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Abstract

We consider a finite mixture of regressions (FMR) model for high-dimensional in-
homogeneous data where the number of covariates may be much larger than sample
size. We propose an {i-penalized maximum likelihood estimator, in an appropriate
parameterization, and we develop an efficient EM-algorithm for numerical optimiza-
tion with provable convergence properties. Our penalized estimator is numerically
better posed (e.g. boundedness of the criterion function) than unpenalized maximum
likelihood estimation, and it allows for effective statistical regularization including
variable selection. We also present some asymptotic theory and oracle inequalities:
due to non-convexity of the negative log-likelihood function, different mathematical
arguments are needed than for problems with convex losses. Finally, we apply the
new method to both simulated and real data.

1 Introduction

In applied statistics, a tremendous amount of applications deal with relating a random
response variable Y to a set of explanatory variables or covariates X = (X W X (p))
through a regression-type model. The homogeneity assumption that the regression coef-
ficients are the same for different observations (Y1, X1),. .., (Ys, X,,) is often inadequate.
Parameters may change for different subgroups of observations. Such heterogeneity can
be modelled with a Finite Mixture of Regressions (FMR) model. Especially with high-
dimensional data, where the number of covariates p is much larger than sample size n,
the homogeneity assumption seems rather restrictive: at least a fraction of covariates
may exhibit a different influence on the response among various observations (i.e. sub-
populations). Hence, addressing the issue of heterogeneous data in high-dimensional data
is an important need in many practical applications. We will empirically demonstrate
with real data in Section 7.2 that prediction improvements are possible by incorporating
a heterogeneity structure to the model.

We propose here an ¢;-penalized method, i.e. a Lasso-type estimator (Tibshirani, 1996),
for estimating a high-dimensional finite mixture of regressions model where p > n. Our
approach is related to the proposal in Khalili and Chen (2007). In this paper, we argue
that a different parameterization leads to more efficient computation in high-dimensional
optimization for which we prove numerical convergence properties. Our algorithm can
easily handle problems where p is in the thousands. Furthermore, we present an oracle
inequality which includes the setting where p > n: this is very different from Khalili
and Chen (2007) who use fixed p asymptotics in the low-dimensional framework. Our
theory for deriving oracle inequalities for non-convex loss functions, as the negative log-
likelihood in a mixture model is non-convex, is rather non-standard. Much of the theory



for the high-dimensional Lasso has been developed for convex loss functions, e.g. the
squared error in a Gaussian regression (Greenshtein and Ritov, 2004; Meinshausen and
Biithlmann, 2006; Zhao and Yu, 2006; Bickel et al., 2007) or the negative log-likelihood
in a generalized linear model (van de Geer, 2008). From this point of view, we present
a non-trivial modification of the mathematical analysis of ¢1-penalized to non-convex but
smooth likelihood problems.

The rest of this article is organized as follows: Section 2 describes the finite mixture
of regressions (FMR) model with an appropriate parameterization, Section 3 introduces
£1-penalized maximum-likelihood estimation for FMR models, Sections 4 and 5 present
mathematical theory for the low- and high-dimensional case, Section 6 develops some
efficient generalized EM algorithm and presents its numerical convergence properties and
Section 7 reports on simulations and a real data example.

2 Finite mixture of Gaussian regressions model

Our primary focus is on the following mixture model involving Gaussian components:

Y;|X; independent for i = 1,...,n,
YilXi =2 ~ fe(ylx)dy fori =1,...,n,
k
1 (y_fUTﬂr)Z
_ _ Pr)” 2.1
f: (ﬁl,...,ﬁk,al,...,O’k,ﬂ'l,...,ﬂ'k_l) GRkp XRI;O XH,

k—1
MI={mmn>0forr=1,...,k—1 and Zm<1}.
r=1

Thereby, X; € R? are fixed or random covariates, Y; € R is a univariate response variable
and £ = (B1,...,0k,01,-..,0k,T1,...,Tk—1) denotes the (p+2) -k —1 free parameters and
m, is given by m, = 1 — Zf;ll 7. The model in (2.1) is a mixture of Gaussian regressions,
where every component r has its individual vector of regressions coefficients 3, and error

variances o2. We are particularly interested in the case where p > n.

2.1 Reparameterized mixture of regressions model

We will prefer to work with a reparameterized version of model (2.1) whose penalized
maximum likelihood estimator is scale-invariant and easier to compute. The computational
aspect will be discussed in greater detail in Sections 3.1 and 6. Define new parameters

¢r:/6r/gra p?":a;lv r=1...k

This yields a one-to-one mapping from £ in (2.1) to a new parameter vector
0= (1, Phs Py, PksT1,---,Tk—1) and the model (2.1) in reparameterized form then



equals:

Y;|X; independent for i = 1,...,n,
YilXi =2 ~ hg(y|x)dy fori=1,...,n,

1
y|x Zﬂ'r eXP _i(pry $T¢r)2) (2'2)
9 = (¢1,...,¢k,p1,...,pk,m,...,wk_l) ERM™ x RE, x 11

M={mmn>0forr=1,...,k—1 and Zm<1}.

This is the main model we are analysing and working with.

The log-likelihood function of this model equals:

Z log <Z T

Since we want to deal with the p > n case, we have to regularize the maximum likelihood
estimator (MLE) in order to obtain reasonably accurate estimates. We propose below some
£1-norm penalized MLE which is different from a naive ¢;-norm penalty for the MLE in
the non-transformed model (2.1). Furthermore, it is well known that the (log-) likelihood
function is generally unbounded. We will see in Section 3.2 that our penalization will
mitigate this problem.

— exp(— (eri - XZ-T@)Q)) : (2.3)

3 /;-norm penalized maximum likelihood estimator

We argue first for the case of a (non-mixture) linear model why the reparameterization
above in Section 2.1 is useful and quite natural.

3.1 /i-norm penalization for reparameterized linear models

Consider a Gaussian linear model

P
Y, = Zﬁin(]) + &4, 1= 1,...,71,
j=1
€1,...,6q 1id. ~ N(0,0?), (3.4)
where X; are either fixed or random covariates. In short, we often write
Y =X3+e¢,

with nx 1 vectors Y and e, px 1 vector 3 and n x p matrix X. In the sequel, ||.|| denotes the
Euclidean norm. The ¢;-norm penalized estimator, called the Lasso (Tibshirani (1996)),
is defined as:

P
B = argmingn ™! [[Y — XA+ XY [5] (3.5)
j=1



The Gaussian assumption is not crucial in model (3.4) but it is useful to make connections
to the likelihood framework. The Lasso estimator in (3.5) is equivalent to minimizing
the penalized negative log-likelihood n~14(3;Y7,...,Y,,) as a function of the regression
coefficients 3 and using the ¢1-penalty ||5]1 = ?:1 |Bj|: equivalence means here that
we obtain the same estimator for a potentially different tuning parameter. But the Lasso

estimator in (3.5) does not provide an estimate of the nuisance parameter o2

In mixture models, it will be crucial to have a good estimator of o2 and the role of the
scaling or the variance parameter is much more important than in homogeneous regression
models. Hence, it is important to take o2 into the definition and optimization of the
penalized maximum likelihood estimator: we could proceed with the following estimator,

B, 6% = argming ,»(—n"(B,0%Y1,...,Y,) + A|B]h)
= argming ,2(log(c) + Y — XB|*/(2n®) + A||8]|1). (3.6)

Note that we are penalizing only the S-parameter. However, the scale parameter o2 is

influenced indirectly by the amount of shrinkage A.

There are two main drawbacks of the estimator in (3.6). First, it is not invariant under
scaling of the response, i.e. b-Y (b > 0) leads to a different estimator than with b = 1.
Secondly, and as important as the first issue, the optimization in (3.6) is non-convex
and hence, some of the major computational advantages of Lasso for high-dimensional
problems is lost. We address these drawbacks by using the penalty term )\@ leading to
the following estimator:

B, 6% = argming ;2 (log(o) + [|Y — XB|?/(2n0?) + A ).

18111
o
This estimator is invariant under scaling b- Y. It penalizes the ¢'-norm of the coefficients
and small variances o simultaneously. Furthermore, it is closely related to the Bayesian
Lasso (Park and Casella, 2008). They consider a fully Bayesian analysis using a conditional

Laplace prior specification of the form

o) =11 ; . exp(—A'%>

and the noninformative scale-invariant marginal prior p(c?) = 1/0? for 0. They argue

that conditioning on o2 is important, because it guarantees a unimodal full posterior.

Most importantly, we can re-parameterize to achieve convexity of the optimization prob-
lem:

¢j = Bjjo. p=ot.

This then yields the following estimator which is invariant under scaling and whose com-
putation involves convex optimization:

. ) 1
0,2 = argmin(—log(p) + o [lpY = X6|* + Allgll) (3.7)
P

From an algorithmic point of view, fast algorithms are available to solve the optimization in
(3.7). Shooting algorithms (Fu, 1998) with coordinatewise descent are especially suitable,
as demonstrated by Meier et al. (2008), Friedman et al. (2007). We describe in Section



6.1 an algorithm for estimation in a mixture of regressions model, a more complex task
than the optimization for (3.7). As we will see in Section 6.1, we will make use of the
Karush-Kuhn-Tucker (KKT) conditions in the M-step of a generalized EM-algorithm.
For the simpler criterion in (3.7) for a non-mixture model, the KKT conditions imply
the following which we state without a proof. Denote by (,-) the inner product in n-
dimensional Euclidean space.

Proposition 3.1. FEvery solution (ngS,ﬁ) of (3.7) satisfies:

—pXTY + XTX¢ + nz\sfgn(éj) 0 if qu- £ 0,
|- pX]Y + XT X0l < nA if ¢, =0,

and

(Y, X) + /(Y. X§)? + 4|Y |I2n
YR

p=

3.2 /{;-norm penalized MLE for mixture of Gaussian regressions

Consider the mixture of Gaussian regressions model in (2.2). Assuming that p is large,
we want to regularize the MLE. In the spirit of the approach in (3.7), we propose for the

unknown parameter 0 = (¢1,..., Ok, P1,-- -, Pk, T1,--.,Tk—1) the estimator:
éE\)—aregH@nn —-n lgg()e?z)\(e) 9:(d)l?'">¢k7p1)°"kaJTrla"'77Tk—1)7 (38)
€
_ 1
—n L) \(0) = lzlog (Zm exp(—5 (prYi = X' W))
+ AZwZH@Hh (3.9)
r=1
0 =R x RE ) x I, (3.10)

where I = {m; 7, >0 for r=1,...,k— 1 and Y"_! 7, < 1}. The value of v € {0,1/2,1}
parameterizes three different penalties.

The first penalty function with v = 0 is independent of the component probabilities .
As we will see in Sections 6.1 and 6.2, the optimization for computing ég\o) is easiest and
we are able to establish a rigorous result about numerical convergence of a generalized EM
algorithm. The penalty with v = 0 works fine if the components are not very unbalanced,
i.e. the true m,’s aren’t too different. In case of strongly unbalanced components, the
penalties with values v € {1/2,1} are to be preferred, at the price of having to pursue a
more difficult optimization problem. The value of v = 1 has been proposed by Khalili and
Chen (2007) for the naively parameterized likelihood from model (2.1). We will report
in Section 7.1 about empirical comparisons with the three different penalties involving

v e {0,1/2,1}.

All three penalty functions involve the ¢1-norm of the component specific ratio’s ¢, =
f—: and hence small variances are penalized. The penalized criteria therefore stay finite
whenever g, — 0: this is in sharp contrast to the unpenalized MLE where the likelihood

tends to infinity if o, — 0, see for example (McLachlan and Peel, 2000).



Proposition 3.2. Assume that Y; # 0 for all i = 1,...,n. Then the penalized negative
likelihood —n*1€;08)1L7A(9) is bounded from below for all values 6 € © from (3.10).

A proof is given in Appendix C. Even though Proposition 3.2 is only stated and proved
for the penalized negative likelihood with v = 0 we expect that the statement is also true
fory=1/2 or 1.

Due to the /1-norm penalty, the estimator is shrinking some of the components of ¢1, ..., ¢
exactly to zero, depending on the magnitude of the regularization parameter \. Thus, we
can do variable selection as follows. Denote by

~

5={(m’); 1<r<k, 1§j§p,<ﬁnﬂé0}. (3.11)

The set S denotes the collection of non-zero estimated, i.e. selected, regression coefficients
in the k£ mixture components. Note that no significance testing is involved, but of course,
S = 5/(\7) depends on the specification of the regularization parameter A\ and the type of
penalty indicated by ~.

3.3 Adaptive /;-norm penalization

A two-stage adaptive f1-norm penalization for linear models has been proposed by Zou
(2006), called the adaptive Lasso. It is an effective way to address some bias problems of
the (one-stage) Lasso which may employ strong shrinkage of coefficients corresponding to
important variables.

The two-stage adaptive £1-norm penalized estimator for a mixture of Gaussian regressions
is defined as follows. Consider an initial estimate 6", for example from the estimator
n (3.8). The adaptive criterion to be minimized involves a re-weighted ¢;-norm penalty
term:

716(%2”7,5(9) = -1 Z log (Z Tr—F— eXp (PrYi - X2T¢>r)2)>

+ AZ utd Z Wr.j|r.],
r=1  j=1

1

Wrj = W? 0:(pl"'wpk?qbl?'"a¢k7ﬂ-1>"'7ﬂ-k—1)a (312)
T’]

where v € {0,1/2,1}. The estimator is then defined as

7(7) _ : —1,()
ea’cylapt;)\ - a‘rgan@un -n ga’cylapt(e)

where © is as in (3.10).

The adaptive Lasso in linear models has better variable selection properties than the Lasso,
see Zou (2006), Huang et al. (2008), Zhou et al. (2009). We present some theory for the
adaptive estimator in the FMR model in Section 4 and we report some empirical results
in Section 7.1.



3.4 Selection of the tuning parameters

The regularization parameters to be selected are the number of components k, the penalty
parameter A and we may also want to select the type of the penalty function, i.e. selection
of ~.

One possibility is to use a modified BIC criterion which minimizes

BIC = —20(8"))+ log(n)df, (3.13)
over a grid of candidate values for k£, A and maybe also . Here, HAE\WZ denotes the estimator
in (3.8) using the parameters A, k,v in (3.9), and —/(-) is the negative log-likelihood.
Furthermore, df = kp +k + (k — 1) — ijl.%r:lmk 1{(;% ,—o} are the degrees of freedom
(Pan and Shen, 2007). '

Alternatively, we may use a cross-validation scheme for tuning parameter selection mini-
mizing some cross-validated negative log-likelihood.

Regarding the grid of candidate values for A, we consider 0 < A\ < ... < Ay < Mz
where A4z iS given by

(v, x0))
A = max |————|. 3.14
max j:17...7p \/ﬁHYH ( )
At Apnaz, all coefficients ggj, (j =1,...,p) of the one-component model are exactly zero.

Equation (3.14) easily follows from Proposition 3.1.

For the adaptive ¢1-norm penalized estimator minimizing the criterion in (3.12) we proceed
analogously. As initial estimator in the adaptive criterion, we propose to use the estimate
in (3.8) which is optimally tuned using the modified BIC or some cross-validation scheme.

4 Asymptotic properties for fixed p and &

Following the penalized likelihood theory of Fan and Li (2001), we establish first some
asymptotic properties of the estimator in (3.9). We assume here that the number of
covariates p and the number of mixture components k is fixed as sample size n — oo.
Of course, this does not reflect a truly high-dimensional scenario, but the theory and
methodology is much easier for this case. An extended theory for p potentially very large
in relation to n is presented in Section 5.

Denote by 6y the true parameter.
Theorem 4.1. (Consistency) Consider model (2.2) with fized design and fixed p and k.

If A = O(n~'?) (n — o0), then there exists a local minimizer ég\'y) of =" Hpen A (0) in
(3.9) (v € {0,1/2,1}) such that

vn (égj) — 90> —F0 (n — ).

A proof is given in Appendix A. Theorem 4.1 can be easily misunderstood. It does not
guarantee the existence of an asymptotically consistent sequence of estimates. The only
claim is that a clairvoyant statistician (with pre-knowledge of 6y) can choose a consistent



sequence of roots (van der Vaart, 2007). In this sense the preceding theorem might look
better than it is.

Next, we present an asymptotic oracle result in the spirit of Fan and Li (2001). Denote
by S the population analogue of (3.11), i.e. the set of non-zero regression coefficients.
Furthermore, let 0s = ({¢;; (r,7) € S},p1,---, Pk, 71,...,Tk—1) the sub-vector of pa-
rameters corresponding to the true non-zero regression coefficients (denoted by S) and
analogously for Os.

Theorem 4.2. (Asymptotic oracle result) Consider model (2.2) with fized design and
fized p and k. If X = o(n=/?), nA — co and if 6™ satisfies 6" — 6y = Op(n~?), then

of —n~ 1Y) (0) in (3.12) (v € {0,1/2,1}) which

. S A(7)
there exists a local minimizer 0 adapt

adapt; A
satisfies:
1. Consistency in variable selection: P[S\f\'y) =5]—1(n— o).

2. Oracle Property: /n (QA/(\% — 0075) ~% N(0,1I5(60)), where Is(y) is the Fisher in-
formation knowing that g = 0.

A proof is given in Appendix A. As in Theorem 4.1, the assertion of the Theorem is
only making a statement about some local optimum. Furthermore, variable selection
consistency and the oracle property hinge on the implicit assumption that the regression
parameters are either zero or take a fixed value different from zero which excludes the
cases with small non-zero values in e.g. the n=/2-domain.

5 Theory for high-dimensional setting

We will present here some theory, entirely different from Theorems 4.2 and 4.1, which
reflects some consistency and optimality behaviour of the ¢;-norm penalized maximum
likelihood estimator for the potentially high-dimensional framework with p > n. In par-
ticular, we derive some oracle inequality which is non-asymptotic. We intentionally present
this theory for /1-penalized smooth likelihood problems which are generally non-convex:
£1-penalized likelihood estimation in FMR models is then a special case.

5.1 The setting and notation

Let {fp; 6 € ©} be a collection of densities with respect to some o-finite measure y, on a
measurable space ) (i.e. the range for the response variable). The parameter space © is
assumed to be a bounded subset of some finite-dimensional space, say

O c {6 eR% ||f]lo < K},

where we have equipped (quite arbitrarily) the space R? with the sup-norm [|f||ecc =
maxi<j<q |0;|. In our setup, the dimension d will be regarded as a fixed constant (which
still covers high-dimensionality of the covariates, as we will see). Then, equivalent metrics
are e.g. the ones induced by the ¢;-norm |6, = (Z;l:l 10,117 (g > 1).

We observe a co-variable X in some space X and a response variable Y in ). The true
conditional density of Y given X = z is assumed to be equal to

foo (-12) = foo(2)s



where
Oo(z) €O, VreX.

That is, we assume that the true conditional density of ¥ given X = x is depending on
2 only through some parameter function 6y(x). Of course, the introduced notation also
applies to fixed co-variables.

The parameter {fg(z); = € X} is assumed to have a nonparametric part of interest
{g90(z); x € X} and a low-dimensional nuisance part 7o, i.e.,

Oo(-)" = (90(-)", 5 ),

with

go(z) eRF, Yo e X, ng e R™, k+m=d.
In case of FMR models, g(z)T = (¢Tz,¢3z,...,¢l2) and n involves the parameters
Ply--sPkyT1,---,Tk—1- More details are given in Section 5.6.

With minus the log-likelihood as loss function, the so-called excess risk

£(0160) = /kqf]mw

is the Kullback Leibler information. For fixed covariates z1, ..., x,, we define the average

excess risk
£(06y) = 25< ;) |00 a:,))

5.2 A consistency result for FMR models

Denote by 6y = (¢o,n0) the true parameter vector in an FMR model, where ¢y =

(¢0,17 v 7¢O,k)T with (bO,T - 60,7“/0—7' (T - 17 ) k) and T = log(p1)7 v 710g(pk>7 IOg(Wl)a ceey
., log(m—1). Consider the estimator

0y = arg min —n 1z:log (Z Ty

9eb
:hﬂ:<bm,a#xwyww@<waw3K} (5.15)
S

1
exp 2( prYi — X[ 6r)?) )4')\2”@”17

This is the estimator from Section 3.2 with v = 0. We emphasize the boundedness of the
parameter space by using the notation ©. In contrast to Section 4, we focus here on any
global minimizer oft the penalized negative log-likelihood which is arguably difficult to
compute.

Theorem 5.1. (Consistency) Consider model (2.2) with fized design and fized k and
assume that Condition 5 below holds. Moreover, assume that ||¢ol|l1 = qule o, =

o(y/n/logt(n)) (n — 00). If A < Cy/log*(n)/n) for some C > 0 sufficiently large, then

any (global) minimizer 0 as in (5.15) satisfies
E(05]00) = 0p(1) (n — o).

A proof is given in Appendix B.



5.3 The margin

We develop in the following Sections 5.3-5.5 a non-asymptotic oracle inequality result for
the general case of penalized smooth likelihood estimation.

Denote by

lo =log fo
the log-density. Assuming the derivatives exist, we define the score function

Oly

S = 90

and the Fisher information
1(0) = /SGSeTfedu = — ﬁfadﬂ-
00007

Of course, we can then also look at I(6(x)) using the parameter function 6(z).
We will assume boundedness of third derivatives.

Condition 1 It holds that
83
00;,00;,00;,

sup max
0O (j1,42,33)€{1,...,d}3

le(')‘ < Gy,

where

sup/G3(y)feo(y\ﬂ:)du(y) < (3 < 0.
TEX

2

For a symmetric, positive semi-definite matrix A, we let AZ . (A) be its smallest eigenvalue.

Condition 2 For all x € X, the Fisher information matriz I(go(x),no) is positive definite,
and in fact
Amin = inf Amin(I(g(](-'E)a 770)) > 0.
zeX

With minus the log-likelihood as loss function, the so-called excess risk

i) = - [ 1og[jj] fopd

is the Kullback Leibler information. We will need the following identifiability condition.
Condition 3 For all € > 0, there exists an o > 0, such that

Inf inf  £(6]60(2)) = ce.
[l6—0g(z)ll2>e

Lemma 5.1. Assume Conditions 1, 2, and 3. Then

£(0100(x))

i 1
inf ——>- > —|
X0 — @i~ 3
where e It
1 dK 3AZ .
2 _ - — min
“ = max Lo’ Qg }’ 0T o

A proof is given in Appendix B.

10



5.4 The empirical process

We now specialize to the case where

where (with some abuse of notation)
9(2)" = gs(a)" = (91(@),- .., gr(2)),
gr(x) = g¢, (x) = 2T, teRP, ¢, eRP, r=1,...,k.

We will assume that

sup || 2| oo = sup max, \¢ z| < K.
T€X

We write
0s(2)" = (g5(x)" . 0").

Our parameter space is now

O c W = (1, ot ); sup ¢zl < K, [Inlloc < K} (5.16)

Note that © is in principle (pk + m)-dimensional. The true parameter Jy is assumed to
be an element of ©.

Let us define

L'ﬂ(l‘7 ) = lOg f@(m)()? e(x)T = eﬂ(x)T = (g¢(x)T777T)v ﬁT = (qb{’ ce ¢£a TZT)7
and the empirical process

Vi(9) = % 3 [Lﬂ(mi, Y) - E(Lg(xi,Y)'X _ x)] .

i=1
Condition 4 For the score function s¢(-) we have:

sup [s9(-)[loc < G1(-),
V€O

where G1(+) satisifies some moment conditions to be specified in Lemma 5.2.

Let .
1
S
n -
i=1
and let A2, (%)) be the largest eigenvalue of 3,,.

Condition 5 For a constant Apax < 00, it holds that Apax(Xn) < Amax.

Condition 5 is not really a condition, but to avoid digressions, in what follows we shall not
explicitly give the dependency on Apax(3y). This is appropriate when there is a bound
Amax that does not depend on p or n.

Define

Ao =M, (5.17)
Let Px denote the conditional probability given (X1,...,X,) = (21,...,2,) = X.

11



Lemma 5.2. Assume Conditions 4 and 5. We have for constants c1 and cy depending on
Amax, k, and m, and for oll T > 1,

Vn(ﬁ) - Vn(ﬁ0)|

sup < T,

gr_roryco (16— doll + 1 —moll2) VAo

with Px probability at least

[ TQn)\T
1 —crexp

(ZGl DG ( )>M}>T)\0/(dK)>

Regarding the constants Ao and K, see (5.17) and (5.16), respectively.

The result follows along the lines of Lemma 4 in Tsybakov and van de Geer (2005) by
developing a suitable entropy bound.

5.5 Oracle inequality for the Lasso for non-convex loss functions

We employ the Lasso-type estimator

n k

. N ' 1

9T = (¢T,77) = argmin ~{— E Ly(x;, ;) + A E ||qbr||1} (5.18)
IT=(¢TnT)ed L T ig r=1

We omit in the sequel the dependence of ¥ on \. Note that we consider here a global
minimizer: it may be difficult to compute if the empirical risk n™* 3" | Ly(x;,Y;) is non-
convex in ¥. We then write ||¢||1 = Zle llorl]1. We let
0(@)" = (g5@)", i),
which depends only on the estimate 19, and we denote by

Oo(x)" = (g0 ()", m5)-

We also define the set

Vo (9) — Vi (90)

T = sup

<TXo». (5.19)
or_oromea (16— dolls + 1 = oll2) V Ao

Let
S = {(T,j); ¢r,j 7& 0}7 s = ‘S”

be the active set, i.e. the set of non-zero coefficients, and
5 ={dy; () €T}, T C{1,....p}~.
Condition 6 (Compatibility condition). There exists a constant k > 1, such that for all
& € RPF satisfying
[¢sell1 < 6llosl,

12



it holds that i
lsl3 < K% ¢ Ty

r=1

For ()T = (g(-)T,n"), we use the notation

H ”Qn Zzgr ml Z :
j=1

zlrl

We also write for g(-) = (g1(*), - . - ,gk('))T,

k
1 n
ol = = 33" gk,

=1 r=1
Thus

k
l96lEy, = > &1 Znbr
r=1

Theorem 5.2. (Oracle result for fived design). Assume Conditions 1-3 and 6, and that
A > 2T\ for the estimator in (5.18). Then on T, for the average excess risk (average
Kullback-Leibler loss),

E(B100) + 20\ — Txo) || dsell1 < 8(A + Tho)?c2rs.

A proof is given in Appendix B. The probability of the set 7 is large, assuming Conditions
4 and 5. In the case of FMR models, this is shown in detail by Lemma 5.3 below.

The oracle inequality of Theorem 5.2 has the following well-known interpretation. First,
we obtain

£(0160) < 8(\+ Tr)?c2r?s.

that is, the average Kullback-Leibler risk is of the order O(sA3M2) = O(slog(n)*/n) (see
(5.17) and the assumption on M, in Lemma 5.3 below) which is up to the factor log(n)?
the optimal convergence rate if one would know the s non-zero coefficients. As a second
implication we obtain

[ fselli < 4\ + Tho)c2rs.

saying that the noise components in S have small estimated values (e.g. its ¢;-norm
converges to zero at rate O(s\g)).

5.6 FMR models

In the finite mixture of regressions model from (2.2) with & components, the parameter
is 97 = (¢7,n") = (g7, log p1,...,log pr,logm1,...,log Tx_1), where the p, = o} are the
inverse standard deviations in mixture component r and the 7, are the mixture coeffi-
cients. We let © C {ll9lcc < K, ||logplloc < K,—K <logm <0,...,—K <logmi_1 <
0, ¢ 17, < 1}. The log-likelihood is

lo(y) = log [Xk: T Prp <pry - gr>] :

r=1
In this case d = 3k — 1.
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Proposition 5.1. For fized design FMR models as in (2.2) with © as above, Conditions
1,2 and 3 are met, for appropriate C3, Apin and {ac}, depending on k and K. Also
Condition 4 holds, with

Gi(y) = eyl + K.

Proof. This follows from straightforward calculations.

O]

In order to show that the probability for the set 7 is large, we invoke Lemma 5.2 and the
following result.

Lemma 5.3. For fized design FMR models as in (2.2) with © as above: for some constants

c4, ¢c5 and cg, depending on k and K, and for M, = c4\/logn and n > cg, the following
holds:

1 1

< ZGl AG1(Y;) > My /(dK)} > e Og”) < -

n

A proof is given in Appendix B.

Hence, the oracle result in Theorem 5.2 for our ¢1-norm penalized estimator in the FMR
model holds on a set 7, and this set 7 has large probability due to Lemma 5.2 and Lemma
5.3.

6 Numerical optimization

We will present a generalized EM (GEM) algorithm for optimizing the criterion in (3.9)
in Section 6.1. In Section 6.2 we will discuss numerical convergence properties of the
algorithm. For the convex penalty (v = 0) function we prove convergence to a stationary
point.

6.1 GEM algorithm for optimization

Maximization of the log-likelihood of a mixture density is often done using the traditional
EM algorithm of Dempster et al. (1977). Consider the complete log-likelihood:

0:(0;Y,A) ZZAwlog <re 2 (prYim X[ ¢r) ) + Ay, log(m,),

i=1 r=1

where A; , are unobserved, imaginary indicator variables showing the component-membership
of the ith observation in the FMR model. The expected complete (scaled) negative log-
likelihood is then:

QW) = —n'E[.(6;Y,A)|Y, 0],

and the expected complete penalized negative log-likelihood (scaled) is
k
Qpen(9’6/> = Q010" + )‘ZWNWTHI-
r=1

14



The EM-algorithm works by iterating between the E- and M-step. Denote the parameter
value at iteration m by 8™ (m =0,1,2,...), where (0 is a vector of starting values.

E-Step: Compute Q(9|é(m)) or equivalently

(m) (m) _,( >Y XT¢("”))2

5 = E[A;|Y, 0] = T P =1,...,k i=1,...,
774,7‘ [ 74,7" ] Zk_ 1Tr’,(‘m)pgnm)e_%(p’(rm)y;_xzwd)gm))Q r (3 n
r=

Generalized M-Step: Improve Qpe,(0]0™) w.r.t 6 € ©.

a) Improvement with respect to m:

fix ¢ at the present value ¢("™ and improve

122%10% ) +AZF”H¢”‘)H1 (6.20)

i=1 r=1

with respect to the probability simplex
k
{m;m, >0forr=1,...,k and Zm: 1}

m+1) _ i i
n

by a feasible descent step. Denote by 7( which is a feasible point.

(m+1)

As the simplex is convex, 7 — 7(m) is a feasible descent direction (Bertsekas

(1995)). Therefore we update m as

AmFD) — 2(m) | ym) (z(mt1) _ 1 (m)y

where t(™) € (0, 1]. In practice t(™) is chosen to be the largest value in the grid
{6%; k =0,1,2,...} (0 < 6 < 1) such that (6.20) is decreased. In our examples
d = 0.1 worked well. The Limited Minimization Rule or the Armijo Rule (Bertsekas
(1995)) for choosing t™ are also possible.

b) Minimization with respect to ¢ and p:

A simple calculation shows, that the M-Step decouples for each component into &
distinct optimization problems of the form

S e 12y M (met) _
Y =X, 2 (=) ol r=1k o (621)

—log(pr) +

with
nr:Z’%,m Vi, X;) = VA (i, X0), r=1,... k.
i=1

Problem (6.21) has the same form as (3.7): in particular, it involves convex optimiza-
tion. Closed-form coordinate updates can easily be computed for each component r
(r=1,...,k) using Proposition 3.1:

7, Xo™) + (7, Xo{™)2 4 4|7 |20,

(m+1)
p =
' 2[|Y[?

i
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[an)

if |S;] < nA (W(mﬂ))’y,
¢7(~?+1) - ( )\< £m+1 ) Sj) /||XJ||2 it S; > nA (Wﬁmﬂ))’Y’

NS JIENE Sy < —na (D)

ey ) ey

where S is defined as

P
Sj = —pim (X;,Y) +Z¢m+1 js Xs) +Z¢gfﬁ)<XJ Xs)

§<J s>j

and j=1,...,p

Because we only improve Qpe,(0]0(™), see M-step a) and b), this is a generalized EM
(GEM) algorithm. We call it the block coordinate descent generalized EM algorithm
(BCD-GEM). Its numerical properties are discussed in Section 6.2.

Remark 6.1. For the convez penalty function with v = 0, a minimization with respect to

(m+1) _ i1 %
n

7 in M-step a) is achieved with , 1.e. using t™) = 1. Then, our M-Step

corresponds to exact coordinate-wise minimization of Qpen(00™).

6.2 Numerical Convergence of the BCD-GEM algorithm

We are addressing here convergence properties of BCD-GEM algorithm described in Sec-
tion 6.1. A detailed account of the convergence properties of the EM algorithm in a general
setting has been given by Wu (1983). Under regularity conditions including differentiabil-
ity and continuity, convergence to stationary points is proofed for the EM algorithm. For
the GEM algorithm similar statements are true under conditions which are often hard to
verify.

As a GEM algorithm, our BCD-GEM algorithm has the descent property which means,
that the criterion function is reduced in each iteration,

—n 0, A (OUD) < a1 (60). (6.22)
Since — 16; e)n ,(0) is bounded from below (Proposition 3.2), the following result holds.

Proposition 6.1. For the BCD-GEM algorithm, 10

penA(G(m)) decreases monotoni-

cally to some value ¢ > —oo.

In Remark 6.1 we noted, that for the convex penalty function with v = 0, the M-Step of
the algorithm corresponds to exact coordinate-wise minimization of Qpe,(00(™). In this
case convergence to a stationary point can be shown.

Theorem 6.1. Consider the BCD-GEM algorithm for the criterion function in (5.9) with
v = 0. Then, every cluster point 6 € © of the sequence {8(™;m = 0,1,2,...}, generated
by the BCD-GEM algorithm, is a stationary point of the criterion function in (3.9).

A proof is given in Appendix C. It uses the crucial facts that Qpen(0]6') is a convex
function in € and that it is strictly convex in each coordinate of 6.
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7 Simulations and real data example

7.1 Simulations

We consider four different simulation setups. Simulation scenario 1 compares the per-
formance of the unpenalized MLE (Flexmix, according to the name of the R-package)
with our estimator from Section 3.2 (FMRLasso) and Section 3.3 (FMRAdapt) in a situ-
ation where the total number of noise covariates grows successively; Simulation 2 explores
sparsity; Simulation 3 compares cross-validation and BIC; and Simulation 4 compares the
different penalty functions with the parameters v = 0,1/2, 1. For every setting, the results
are based on 100 independent simulation runs.

All simulations are based on Gaussian FMR models as in (2.2): the coefficients 7, 5, o,
and the sample size n are specified below. The covariate X is generated from a multivariate
normal distribution with mean 0 and covariance structure as specified below.

Unless otherwise specified, the penalty with v = 1 is used in all simulations. As explored
empirically in Simulation 4, in case of balanced problems (approximately equal 7,), the
FMRLasso performs similarly for all three penalties. In unbalanced situations the best
results are typically achieved with v = 1. In addition, unless otherwise specified the true
number of components k is assumed to be known.

For all models, training-, validation- and test data are generated of equal size n. The esti-
mators are computed on the training data, with the tuning parameter (e.g. A) selected by
minimizing twice the negative log-likelihood (log-likelihood loss) on the validation data. As
performance measure, the predictive log-likelihood loss (twice the negative log-likelihood)
of the selected model is computed on the test data.

Regarding variable selection, we count a co-variable X) as selected if Br,j = ( for at least
one r € {1,...,k}. To assess the performance of FMRLasso on recovering the sparsity
structure, we report the number of truly selected covariates (True Positives) and falsely
selected covariates (False Positives).

Obviously, the performances depend on the signal to noise ratio (SNR) which we define
for an FMR model as:

SNR — Var(Y) _ v (BT Cov(X)B, + 0?)
N Var(Y‘ﬁr:();T:L...,k‘) N Zleﬂ-TUz ’

where the last inequality follows since E[X] = 0.

7.1.1 Simulation 1

We consider five different FMR models: M1, M2, M3, M4 and M5. The parameters
(7k, Bk, 0k ), the sample size n of the training-, validation- and test-data, the correlation
structure of covariates corry,, = corr(X;, Xp,) and the signal to noise ratio (SNR) are
specified in Table 1. Models M1, M2, M3 and M5 have two components and five active
covariates, whereas model M4 has three components and six active covariates. M1, M2
and M3 differ only in their variances o7, o5 and hence have different signal to noise
ratios. Model M5 has a non-diagonal covariance structure. Furthermore in model M5 the

variances o2, o5 are tuned to achieve the same signal to noise ratio as in model M1.
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We compare the performance of the maximum likelihood estimator (MLE), the FMRLasso
and the FMRAdapt in a situation where the number of noise covariates grows successively.
For the models M1, M2, M3, M5 with two components we start with p;,; = 5 (no noise
covariates) and go up to pyr = 125 (120 noise covariates). For the three component
model M4 we start with p;x = 6 (no noise covariates) and go up to pior = 155 (149 noise
covariates).

The box-plots in Figures 1 - 5 of the predictive log-likelihood loss, denoted by Error, the
True Positives (TP) and the False Positives (FP) over 100 simulation runs summarize the
results for the different models. We read off from the box-plots that the MLE performs
very badly when we add noise covariates. On the other hand our penalized estimators
remain stable. For example, for M1 the MLE with p;,; = 20 performs worse than the
FMRLasso with p;y = 125, or for M4 the MLE with p;»; = 10 performs worse than the
FMRLasso with p;r = 75. Impressive is also the huge gain of the FMRAdapt method
over FMRLasso in terms of log-likelihood loss and false positives.

7.1.2 Simulation 2

In this Section we explore the sparsity properties of the FMRLasso. The model specifi-
cations are given in Table 2. Consider the ratio of pget : n @ pror. The total number of
covariates po¢ grows faster than the number of observations n and the number of active
covariates pget: when pior is doubled, pue+ is raised by one and n is raised by fifty from
model to model. In particular, we obtain a series of models which gets “sparser” as n
grows (larger ratio n/pgc). In order to compare the performance of the FMRLasso we
report the True Positive Rate (TPR) and the False Positive Rate (FPR) defined as:

TPR — #truly selected covariates

#active covariates

FPR — #falsely selected covariates

#inactive covariates

These numbers are reported in Figure 6. We see that the False Positive Rate approaches
zero for sparser models indicating that the FMRLasso recovers the true model better in
sparser settings regardless of the large number of noise covariates.

M1 M2 M3 M4 M5
n 100 100 100 150 100
061 (3,3,3,3,3) (3,3,3,3,3) (3,3,3,3,3) (3,3,0,0,0,0) (3,3,3,3,3)
By | (11-1,11)  (-1,-1-1011)  (-10-1-1,-1-1)  (0,012,-2,0,0) (-1,-1,-1,-1,-1)
03 - - - (0,0,0,0,-3,2) -
o 0.5, 0.5 1,1 2,2 0.5,0.5,0.5  0.95, 0.95
T 0.5, 0.5 0.5, 0.5 0.5, 0.5 1/3,1/3,1/3 0.5, 0.5
COTTIm 5l,m 5l,m 5l,m 5l,m 0.8|lfm|
SNR 101 26 12.1 53 101

Table 1: Models for simulation 1.
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Figure 1: Simulation 1, Model M1. Top: predictive log-likelihood loss (Error) for MLE,
FMRLasso, FMRAdapt. Bottom: False Positives (FP) and True Positives (TP) for FM-
RLasso and FMRAdapt.

Pact | 3 4 5 6 7 8 9
n |50 100 150 200 250 300 350
Piot | 1020 40 80 160 320 640
b1 (3,3,3,0,0,...)

B (-1,-1,-1,0,0,...)

o 0.5, 0.5

T 0.5, 0.5

Table 2: Series of models for simulation 2 which gets “sparser” as n grows: when ps is

doubled, pycr is raised

by one and n is raised by fifty from model to model.

7.1.3 Simulation 3

So far we regarded the number k of components as given, while we have chosen an optimal
Aopt by minimizing the negative log-likelihood loss on validation data. In this section we
compare the performance of 10-fold cross-validation and the BIC criterion presented in
Section 3.4 for selecting the tuning parameters £ and A\. We use model M1 of Section 7.1.1
with pior = 25,50, 75. For each of these models we tune the FMRLasso estimator according
to the following strategies:

(1) Assume the number of components is given (k

= 2). Choose the optimal tuning

parameter A, using 10-fold cross-validation.

(2) Assume the number of components is given (k = 2). Choose A,y by minimizing the
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Figure 6: Simulation 2 compares the performance of the FMRLasso for a series of models
which gets “sparser” as the sample size grows. Top: True Positive Rate (TPR). Bottom:
False Positive Rate (FPR) over 100 simulation runs.

BIC criterion (3.13).

(3) Choose the number of components k € {1,2,3} and A, by minimizing the BIC
criterion (3.13).

The results of this simulation are presented in Figure 7, where box-plots of the log-
likelihood loss (Error) are shown. For the model with p;,; = 25 all three strategies perform
equally well. The BIC criterion in strategy (3) chooses always k = 2. For the model with
Dot = D0 the BIC strategies (2) and (3) are superior over cross-validation. Strategy (3)
chooses in ninety-six simulation runs £ = 2 and in four runs k = 3. With pi,y = 75 again
the BIC strategies (2) and (3) perform better than cross-validation. Strategy (3) chooses
once k = 1, ninety-five times k = 2, and four times k = 3.

7.1.4 Simulation 4

In the preceding simulations we always used the value v = 1 in the penalty term of
the FMRLasso estimator (3.9). In this Section we compare the FMRLasso for different
values v = 0,1/2,1. First we compute the FMRLasso for v = 0,1/2,1 on model M1
of Section 7.1.1 with p;o,r = 50. Then we do the same calculations for an “unbalanced”
version of this model with m; = 0.3 and w9 = 0.7.

In Figure 8 the box-plots of the log-likelihood loss (Error), the False Positives (FP) and
the True Positives (T'P) over 100 simulation runs are shown. We see that the FMRLasso
performs similarly for v = 0,1/2,1. Nevertheless the value v = 1 is slightly preferable in
the “unbalanced” setup.
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Figure 8: Simulation 4 compares the FMRLasso for different values v = 0,1/2,1. The
upper row of the panels shows the box-plots of the log-likelihood loss (Error), the False
Positives (FP) and the True Positives ( TP) for model M1 with p;or = 50 and 71 = 73 = 0.5.
The lower row of the panels shows the same box-plots for an “unbalanced” version of model

M1 with m = 0.3 and m = 0.7.

7.2 Real data example

We now apply the FMRLasso to a data set about riboflavin (vitamin Bj) production
by Bacillus Subtilis. The real-valued respor21%e variable is the logarithm of the riboflavin



production rate. The data has been kindly provided by DSM (Switzerland). There are
p = 4088 covariates (genes) measuring the logarithm of the expression level of 4088 genes.
There are measurements of n = 146 genetically engineered mutants of Bacillus Subtilis.
The population seems to be rather heterogenous as there are different strains of Bacillus
Subtilis which are cultured under different fermentation conditions. We do not know
the different homogeneity subgroups. For this reason a FMR model with more than one
component might be more appropriate than a simple linear regression model.

We compute the FMRLasso estimator for £k = 1,...,6 components. To keep the computa-
tional effort reasonable we use only the 100 covariates (genes) exhibiting the highest em-
pirical variances. We choose the optimal tuning parameter A,,; by 10-fold cross-validation
(using the log-likelihood loss). As a result we get six different estimators which we com-
pare according to their cross-validated log-likelihood loss (C'V Error). These numbers are
plotted in Figure 9. The estimator with three components performs clearly best, resulting
in a 17% improvement in prediction over a (non-mixture) linear model, and it selects 46
genes. In Figure 10 the coefficients of the twenty most important genes, ordered according
to 23:1 |Br7j‘, are shown. The important variables do not show opposite signs of the
estimated regression coefficients among the three different mixture components. However,
it happens that some covariates (genes) exhibit a strong effect in one or two mixture
components but none in the remaining other components. Finally, for comparison, the
one-component (non-mixture) model selects 26 genes where 22 selected genes from the
one-component model are also selected in the the three-component model.

CV Error
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10 20 30 40 50
Nr. components
Figure 9: Cross-validated negative log-likelihood loss (C'V Error) for the FMRLasso esti-

mator when varying over different numbers of components.

8 Discussion

We have presented an /¢i-penalized estimator for a finite mixture of high-dimensional
Gaussian regressions where the number of covariates may greatly exceed sample size.
Such a model and the corresponding Lasso-type estimator are useful to blindly account
for often encountered inhomogeneity of high-dimensional data. On a high-dimensional real
data example, we demonstrate a 17% gain in prediction accuracy over a (non-mixture)
linear model.

The computation and mathematical analysis in such a high-dimensional mixture model is
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Figure 10: Coefficients of the twenty most important genes, ordered according to
>3 B, for the prediction optimal model with three components.

challenging due to the non-convex behavior of the negative log-likelihood. Regarding the
computation, a simple reparameterization is beneficial and the £1-penalty term makes the
optimization problem numerically better behaved. We develop an efficient generalized EM-
algorithm and we prove its numerical convergence to a stationary point. Regarding the
statistical properties, besides standard low-dimensional asymptotics, we present a non-
asymptotic oracle inequality for the Lasso-type estimator in a high-dimensional setting
with general, non-convex but smooth loss functions. The mathematical arguments are
different than what is typically used for convex losses.

A  Proofs for Section 4

Proof of Theorem 4.1. The regularity assumptions (A)-(C) of Fan and Li (2001) are ful-
filled for finite mixtures of Gaussians (Lehmann (1983), page 442). Therefore, the Theorem
follows from Theorem 1 of Fan and Li (2001). O

Proof of Theorem 4.2. Without loss of generality consider a two class mixture with k = 2.

Assertion 1. Let § be a root-n consistent local minimizer of —n_lﬁadapt(G) (construction
as in Fan and Li (2001)).

For all (r, j) € S from consistency of § we easily see that P[(r,j) € §] — 1. It then remains
to show that for all (r,j) € S¢, P[(r,j) € S — 1. Assume the contrary, i.e. w.l.o.g there
isase{l,...,p} with ¢1 s = 0 such that ¢; s # 0 with non-vanishing probability.

By using Taylor’s theorem there exists a (random) vector 0 on the line segment between
0y and 6 such that

l agadapt ’ .
n 8¢1,s 0

1 0¢ 1 o - 1 /4 T1 o0 A R
- - - _ . 2 0 (h—0,) — N2V
IR r (0 00) +3 (9 90) L (9 90) N Twi ssgn(brs).
—~ -~ —_————
1) (2) (3)
Now, term (1) is of order Op(—L) (central limit theorem). Term (2) is of order Op(1)
) is of order Op(1) (law of large numbers and regularity

=

(law of large numbers). Term (
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condition on 3rd derivatives). Therefore we have

1 Oladapt _ 1
0 Bor, 0= PR

As 6 is root-n consistent we get

) + (op(l) + (é - eo)T op(1)> (é - 90) AR wyssgn(brs).

1 0adapt 1 1 . -
- 5¢1,: g = OP(ﬁ) +(0p(1) +0p(1)Op(1)) Op(—=) = M wiss9n(1,s)
1 A .
= % (OP(D - jﬁfﬂwl,ss.gn(d)l,s)) .
From the assumption on the initial estimator we have:
n—)\w oA nA — 00 as nA — 00
Vi T ke Op(1) '

Therefore the second term in the bracket dominates the first and the probability of the

event {sgn (%% é> = —sgn((ﬁs) #+ O} tends to 1. But this contradicts the assump-

] g ; L 3 : 1 8eadapt L
tion that € is a local minimizer (i.e. w00 |9 =0).

Asse@tion 2. Write 6 = (0g,0sc). From part 1) it follows that with probability tending to
one fg is a root-n local minimizer of —nilﬂadapt (0s,0).

By using a Taylor expansion:

_1/ _1/ 1// A 1L/s Tl/// 2
0= ﬁzadaptbs B Eﬁ |60,s + ﬁﬁ |90,S (95 - 00,S> T 5 (GS B HO’S) Ee |6~S <GS B GO’S)
—_———
W(l) (2) 3)
YA i ges wildrl = v (L= 77 0 s wajld,]
wi,559n(¢1,5)
Y (1 — 7)Y wz,s59n(2,5)
0
0

Now term (1) is of order —Ig(6p) + op(1) (law of large numbers); term (2) is of order
op(1) (consistency); and term (3) is of order Op(1) (law of large numbers and regularity
condition on 3rd derivatives). Therefore we have

Vi gy + (~Ts(60) + 0p (1)) V(B — Bo.5) ~ VIAOp(1) =0

or
1

%m@o,s (A.23)

(—Is(60) + op(1)) Vn(fs — 6o,5) — VnAOp(1) = —

Notice that ﬁﬂ’]go,s ~® N(0,15(6p)) by the central limit theorem. Furthermore \/n\ =
o(1) as A = o(n~1/?).

Therefore /n(fs — 6o.5) ~¢ N(0, Is(8g)) follows from equation (A.23). O
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B Proofs for Section 5

Proof of Theorem 5.1. On T, defined in (5.19) with Ao = c44/log*(n)/n (¢4 as in Lemma
5.3; i.e. M, = cqy/log(n) in (5.17)), we have the basic inequality

E0160) + Mdlls < T | (16 — dolls + 17 — noll2) v Ao] T Mldolls + £(6ol60)-

Note that ||/ — noll2 < 2K and E(#y|fo) = 0. Hence, for n sufficiently large,

£(0160) + Nl TAo(||é — doll1 + 2K) + A|doll1 + E(8o|60)

<
< T8l + lIdoll + 2K) + Aol + E(6o]60),

and therefore also
£(0160) + (A — TXo)||dll1 < TAo2K + (A +TXo)|boll1 + E(0o|6).

It holds that A > 2T \g (since A = \/10g4 (n)/n for some C > 0 sufficiently large),

Ao = O(y/log*(n)/n) and A = log*(n , and due to the assumption about ||¢ol|1

we obtain on the set 7 that 5(¢9|90) — 5(90|90) =0 (n — 00). Finally, the set 7 has large
probability, as shown by Lemma 5.2 and using Proposition 5.1 and Lemma 5.3 for FMR
models. O

Proof of Lemma 5.1. 1t is clear that

E£(0160) = (0 — 60)"1(60) (0 — 60)/2 + 4,

where 10— 6 ||3 Py
— Yoll1 0
rgl < ——= su max |\——————— d
’ 9‘ - 6 /eg(gjlyjzds 89]189]26933 f90 a
d3/203
16 — 6ol13-
Hence

E(0100(x)) = 116 — o (x) |[3AT/2 — d*/*C510 — 90($)||§/6-

Now, apply the auxiliary lemma below, with Kg =dK? A? = mm /2, and
C = d*?Cy/6. O

Auwziliary Lemma. Let h : [— Ky, Ko] — [0,00) have the following properties:
(i) V e >0 3 a. > 0 such that inf. |, <g, h(2) > ac,
(ii)) 3 A >0, C >0, such that ¥V |z| < Ko, h(z) > A?2% — Oz|3.

Then V' |z| < Ky,
h(z) > 2*/Cg,

where

cs —max[ !

50 Qg

K? A?
0:|, 50:%.
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Proof. If eg > Ko, we have h(z) > A%22/2 for all |z| < K.
If g9 < Ko and |z| < g, we also have h(z) > (A? — g9C)z? > A%22/2.

If ep < Ko and g < |z| < Ko, we have h(z2) > a., = Kjae,/KE > |2|?a:, / KE.

Proof of Theorem 5.2. On T

E(0100) + Mol < Tho |16 — ¢oll1 + 11— moll2) V Ao | + Algoll1 + E(Bo|6o).

By Lemma 5.1, o R
£(0160) > 116 — 6oll3, /<5

and 5_(00’90) = 0.

Case 1 Suppose that
¢ — doll1 + (11 — noll2 < Ao

Then we find o X B
E(0160) < TN+ Mo — doll1 + E(6o|00)

< (A + TAo)Xo.

Case 2 Suppose that )
¢ — ¢ollr + 11 — moll2 = Ao,

and that R
TXoll) = moll2 = (A +TXo)ll¢s — (do)sll-
Then we get
E(0]00) + (A — To)||dsell1 < 2T ol — noll2
< ATNg + 17— moll3/ (2c5)
< AT?NR + £(060) /2.
So then

E(0]60) + 2(X — Tho)lldsellr < 8T*Ajes.
Case 3 Suppose that )
¢ = dollr + 11 — moll2 = Ao,

and that R
T o) — noll2 < (A +TXo)llés — (¢0)sl1-

Then we have o ) )
E(0]60) + (A —TXo)||dsell1 < 2(X+ TXo)lps — doll1-

So then X R
|sellt < 6[los — (¢0)s]l1-

We can then apply the compatibility condition to gg — ¢p. This gives
E(0180) + (X — Tho)|dsellt < 20\ + Tho)V/s|lds — dolla-

<2(A +TX0)vslg = gollq,
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< AN+ Tro)?c2r2s + £(6]60) /2.

So we arrive at o R
E£(0]60) + 2(A = Tho)lldsell1 < 8(A+ To)’cgr’s.

O]

Proof of Lemma 5.3. Let Z be a standard normal random variable. Then by straightfor-
ward computations, for all M > 0,

EIZN{|Z| > M} < 2exp[-M?/2],

and
E|Z2{|Z| > M} < (M + 2) exp[—M?/2].

Thus, for n independent copies Z1,...,Z, of Z, and M = 2+/logn,

< Z Zi{|Z) > M) > 410%”)

1 « 2logn
Pl— Zi\{|Z;| > M} — E|lZI{|Z| > M
(nD W|Z| > M} - BIZI{|Z] > M} > =2 )

i=1

- nE|Z|2{|Z| > M}

2
< —
- 4(logn)? —n

The result follows from this, as

G1(Y) = XY + K,

and Y has a normal mixture distribution.

C Proofs for Sections 3 and 6

Proof of Proposition 3.2. We restrict ourself to a two class mixture with k = 2. Consider
the function u(&) defined as

u(€) = exp(€l),(€))

2 2
n M 1 M Al A LBl
x H 7r—e 291 +(1—7m)—e ?72 e 1 en 2 5 (C24)
02

=1

We will show that u(€) is bounded from above on € = (01,09, 81, B2, 7) € = R2 ) x R? x

[0,1]. Then clearly —n 16;2)”(9) is bounded from below on 6§ = (p1, p2, P1,¢2,7) € O =
RZ, x R% x (0,1).

The critical point for unboundedness is if we choose for an arbitrary sample point i €

1,...,n a Bf such that Y; — X/8f = 0 and let o0y — 0. Without the penalty term

exp(—% ”ifl”l) in (C.24) the function would tend to infinity as 1 — 0. But as ¥; # 0 for
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PR
n

g1

allie€1,...,n, §f cannot be zero and therefore exp(— ) forces u(&) to tend to 0 as

o1 — 0.

Let’s give a more formal proof for boundedness of u(§). Choose a small 0 < €7 < min Yf
and €0 > 0. As Y; #£ 0, i = 1...n, there exists a small constant m > 0 such that

0 < minY? — 1 < (V; — X;61)? (C.25)
holds for all i = 1...n as long as ||1]/1 < m and
0<minY? —e; < (V; — X;f2)? (C.26)

holds for all i = 1...n as long as ||2|]1 < m.

Furthermore there exists a small constant ¢ > 0 such that

1 7(minYi2—51) 1 A m

202 Thnoy
—e i <eg and —e "7 < g9 (C.27)
01 01

holds for all 0 < o1 < § and
min -275

L <= | am
—e 2 <g and —e "2 < g9 (C.28)
09 02

holds for all 0 < o9 < 4.

Define the set K = {(01,02, 01,02, 7) € Z; 6 < 01,02}. Now u() is trivially bounded on
K. From the construction of K and equations (C.25)-(C.28) we easily see that u(£) is also
bounded on K¢ and therefore bounded on =.

O]

Proof of Theorem 6.1. The density of the complete data is given by
Ai,r

fo(Y, Al0) = HH < eé(pm—m»?) ,

i=1r=1

whereas the density of the observed data is given by

Fors(Y10) = HZm e s

i=1r=1

0= (D1, oy ks Ply s Pls Ty Th1) € © = REP 5 RE (5 TT ¢ REPFEH(E-D) — RD

MI={mmn>0forr=1,...,k—1 and Zﬂ,«<1}, 7Tk:1—Z7T7«.

Furthermore the conditional density of the complete data given the observed data is given
by k(Y,AlY,0) = fo(Y,A|0)/ fors(Y]0). Then, the penalized negative log-likelihood fulfills
the equation

Vpen(0) = =075, (0) = —n~" log fups(Y']6) +/\Z|\¢rlll = Qpen(010")—H(0]60") (C.29)
r=1
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where Qpen(0]6') = —n'E[log f.(Y, A|0)|Y, 6] + A% ||¢w]|1 (compare Section 6.1) and
H(0]0') = —n'Ellog k(Y, A|Y, 0)|Y, ).

By Jensen’s inequality we get the following important relationship:
H00) > H@0) vV 6€86, (C.30)

see also Wu (1983). Qpen(0]0") and H(6]0") are continuous functions in 6 and ¢'. If we think
of them as functions in ¢ with fixed § we write also Qpen /() and Hy(0). Furthermore
Qpen,o’(#) is a convex function in # and strictly convex in each coordinate of §. As a last

preparation we give a definition of a stationary point for non-differentiable functions (see
also Tseng (2001)):

Definition C.1. Let u be a function defined on a open set U C RP. x € U is called
stationary point if u'(x;d) = limy o M >0 VdecRP.
We are now ready to start with the proof which is inspired by Bertsekas (1995).

Proof: Let 0™ = 6™ be the sequence generated by the BCD-GEM algorithm. We need to
prove that for a converging subsequence 8™ — 6 € ©, § is a stationary point of vpe,(6).
Taking directional derivatives of equation (C.29) yields

V;en<é; d) = leemé(é; d) - <V H@(é)a d>
Note that 7 Hz(f) = 0 as Hy(z) is minimized for # = § (equation (C.30)). Therefore it

remains to show that Q; ong(0:d) >0 for all directions d. Let

m __ m+1 m+1 pgm m
Zi —(91 ""’H’i ’i+1""79D)‘

Using the definition of the algorithm we have:
Qpen,om (™) > Qpengm (41") > ... > Qpen,om (215 1) > Qpen,om (07 H). (C.31)
Additionally from the properties of GEM (equation (C.29) and (C.30)) we have:
Vpen (0°) > Vpen(01) > ... > 1pen(0™) > vpen (0™T1). (C.32)

Equation (C.32) and the converging subsequence imply that the sequence {vpe, (0™);m =

0,1,2,...} converges to Vpen(#). Further we have:

0< Qpen,@m (em) - Qpen,@m (9m+1) = Vpen(em) - Vpen(9m+1) + Hym (Gm) — Hpm (9m+1)
<0

Vpen (0™) — Vpen (0™ 11) . (C.33)

—Vpen (0)—Vpen (0)=0

IN

We conclude that the sequence {Qpen,om (™) — Qpen,om (0™t m =0,1,2,...} converges
to zero.

We now show that {6" 1 07"} converges to zero (j — 00). Assume the contrary, in
particular that {27 — 6™} does not converge to 0. Let ™ = ||,/ — ™i||. Without
loss of generality (by restricting to a subsequence) we may assume that there exists some

Z;nj _o™j

7 > 0 such that v™ > 7 for all j. Let s]7 = o —

mi .
. s; 7 differs from zero only along

the first component. As s]" belongs to a compact set (Hs;n’ || = 1) we may assume that

31



sTj converges to 5;. Let us fix some ¢ € [0,1]. Notice that 0 < &5 < ~". Therefore,
0" + 573717% lies on the segment joining 6™/ and sz, and belongs to © because © is
convex. As Qe gm;i(.) is convex and 2" minimizes this function over all values that

differ from ™ along the first coordinate, we obtain

Qpen,emj (z;nj) = Qpen,emj (emj + ’ij 571nj) < Qpenﬁmj (ij + E:VSTJ) < Qpenﬁmj (emj)

(C.34)
From equation (C.31) and (C.34) we conclude
(C.34)
s . _omyy N s mj
0 < Qpen,emj (9 J) - Qpen,emf (0 T+ evsy ) < Qpenﬁm]' (9 ]) - Qpenﬂmj (Zl )
(C.31)
—~

= Qpenﬁmj (emj) - Qpenﬂmj (ijJrl)'

Using (C.33) and continuity of Qpen (y) in both arguments z and y we conclude by taking
the limit j — oo:

Queng(@+e751) = Qpeng(f) Vee[0,1].

Since 4$1 # 0 this contradicts the strict convexity of Q) x1,02,...,0p) as a function

pen,é( ‘ .
of the first block-coordinate. This contradiction establishes that z; converges to 6.

From the definition of the algorithm we have:
Qpen(z;nj 160™7) < Qpen (21, H;nj, . ,ng 107) V.
By continuity and taking the limit 7 — oo we obtain:

Qpemg(é) < Qpen,é(xh ég, .. ,ép) V.

Repeating the argument we conclude that # is a coordinatewise minimum. Therefore,
following Tseng (2001), 6 is easily seen to be a stationary point of Q. 5(.), in particular
Q;en (05 d) > 0 for all directions d.

O]

References

Bertsekas, D. (1995) Nonlinear programming. Belmont, MA: Athena Scientific.

Bickel, P., Ritov, Y. and Tsybakov, A. (2007) Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, to appear.

Dempster, A., Laird, N. and Rubin, D. (1977) Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.

Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American Statistical Association, 96, 1348-1360.

Friedman, J., Hastie, T., Hoefling, H. and Tibshirani, R. (2007) Pathwise coordinate
optimization. Annals of Applied Statistics, 1, 302-332.

32



Fu, W. J. (1998) Penalized regression: the bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7, 397-416.

Greenshtein, E. and Ritov, Y. (2004) Persistence in high-dimensional predictor selection
and the virtue of over-parametrization. Bernoulli, 10, 971-988.

Huang, J., Ma, S. and Zhang, C.-H. (2008) Adaptive Lasso for sparse high-dimensional
regression models. Statista Sinica, 18, 1603-1618.

Khalili, A. and Chen, J. (2007) Variable selection in finite mixture of regression models.
Journal of the American Statistical Association, 102, 1025-1038.

Lehmann, E. (1983) Theory of Point Estimation. Pacific Grove, CA: Wadsworth and
Brooks/Cole.

McLachlan and Peel (2000) Finite mizture models. Wiley, New York.

Meier, L., van de Geer, S. and Biithlmann, P. (2008) The group lasso for logistic regression.
Journal of the Royal Statistical Society, Series B, 70, 53-71.

Meinshausen, N. and Biithlmann, P. (2006) High dimensional graphs and variable selection
with the lasso. Annals of Statistics, 34, 1436—1462.

Pan, W. and Shen, X. (2007) Penalized model-based clustering with application to variable
selection. Journal of Machine Learning Research, 8, 1145-1164.

Park, T. and Casella, G. (2008) The bayesian lasso. Journal of the American Statistical
Association, 103, 681-686.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 58, 267—288.

Tseng, P. (2001) Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 109, 475-494.

Tsybakov, A. and van de Geer, S. (2005) Square root penalty: adaptation to the margin
in classification and in edge estimation. Annals of Statistics, 33, 1203—1224.

van de Geer, S. (2008) High-dimensional generalized linear models and the lasso. Annals
of Statistics, 36, 614-645.

van der Vaart, A. (2007) Asymptotic Statistics. Cambridge University Press.

Wu, C. (1983) On the convergence properties of the em algorithm. Annals of Statistics,
11.

Zhao, P. and Yu, B. (2006) On model selection consistency of lasso. Journal of Machine
Learning Research, 7, 2541-2563.

Zhou, S., van de Geer, S. and Biithlmann, P. (2009) Adaptive Lasso for high dimensional
regression and Gaussian graphical modeling. Arziv preprint math.ST/0903.2515.

Zou, H. (2006) The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101, 1418-1429.

33



