 20

Table 8: Variability in size of clusters that have been shaped with the supervised algorithm,
based on 1000 bootstrap replicates. Leukemia stands for distinction between AML and
ALL; in the breast cancer data, the separation of the ER receptor status has been analyzed;
prostate and colon stand for discrimination of normal versus tumorous tissue; in the
SRBCT dataset, the Ewing family of tumors was separated against three other phenotypes;
for the lymphoma dataset discrimination of DLBCL against FL & CLL was considered; in
the brain tumor dataset AT/RTs were discriminated from four further malignancies; and
in the NCI dataset, leukemia was separated against seven other cancers. The presented
figures for the two multiclass datasets are representative for all their binary distinctions
between a tumor type against all others.

Active Genes | 3 Limso] i lm>0l/P 22i Um>0.05]  2oi Lmp>0.05)/P
Leukemia 624 17.474% 18 0.504%
Breast Cancer 128 1.803% 9 0.130%
Prostate 949 15.730% 16 0.265%
Colon 1028 51.400% 12 0.600%
SRBCT 68 2.946% 11 0.477%
Lymphoma 279 6.930% 19 0.472%
Brain 345 6.164% 21 0.375%
NCI 227 4.329% 23 0.439%

Table 9: Number and proportion of genes that ever have been used in the first cluster
Ci (first two columns), as well as number and proportion of genes that have been used
for cluster C{ in more than 50 out of the 1000 bootstrap trials (last two columns). The
selection of data is identical to table 8.

gene expression datasets that both contain the genes ¢ and j, and then divide by the
number of replicates L,

N;; 1 .

= LJ L 32211[96% iecy’ 1[96%6 jecp I €{L....n} (9)
These confidence levels not only give an idea how likely the pairs are, but also provide
information for functional genomics, since we can now analyze whether pairs of genes
preferentially enter clusters simultaneously or not. The number of hits N; for individual
genes i follows a Binomial(L, ;) distribution (given the data) , and for pairs (i,7) we
have that N;; is Binomial(L,m;;) (we ignore here the fact that m; in (8) and m;; in (9)
are computed with L = 1000 replicates instead of the theoretical L = oo). If there were
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no attraction or repulsion between genes, the joint probability m;; would be given by
the product m;m; of the marginal probabilities. By calibrating the observed number of
hits N;; with the Binomial(L, N;N;/L) distribution under independence, we can test the
hypothesis

HO . 7Tl'j = 7TZ'7T]',

and compute the associated p-values. Low p-values indicate significant pairs of genes.
Moreover, we also distinguish between two genes which are attracting (with N;; larger than
expected under the null hypothesis), and which are repelling (with N;; lower than expected
under Hyp). We implemented an empirical analysis based on L = 1000 bootstrap trials, for
pairs made up of the five genes with the highest confidence levels 7; in the discrimination
of lymphoma’s class 0 (DLBCL) against the other two phenotypes. Numerical results
are summarized in table 10, clone numbers and function of the genes are given in table
11. Among the 10 pairs, several significant gene pairs which are strongly attracting or
repelling are present, e.g. the genes 3786 and 3804 strongly attract each other. Moreover,
78% of the clusters that contained gene 3804 also included gene 3786, again signalizing
a special relation among these two. An interpretation of such facts in the framework of
functional genomics is beyond the scope of this paper.

Numbers | Gene 3786 Gene 3804 Gene 761 Gene 780
Gene 3763 | 184 (301) 68 (220) 144 (155) 173 (133)

Gene 3786 289 (187) 153 (132) 72 (113)
Gene 3804 136 (96) 60 (83)
Gene 761 40 (58)

p-values | Gene 3786 Gene 3804 Gene 761  Gene 780
Gene 3763 | (-) 0.000  (-) 0.000 (-) 0.359 (+) 0.001

Gene 3786 (+) 0.000  (+) 0.055 () 0.000
Gene 3804 (+) 0.000  (-) 0.007
Gene 761 (-) 0.015

Table 10: Top: numbers of observed and expected (under hypothesis of independence,
numbers in parentheses) gene pairs of the five most frequently clustered genes in the
distinction of DLBC-lymphoma against the other two phenotypes, based on 1000 bootstrap
replicates. Bottom: p-values for attraction (+) and repulsion (—) of gene pairs from
two-sided binomial tests that compare the joint probability against the product of the
marginals.

It is now tempting to extend this kind of analysis from pairs to tuples of third and
higher orders. But estimating higher-order interactions will become very unreliable due
to the limited amount of sample size n.

3.6 Additional Modifications

Our supervised clustering procedure can be understood as a generic method and allows
alteration of various details according to the users choice and specific demands. We also
tried to improve the supervised clustering procedure ourselves with additional modifica-
tions, the most important of which are described here in the following. The averaging of
the gene expression in (2) is specified by the arithmetic mean plus sign-flips, a very simple
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Sign | Gene Clone | Function
- 3763 | 769861 | CD63 antigen (melanoma 1 antigen)
- 3786 | 345538 | Cathepsin L
- 3804 | 343867 | Allograft-inflammatory factor-1
or Interferon gamma induced macrophage protein
or lonized calcium binding adapter molecule 1
+ 761 | 1341294 | Unknown
+ 780 | 1334411 | Unknown UG Hs.32553 ESTs

Table 11: Clone numbers and function description of the five genes that have been clus-
tered most frequently in the discrimination of DLBC-lymphoma against the other two
phenotypes in the lymphoma dataset.

linear combination of genes, since it is impractical to repeatedly optimize a general linear
combination such as

Xe, = Z By Xy with Z B =1
g

g€C;

during the clustering process. But theoretically, once the cluster algorithm has done its
work, we could try to improve the discriminatory power of the actual cluster by numerically
optimizing a weighted linear combination as above with respect to score and margin. In
practice, we recognized that the numerical optimization was very difficult. If we started it
with equal weights, they only changed slightly and the objective function, i.e. the margin
did not improve much. Because of this we favor the more simple method.

Since the margin function in (6) is not scale-invariant, we also considered clustering
with an adjusted margin. This means that we optimized the quotient of margin and within
group variation for a gene expression vector & = (x;1, ..., ZTin),

Margin(&,)
\/$8/no + 53/

Here, ny is the size and S% is the sample variance of class k € {0,1}. While theoretically,
the size of the gap between the two response classes is meaningful only in relation to the
within-group variance, the adjustment of the margin proved not to be very important
in practice, due to the use of standardized gene expression data. It did not improve
the predictive performance of the clusters and slightly deteriorated their stability. Since
it is common practice to standardize expression data, we recommend to work with the
non-adjusted margin.

Our algorithm, as described in section 2, yields disjoint clusters of genes. To account
for the fact that genes may function in multiple pathways one could modify as follows.
(i) run the clustering algorithm on the data, producing a first cluster; (ii) compute a
probability estimate for P[Y = 1|X] for a two-class problem, e.g. with probability based
classification methods or in a logistic model; (iii) reweight the data with weights as in
the Real AdaBoost algorithm ([29]; algorithm 2, p.340); (iii) return to (i) but now with
reweighted data. Doing the loop ¢ times produces ¢ clusters which are allowed to be
non-disjoint.

We also explored the improvement of the supervised clustering algorithm by biasing it
towards larger clusters. Specifically, we did not stop the forward search when score and/or

Adjusted margin(¢;) =
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margin first worsened, but continued as long as the objective function remained within
a factor of the best. Our intention was that the objective function could improve again
and reach even better values. As soon as the objective function once dropped below the
tolerance (a factor times the best ever achieved value), we stopped the forward search and
continued the algorithm with the cluster that yielded the best parameters ever. While our
first guess was that the biasing could result in larger clusters with clearer separation, it
rarely ever had any effect in practice.

4 Conclusions

We have proposed an algorithm for supervised clustering of genes from microarray exper-
iments. Our procedure is potentially useful in the context of medical diagnostics, since
it identifies groups of interacting genes that have high explanatory power for given tissue
types, and which in turn can be used to accurately predict the class labels of new samples.
At the same time, such gene clusters may reveal insights into biological processes and may
be valuable for functional genomics.

In summary, our algorithm tries to cluster genes such that the discrimination of differ-
ent tissue types is as simple as possible. It builds the clusters incrementally and relies on
a fast, stepwise strategy that allows exhaustive search among thousands of genes. More
specifically, the aim is to identify sparse linear combinations of genes, whose average ex-
pression level is uniformly low for one response class and uniformly high for the other
class(es).

In empirical studies, the average cluster expression profiles showed superior classifica-
tion potential compared to other techniques where unclustered genes had been used. The
clusters showed reasonable stability and there are several reasons that point towards their
biological significance: a) they do not only contain the genes which are individually good,
but groups of genes whose consensus expression profile is best with respect to the objective
function; b) the predictive potential of the very same, non-averaged genes cannot keep up
with the one of the corresponding cluster means; and ¢) an application of our algorithm
to randomly permuted data points out that the identified structure is more than just a
noise artifact.

An important task which remains to be addressed in future research is the general-
ization of the supervised clustering algorithm to quantitative response variables and to
censored survival data. The fundamental idea of supervised clustering can be pursued
again, but needs alternative objective functions that rank individual genes and gene clus-
ters based on their explanatory power for non-categorical response variables.
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