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Abstract

We consider a finite mixture of regressions (FMR) model for high-dimensional in-
homogeneous data where the number of covariates may be much larger than sample
size. We propose an `1-penalized maximum likelihood estimator, in an appropriate
parameterization, and we develop an efficient EM-algorithm for numerical optimiza-
tion with provable convergence properties. Our penalized estimator is numerically
better posed (e.g. boundedness of the criterion function) than unpenalized maximum
likelihood estimation, and it allows for effective statistical regularization including
variable selection. We also present some asymptotic theory and oracle inequalities:
due to non-convexity of the negative log-likelihood function, different mathematical
arguments are needed than for problems with convex losses. Finally, we apply the
new method to both simulated and real data.

1 Introduction

In applied statistics, a tremendous amount of applications deal with relating a random
response variable Y to a set of explanatory variables or covariates X = (X(1), . . . , X(p))
through a regression-type model. The homogeneity assumption that the regression coef-
ficients are the same for different observations (Y1, X1), . . . , (Yn, Xn) is often inadequate.
Parameters may change for different subgroups of observations. Such heterogeneity can
be modelled with a Finite Mixture of Regressions (FMR) model. Especially with high-
dimensional data, where the number of covariates p is much larger than sample size n,
the homogeneity assumption seems rather restrictive: at least a fraction of covariates
may exhibit a different influence on the response among various observations (i.e. sub-
populations). Hence, addressing the issue of heterogeneous data in high-dimensional data
is an important need in many practical applications. We will empirically demonstrate
with real data in Section 7.2 that prediction improvements are possible by incorporating
a heterogeneity structure to the model.

We propose here an `1-penalized method, i.e. a Lasso-type estimator (Tibshirani, 1996),
for estimating a high-dimensional finite mixture of regressions model where p � n. Our
approach is related to the proposal in Khalili and Chen (2007). In this paper, we argue
that a different parameterization leads to more efficient computation in high-dimensional
optimization for which we prove numerical convergence properties. Our algorithm can
easily handle problems where p is in the thousands. Furthermore, we present an oracle
inequality which includes the setting where p � n: this is very different from Khalili
and Chen (2007) who use fixed p asymptotics in the low-dimensional framework. Our
theory for deriving oracle inequalities for non-convex loss functions, as the negative log-
likelihood in a mixture model is non-convex, is rather non-standard. Much of the theory
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for the high-dimensional Lasso has been developed for convex loss functions, e.g. the
squared error in a Gaussian regression (Greenshtein and Ritov, 2004; Meinshausen and
Bühlmann, 2006; Zhao and Yu, 2006; Bickel et al., 2007) or the negative log-likelihood
in a generalized linear model (van de Geer, 2008). From this point of view, we present
a non-trivial modification of the mathematical analysis of `1-penalized to non-convex but
smooth likelihood problems.

The rest of this article is organized as follows: Section 2 describes the finite mixture
of regressions (FMR) model with an appropriate parameterization, Section 3 introduces
`1-penalized maximum-likelihood estimation for FMR models, Sections 4 and 5 present
mathematical theory for the low- and high-dimensional case, Section 6 develops some
efficient generalized EM algorithm and presents its numerical convergence properties and
Section 7 reports on simulations and a real data example.

2 Finite mixture of Gaussian regressions model

Our primary focus is on the following mixture model involving Gaussian components:

Yi|Xi independent for i = 1, . . . , n,
Yi|Xi = x ∼ fξ(y|x)dy for i = 1, . . . , n,

fξ(y|x) =
k∑
r=1

πr
1√

2πσr
exp(−(y − xTβr)2

2σ2
r

), (2.1)

ξ = (β1, . . . , βk, σ1, . . . , σk, π1, . . . , πk−1) ∈ Rkp × Rk
>0 ×Π,

Π = {π;πr > 0 for r = 1, . . . , k − 1 and
k−1∑
r=1

πr < 1}.

Thereby, Xi ∈ Rp are fixed or random covariates, Yi ∈ R is a univariate response variable
and ξ = (β1, . . . , βk, σ1, . . . , σk, π1, . . . , πk−1) denotes the (p+2) ·k−1 free parameters and
πk is given by πk = 1−

∑k−1
r=1 πr. The model in (2.1) is a mixture of Gaussian regressions,

where every component r has its individual vector of regressions coefficients βr and error
variances σ2

r . We are particularly interested in the case where p� n.

2.1 Reparameterized mixture of regressions model

We will prefer to work with a reparameterized version of model (2.1) whose penalized
maximum likelihood estimator is scale-invariant and easier to compute. The computational
aspect will be discussed in greater detail in Sections 3.1 and 6. Define new parameters

φr = βr/σr, ρr = σ−1
r , r = 1, . . . , k.

This yields a one-to-one mapping from ξ in (2.1) to a new parameter vector
θ = (φ1, . . . , φk, ρ1, . . . , ρk, π1, . . . , πk−1) and the model (2.1) in reparameterized form then
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equals:

Yi|Xi independent for i = 1, . . . , n,
Yi|Xi = x ∼ hθ(y|x)dy for i = 1, . . . , n,

hθ(y|x) =
k∑
r=1

πr
ρr√
2π

exp(−1
2

(ρry − xTφr)2) (2.2)

θ = (φ1, . . . , φk, ρ1, . . . , ρk, π1, . . . , πk−1) ∈ Rkp × Rk
>0 ×Π

Π = {π;πr > 0 for r = 1, . . . , k − 1 and
k−1∑
r=1

πr < 1}.

This is the main model we are analysing and working with.

The log-likelihood function of this model equals:

`(θ;Y ) =
n∑
i=1

log

(
k∑
r=1

πr
ρr√
2π

exp(−1
2

(ρrYi −XT
i φr)

2)

)
. (2.3)

Since we want to deal with the p� n case, we have to regularize the maximum likelihood
estimator (MLE) in order to obtain reasonably accurate estimates. We propose below some
`1-norm penalized MLE which is different from a naive `1-norm penalty for the MLE in
the non-transformed model (2.1). Furthermore, it is well known that the (log-) likelihood
function is generally unbounded. We will see in Section 3.2 that our penalization will
mitigate this problem.

3 `1-norm penalized maximum likelihood estimator

We argue first for the case of a (non-mixture) linear model why the reparameterization
above in Section 2.1 is useful and quite natural.

3.1 `1-norm penalization for reparameterized linear models

Consider a Gaussian linear model

Yi =
p∑
j=1

βjX
(j)
i + εi, i = 1, . . . , n,

ε1, . . . , εn i.i.d. ∼ N (0, σ2), (3.4)

where Xi are either fixed or random covariates. In short, we often write

Y = Xβ + ε,

with n×1 vectors Y and ε, p×1 vector β and n×p matrix X. In the sequel, ‖.‖ denotes the
Euclidean norm. The `1-norm penalized estimator, called the Lasso (Tibshirani (1996)),
is defined as:

β̂λ = argminβn
−1‖Y −Xβ‖2 + λ

p∑
j=1

|βj |. (3.5)
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The Gaussian assumption is not crucial in model (3.4) but it is useful to make connections
to the likelihood framework. The Lasso estimator in (3.5) is equivalent to minimizing
the penalized negative log-likelihood n−1`(β;Y1, . . . , Yn) as a function of the regression
coefficients β and using the `1-penalty ‖β‖1 =

∑p
j=1 |βj |: equivalence means here that

we obtain the same estimator for a potentially different tuning parameter. But the Lasso
estimator in (3.5) does not provide an estimate of the nuisance parameter σ2.

In mixture models, it will be crucial to have a good estimator of σ2 and the role of the
scaling or the variance parameter is much more important than in homogeneous regression
models. Hence, it is important to take σ2 into the definition and optimization of the
penalized maximum likelihood estimator: we could proceed with the following estimator,

β̂λ, σ̂
2
λ = argminβ,σ2(−n−1`(β, σ2;Y1, . . . , Yn) + λ‖β‖1)

= argminβ,σ2(log(σ) + ‖Y −Xβ‖2/(2nσ2) + λ‖β‖1). (3.6)

Note that we are penalizing only the β-parameter. However, the scale parameter σ2 is
influenced indirectly by the amount of shrinkage λ.

There are two main drawbacks of the estimator in (3.6). First, it is not invariant under
scaling of the response, i.e. b · Y (b > 0) leads to a different estimator than with b = 1.
Secondly, and as important as the first issue, the optimization in (3.6) is non-convex
and hence, some of the major computational advantages of Lasso for high-dimensional
problems is lost. We address these drawbacks by using the penalty term λ‖β‖1σ leading to
the following estimator:

β̂λ, σ̂
2
λ = argminβ,σ2(log(σ) + ‖Y −Xβ‖2/(2nσ2) + λ

‖β‖1
σ

).

This estimator is invariant under scaling b · Y . It penalizes the `1-norm of the coefficients
and small variances σ2 simultaneously. Furthermore, it is closely related to the Bayesian
Lasso (Park and Casella, 2008). They consider a fully Bayesian analysis using a conditional
Laplace prior specification of the form

p(β|σ2) =
p∏
j=1

λ

2
√
σ2

exp(−λ |βj |√
σ2

)

and the noninformative scale-invariant marginal prior p(σ2) = 1/σ2 for σ2. They argue
that conditioning on σ2 is important, because it guarantees a unimodal full posterior.

Most importantly, we can re-parameterize to achieve convexity of the optimization prob-
lem:

φj = βj/σ, ρ = σ−1.

This then yields the following estimator which is invariant under scaling and whose com-
putation involves convex optimization:

φ̂λ, ρ̂λ = arg min
φ,ρ

(− log(ρ) +
1

2n
||ρY −Xφ||2 + λ||φ||1). (3.7)

From an algorithmic point of view, fast algorithms are available to solve the optimization in
(3.7). Shooting algorithms (Fu, 1998) with coordinatewise descent are especially suitable,
as demonstrated by Meier et al. (2008), Friedman et al. (2007). We describe in Section
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6.1 an algorithm for estimation in a mixture of regressions model, a more complex task
than the optimization for (3.7). As we will see in Section 6.1, we will make use of the
Karush-Kuhn-Tucker (KKT) conditions in the M-step of a generalized EM-algorithm.
For the simpler criterion in (3.7) for a non-mixture model, the KKT conditions imply
the following which we state without a proof. Denote by 〈·, ·〉 the inner product in n-
dimensional Euclidean space.

Proposition 3.1. Every solution (φ̂, ρ̂) of (3.7) satisfies:

−ρ̂XT
j Y +XT

j Xφ̂+ nλsign(φ̂j) = 0 if φ̂j 6= 0,
| − ρ̂XT

j Y +XT
j Xφ̂| ≤ nλ if φ̂j = 0,

and

ρ̂ =
〈Y,Xφ̂〉+

√
〈Y,Xφ̂〉2 + 4||Y ||2n
2||Y ||2

.

3.2 `1-norm penalized MLE for mixture of Gaussian regressions

Consider the mixture of Gaussian regressions model in (2.2). Assuming that p is large,
we want to regularize the MLE. In the spirit of the approach in (3.7), we propose for the
unknown parameter θ = (φ1, . . . , φk, ρ1, . . . , ρk, π1, . . . , πk−1) the estimator:

θ̂
(γ)
λ = arg min

θ∈Θ
−n−1`

(γ)
pen,λ(θ), θ = (φ1, . . . , φk, ρ1, . . . , ρk, π1, . . . , πk−1), (3.8)

−n−1`
(γ)
pen,λ(θ) = −n−1

n∑
i=1

log

(
k∑
r=1

πr
ρr√
2π

exp(−1
2

(ρrYi −XT
i φr)

2)

)

+ λ
k∑
r=1

πγr ||φr||1, (3.9)

Θ = Rkp × Rk
>0 ×Π, (3.10)

where Π = {π;πr > 0 for r = 1, . . . , k− 1 and
∑k−1

r=1 πr < 1}. The value of γ ∈ {0, 1/2, 1}
parameterizes three different penalties.

The first penalty function with γ = 0 is independent of the component probabilities πr.
As we will see in Sections 6.1 and 6.2, the optimization for computing θ̂(0)

λ is easiest and
we are able to establish a rigorous result about numerical convergence of a generalized EM
algorithm. The penalty with γ = 0 works fine if the components are not very unbalanced,
i.e. the true πr’s aren’t too different. In case of strongly unbalanced components, the
penalties with values γ ∈ {1/2, 1} are to be preferred, at the price of having to pursue a
more difficult optimization problem. The value of γ = 1 has been proposed by Khalili and
Chen (2007) for the naively parameterized likelihood from model (2.1). We will report
in Section 7.1 about empirical comparisons with the three different penalties involving
γ ∈ {0, 1/2, 1}.

All three penalty functions involve the `1-norm of the component specific ratio’s φr =
βr
σr

and hence small variances are penalized. The penalized criteria therefore stay finite
whenever σr → 0: this is in sharp contrast to the unpenalized MLE where the likelihood
tends to infinity if σr → 0, see for example (McLachlan and Peel, 2000).
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Proposition 3.2. Assume that Yi 6= 0 for all i = 1, . . . , n. Then the penalized negative
likelihood −n−1`

(0)
pen,λ(θ) is bounded from below for all values θ ∈ Θ from (3.10).

A proof is given in Appendix C. Even though Proposition 3.2 is only stated and proved
for the penalized negative likelihood with γ = 0 we expect that the statement is also true
for γ = 1/2 or 1.

Due to the `1-norm penalty, the estimator is shrinking some of the components of φ1, . . . , φk
exactly to zero, depending on the magnitude of the regularization parameter λ. Thus, we
can do variable selection as follows. Denote by

Ŝ =
{

(r, j); 1 ≤ r ≤ k, 1 ≤ j ≤ p, φ̂r,j 6= 0
}
. (3.11)

The set Ŝ denotes the collection of non-zero estimated, i.e. selected, regression coefficients
in the k mixture components. Note that no significance testing is involved, but of course,
Ŝ = Ŝ

(γ)
λ depends on the specification of the regularization parameter λ and the type of

penalty indicated by γ.

3.3 Adaptive `1-norm penalization

A two-stage adaptive `1-norm penalization for linear models has been proposed by Zou
(2006), called the adaptive Lasso. It is an effective way to address some bias problems of
the (one-stage) Lasso which may employ strong shrinkage of coefficients corresponding to
important variables.

The two-stage adaptive `1-norm penalized estimator for a mixture of Gaussian regressions
is defined as follows. Consider an initial estimate θini, for example from the estimator
in (3.8). The adaptive criterion to be minimized involves a re-weighted `1-norm penalty
term:

−n−1`
(γ)
adapt(θ) = −n−1

n∑
i=1

log

(
k∑
r=1

πr
ρr√
2π

exp(−1
2

(ρrYi −XT
i φr)

2)

)

+ λ
k∑
r=1

πγr

p∑
j=1

wr,j |φr,j |,

wr,j =
1
|φinir,j |

, θ = (ρ1, . . . , ρk, φ1, . . . , φk, π1, . . . , πk−1), (3.12)

where γ ∈ {0, 1/2, 1}. The estimator is then defined as

θ̂
(γ)
adapt;λ = arg min

θ∈Θ
−n−1`

(γ)
adapt(θ),

where Θ is as in (3.10).

The adaptive Lasso in linear models has better variable selection properties than the Lasso,
see Zou (2006), Huang et al. (2008), Zhou et al. (2009). We present some theory for the
adaptive estimator in the FMR model in Section 4 and we report some empirical results
in Section 7.1.
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3.4 Selection of the tuning parameters

The regularization parameters to be selected are the number of components k, the penalty
parameter λ and we may also want to select the type of the penalty function, i.e. selection
of γ.

One possibility is to use a modified BIC criterion which minimizes

BIC = −2`(θ̂(γ)
λ,k) + log(n)df, (3.13)

over a grid of candidate values for k, λ and maybe also γ. Here, θ̂(γ)
λ,k denotes the estimator

in (3.8) using the parameters λ, k, γ in (3.9), and −`(·) is the negative log-likelihood.
Furthermore, df = kp + k + (k − 1) −

∑
j=1...p,r=1...k 1{φ̂r,j=0} are the degrees of freedom

(Pan and Shen, 2007).

Alternatively, we may use a cross-validation scheme for tuning parameter selection mini-
mizing some cross-validated negative log-likelihood.

Regarding the grid of candidate values for λ, we consider 0 ≤ λ1 < . . . < λM ≤ λmax,
where λmax is given by

λmax = max
j=1,...,p

∣∣∣∣∣〈Y,X(j)〉√
n||Y ||

∣∣∣∣∣ . (3.14)

At λmax, all coefficients φ̂j , (j = 1, . . . , p) of the one-component model are exactly zero.
Equation (3.14) easily follows from Proposition 3.1.

For the adaptive `1-norm penalized estimator minimizing the criterion in (3.12) we proceed
analogously. As initial estimator in the adaptive criterion, we propose to use the estimate
in (3.8) which is optimally tuned using the modified BIC or some cross-validation scheme.

4 Asymptotic properties for fixed p and k

Following the penalized likelihood theory of Fan and Li (2001), we establish first some
asymptotic properties of the estimator in (3.9). We assume here that the number of
covariates p and the number of mixture components k is fixed as sample size n → ∞.
Of course, this does not reflect a truly high-dimensional scenario, but the theory and
methodology is much easier for this case. An extended theory for p potentially very large
in relation to n is presented in Section 5.

Denote by θ0 the true parameter.

Theorem 4.1. (Consistency) Consider model (2.2) with fixed design and fixed p and k.
If λ = O(n−1/2) (n → ∞), then there exists a local minimizer θ̂(γ)

λ of −n−1`pen,λ(θ) in
(3.9) (γ ∈ {0, 1/2, 1}) such that

√
n
(
θ̂

(γ)
λ − θ0

)
→P 0 (n→∞).

A proof is given in Appendix A. Theorem 4.1 can be easily misunderstood. It does not
guarantee the existence of an asymptotically consistent sequence of estimates. The only
claim is that a clairvoyant statistician (with pre-knowledge of θ0) can choose a consistent
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sequence of roots (van der Vaart, 2007). In this sense the preceding theorem might look
better than it is.

Next, we present an asymptotic oracle result in the spirit of Fan and Li (2001). Denote
by S the population analogue of (3.11), i.e. the set of non-zero regression coefficients.
Furthermore, let θS = ({φr,j ; (r, j) ∈ S}, ρ1, . . . , ρk, π1, . . . , πk−1) the sub-vector of pa-
rameters corresponding to the true non-zero regression coefficients (denoted by S) and
analogously for θ̂S .

Theorem 4.2. (Asymptotic oracle result) Consider model (2.2) with fixed design and
fixed p and k. If λ = o(n−1/2), nλ → ∞ and if θini satisfies θini − θ0 = OP (n−1/2), then
there exists a local minimizer θ̂(γ)

adapt;λ of −n−1`
(γ)
adapt(θ) in (3.12) (γ ∈ {0, 1/2, 1}) which

satisfies:

1. Consistency in variable selection: P[Ŝ(γ)
λ = S]→ 1 (n→∞).

2. Oracle Property:
√
n
(
θ̂

(γ)
λ,S − θ0,S

)
 d N (0, IS(θ0)), where IS(θ0) is the Fisher in-

formation knowing that θSc = 0.

A proof is given in Appendix A. As in Theorem 4.1, the assertion of the Theorem is
only making a statement about some local optimum. Furthermore, variable selection
consistency and the oracle property hinge on the implicit assumption that the regression
parameters are either zero or take a fixed value different from zero which excludes the
cases with small non-zero values in e.g. the n−1/2-domain.

5 Theory for high-dimensional setting

We will present here some theory, entirely different from Theorems 4.2 and 4.1, which
reflects some consistency and optimality behaviour of the `1-norm penalized maximum
likelihood estimator for the potentially high-dimensional framework with p � n. In par-
ticular, we derive some oracle inequality which is non-asymptotic. We intentionally present
this theory for `1-penalized smooth likelihood problems which are generally non-convex:
`1-penalized likelihood estimation in FMR models is then a special case.

5.1 The setting and notation

Let {fθ; θ ∈ Θ} be a collection of densities with respect to some σ-finite measure µ, on a
measurable space Y (i.e. the range for the response variable). The parameter space Θ is
assumed to be a bounded subset of some finite-dimensional space, say

Θ ⊂ {θ ∈ Rd; ‖θ‖∞ ≤ K},

where we have equipped (quite arbitrarily) the space Rd with the sup-norm ‖θ‖∞ =
max1≤j≤d |θj |. In our setup, the dimension d will be regarded as a fixed constant (which
still covers high-dimensionality of the covariates, as we will see). Then, equivalent metrics
are e.g. the ones induced by the `q-norm ‖θ‖q = (

∑d
j=1 |θj |q)1/q (q ≥ 1).

We observe a co-variable X in some space X and a response variable Y in Y. The true
conditional density of Y given X = x is assumed to be equal to

fθ0(·|x) = fθ0(x),
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where
θ0(x) ∈ Θ, ∀ x ∈ X .

That is, we assume that the true conditional density of Y given X = x is depending on
x only through some parameter function θ0(x). Of course, the introduced notation also
applies to fixed co-variables.

The parameter {θ0(x); x ∈ X} is assumed to have a nonparametric part of interest
{g0(x); x ∈ X} and a low-dimensional nuisance part η0, i.e.,

θ0(·)T = (g0(·)T , ηT0 ),

with
g0(x) ∈ Rk, ∀ x ∈ X , η0 ∈ Rm, k +m = d.

In case of FMR models, g(x)T = (φT1 x, φ
T
2 x, . . . , φ

T
k x) and η involves the parameters

ρ1, . . . , ρk, π1, . . . , πk−1. More details are given in Section 5.6.

With minus the log-likelihood as loss function, the so-called excess risk

E(θ|θ0) = −
∫

log
[
fθ
fθ0

]
fθ0dµ

is the Kullback Leibler information. For fixed covariates x1, . . . , xn, we define the average
excess risk

Ē(θ|θ0) =
1
n

n∑
i=1

E
(
θ(xi)

∣∣∣∣θ0(xi)
)
.

5.2 A consistency result for FMR models

Denote by θ0 = (φ0, η0) the true parameter vector in an FMR model, where φ0 =
(φ0,1, . . . , φ0,k)T with φ0,r = β0,r/σr (r = 1, . . . , k) and η0 = log(ρ1), . . . , log(ρk), log(π1), . . .,
. . . , log(πk−1). Consider the estimator

θ̂λ = arg min
ϑ∈Θ̃

−n−1
n∑
i=1

log

(
k∑
r=1

πr
ρr√
2π

exp(−1
2

(ρrYi −XT
i φr)

2)

)
+ λ

k∑
r=1

||φr||1,

Θ̃ = {ϑT = (φT1 , . . . , φ
T
k , η

T ); sup
x∈X
‖φTx‖∞ ≤ K, ‖η‖∞ ≤ K}. (5.15)

This is the estimator from Section 3.2 with γ = 0. We emphasize the boundedness of the
parameter space by using the notation Θ̃. In contrast to Section 4, we focus here on any
global minimizer oft the penalized negative log-likelihood which is arguably difficult to
compute.

Theorem 5.1. (Consistency) Consider model (2.2) with fixed design and fixed k and
assume that Condition 5 below holds. Moreover, assume that ‖φ0‖1 =

∑k
r=1 ‖φ0,r‖1 =

o(
√
n/ log4(n)) (n → ∞). If λ � C

√
log4(n)/n) for some C > 0 sufficiently large, then

any (global) minimizer θ̂λ as in (5.15) satisfies

Ē(θ̂λ|θ0) = oP (1) (n→∞).

A proof is given in Appendix B.
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5.3 The margin

We develop in the following Sections 5.3-5.5 a non-asymptotic oracle inequality result for
the general case of penalized smooth likelihood estimation.

Denote by
lθ = log fθ

the log-density. Assuming the derivatives exist, we define the score function

sθ =
∂lθ
∂θ

,

and the Fisher information

I(θ) =
∫
sθs

T
θ fθdµ = −

∫
∂2lθ
∂θ∂θT

fθdµ.

Of course, we can then also look at I(θ(x)) using the parameter function θ(x).

We will assume boundedness of third derivatives.

Condition 1 It holds that

sup
θ∈Θ

max
(j1,j2,j3)∈{1,...,d}3

∣∣∣∣ ∂3

∂θj1∂θj2∂θj3
lθ(·)

∣∣∣∣ ≤ G3(·),

where
sup
x∈X

∫
G3(y)fθ0(y|x)dµ(y) ≤ C3 <∞.

For a symmetric, positive semi-definite matrix A, we let Λ2
min(A) be its smallest eigenvalue.

Condition 2 For all x ∈ X , the Fisher information matrix I(g0(x), η0) is positive definite,
and in fact

Λmin = inf
x∈X

Λmin(I(g0(x), η0)) > 0.

With minus the log-likelihood as loss function, the so-called excess risk

E(θ|θ0) = −
∫

log
[
fθ
fθ0

]
fθ0dµ

is the Kullback Leibler information. We will need the following identifiability condition.

Condition 3 For all ε > 0, there exists an αε > 0, such that

inf
x∈X

inf
θ∈Θ

‖θ−θ0(x)‖2>ε

E(θ|θ0(x)) ≥ αε.

Lemma 5.1. Assume Conditions 1, 2, and 3. Then

inf
x∈X

E(θ|θ0(x))
‖θ − θ0(x)‖22

≥ 1
c2

0

,

where

c2
0 = max

[
1
ε0
,
dK2

αε0

]
, ε0 =

3Λ2
min

2d3/2
.

A proof is given in Appendix B.
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5.4 The empirical process

We now specialize to the case where

θ(x)T = (g(x)T , ηT ),

where (with some abuse of notation)

g(x)T = gφ(x)T = (g1(x), . . . , gk(x)),
gr(x) = gφr(x) = xTφr, x ∈ Rp, φr ∈ Rp, r = 1, . . . , k.

We will assume that
sup
x∈X
‖φTx‖∞ = sup

x∈X
max

1≤r≤k
|φTr x| ≤ K.

We write
θφ(x)T = (gφ(x)T , ηT ).

Our parameter space is now

Θ̃ ⊂ {ϑT = (φT1 , . . . , φ
T
k , η

T ); sup
x∈X
‖φTx‖∞ ≤ K, ‖η‖∞ ≤ K}. (5.16)

Note that Θ̃ is in principle (pk + m)-dimensional. The true parameter ϑ0 is assumed to
be an element of Θ̃.

Let us define

Lϑ(x, ·) = log fθ(x)(·), θ(x)T = θϑ(x)T = (gφ(x)T , ηT ), ϑT = (φT1 , . . . , φ
T
k , η

T ),

and the empirical process

Vn(ϑ) =
1
n

n∑
i=1

[
Lϑ(xi, Yi)− E

(
Lϑ(xi, Y )

∣∣∣∣X = xi

)]
.

Condition 4 For the score function sθ(·) we have:

sup
ϑ∈Θ̃

‖sϑ(·)‖∞ ≤ G1(·),

where G1(·) satisifies some moment conditions to be specified in Lemma 5.2.

Let

Σn =
1
n

n∑
i=1

xix
T
i ,

and let Λ2
max(Σn) be the largest eigenvalue of Σn.

Condition 5 For a constant Λmax <∞, it holds that Λmax(Σn) ≤ Λmax.

Condition 5 is not really a condition, but to avoid digressions, in what follows we shall not
explicitly give the dependency on Λmax(Σn). This is appropriate when there is a bound
Λmax that does not depend on p or n.

Define

λ0 = Mn

√
log3 n

n
. (5.17)

Let Px denote the conditional probability given (X1, . . . , Xn) = (x1, . . . , xn) = x.

11



Lemma 5.2. Assume Conditions 4 and 5. We have for constants c1 and c2 depending on
Λmax, k, and m, and for all T ≥ 1,

sup
ϑT=(φT ,ηT )∈Θ̃

∣∣∣∣Vn(ϑ)− Vn(ϑ0)|

(‖φ− φ0‖1 + ‖η − η0‖2) ∨ λ0
≤ Tλ0,

with Px probability at least

1− c1 exp
[
−T

2nλ2
0

c2
2

]
− Px

(
1
n

n∑
i=1

G1(Yi)l{G1(Yi) > Mn} > Tλ2
0/(dK)

)
.

Regarding the constants λ0 and K, see (5.17) and (5.16), respectively.

The result follows along the lines of Lemma 4 in Tsybakov and van de Geer (2005) by
developing a suitable entropy bound.

5.5 Oracle inequality for the Lasso for non-convex loss functions

We employ the Lasso-type estimator

ϑ̂T = (φ̂T , η̂T ) = arg min
ϑT=(φT ,ηT )∈Θ̃

{
− 1
n

n∑
i=1

Lϑ(xi, Yi) + λ
k∑
r=1

‖φr‖1
}
. (5.18)

We omit in the sequel the dependence of ϑ̂ on λ. Note that we consider here a global
minimizer: it may be difficult to compute if the empirical risk n−1

∑n
i=1 Lϑ(xi, Yi) is non-

convex in ϑ. We then write ‖φ‖1 =
∑k

r=1 ‖φr‖1. We let

θ̂(x)T = (gφ̂(x)T , η̂T ),

which depends only on the estimate ϑ̂, and we denote by

θ0(x)T = (gφ0(x)T , ηT0 ).

We also define the set

T =

 sup
ϑT=(φT ,ηT )∈Θ̃

∣∣∣∣Vn(ϑ)− Vn(ϑ0)
∣∣∣∣

(‖φ− φ0‖1 + ‖η − η0‖2) ∨ λ0
≤ Tλ0

 . (5.19)

Let
S = {(r, j); φr,j 6= 0}, s = |S|,

be the active set, i.e. the set of non-zero coefficients, and

φJ = {φ(r,j); (r, j) ∈ J}, J ⊂ {1, . . . , p}k.

Condition 6 (Compatibility condition). There exists a constant κ ≥ 1, such that for all
φ ∈ Rpk satisfying

‖φSc‖1 ≤ 6‖φS‖1,
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it holds that

‖φS‖22 ≤ κ2
k∑
r=1

φTr Σnφr.

For θ(·)T = (g(·)T , ηT ), we use the notation

‖θ‖2Qn =
1
n

n∑
i=1

k∑
r=1

g2
r (xi) +

m∑
j=1

η2
j .

We also write for g(·) = (g1(·), . . . , gk(·))T ,

‖g‖2Qn =
1
n

n∑
i=1

k∑
r=1

g2
r (xi).

Thus

‖gφ‖2Qn =
k∑
r=1

φTr Σnφr.

Theorem 5.2. (Oracle result for fixed design). Assume Conditions 1-3 and 6, and that
λ ≥ 2Tλ0 for the estimator in (5.18). Then on T , for the average excess risk (average
Kullback-Leibler loss),

Ē(θ̂|θ0) + 2(λ− Tλ0)‖φ̂Sc‖1 ≤ 8(λ+ Tλ0)2c2
0κ

2s.

A proof is given in Appendix B. The probability of the set T is large, assuming Conditions
4 and 5. In the case of FMR models, this is shown in detail by Lemma 5.3 below.

The oracle inequality of Theorem 5.2 has the following well-known interpretation. First,
we obtain

Ē(θ̂|θ0) ≤ 8(λ+ Tλ0)2c2
0κ

2s.

that is, the average Kullback-Leibler risk is of the order O(sλ2
0M

2
n) = O(s log(n)4/n) (see

(5.17) and the assumption on Mn in Lemma 5.3 below) which is up to the factor log(n)4

the optimal convergence rate if one would know the s non-zero coefficients. As a second
implication we obtain

‖φ̂Sc‖1 ≤ 4(λ+ Tλ0)c2
0κ

2s.

saying that the noise components in Sc have small estimated values (e.g. its `1-norm
converges to zero at rate O(sλ0)).

5.6 FMR models

In the finite mixture of regressions model from (2.2) with k components, the parameter
is ϑT = (gT , ηT ) = (gT , log ρ1, . . . , log ρk, log π1, . . . , log πk−1), where the ρr = σ−1

r are the
inverse standard deviations in mixture component r and the πr are the mixture coeffi-
cients. We let Θ̃ ⊂ {‖g‖∞ ≤ K, ‖ log ρ‖∞ ≤ K,−K ≤ log π1 ≤ 0, . . . ,−K ≤ log πk−1 ≤
0,
∑k−1

r=1 πr < 1}. The log-likelihood is

lθ(y) = log
[ k∑
r=1

πrρrϕ

(
ρry − gr

)]
.

In this case d = 3k − 1.
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Proposition 5.1. For fixed design FMR models as in (2.2) with Θ̃ as above, Conditions
1,2 and 3 are met, for appropriate C3, Λmin and {αε}, depending on k and K. Also
Condition 4 holds, with

G1(y) = eK |y|+K.

Proof. This follows from straightforward calculations.

In order to show that the probability for the set T is large, we invoke Lemma 5.2 and the
following result.

Lemma 5.3. For fixed design FMR models as in (2.2) with Θ̃ as above: for some constants
c4, c5 and c6, depending on k and K, and for Mn = c4

√
log n and n ≥ c6, the following

holds:

Px

(
1
n

n∑
i=1

G1(Yi)l{G1(Yi) > Mn/(dK)} > c5
log n
n

)
≤ 1
n
.

A proof is given in Appendix B.

Hence, the oracle result in Theorem 5.2 for our `1-norm penalized estimator in the FMR
model holds on a set T , and this set T has large probability due to Lemma 5.2 and Lemma
5.3.

6 Numerical optimization

We will present a generalized EM (GEM) algorithm for optimizing the criterion in (3.9)
in Section 6.1. In Section 6.2 we will discuss numerical convergence properties of the
algorithm. For the convex penalty (γ = 0) function we prove convergence to a stationary
point.

6.1 GEM algorithm for optimization

Maximization of the log-likelihood of a mixture density is often done using the traditional
EM algorithm of Dempster et al. (1977). Consider the complete log-likelihood:

`c(θ;Y,∆) =
n∑
i=1

k∑
r=1

∆i,r log
(

ρr√
2π
e−

1
2

(ρrYi−XT
i φr)

2

)
+ ∆i,r log(πr),

where ∆i,r are unobserved, imaginary indicator variables showing the component-membership
of the ith observation in the FMR model. The expected complete (scaled) negative log-
likelihood is then:

Q(θ|θ′) = −n−1E[`c(θ;Y,∆)|Y, θ′],

and the expected complete penalized negative log-likelihood (scaled) is

Qpen(θ|θ′) = Q(θ|θ′) + λ
k∑
r=1

πγr ||φr||1.
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The EM-algorithm works by iterating between the E- and M-step. Denote the parameter
value at iteration m by θ(m) (m = 0, 1, 2, . . .), where θ(0) is a vector of starting values.

E-Step: Compute Q(θ|θ̂(m)) or equivalently

γ̂i,r = E[∆i,r|Y, θ(m)] =
π

(m)
r ρ

(m)
r e−

1
2

(ρ
(m)
r Yi−XT

i φ
(m)
r )2∑k

r=1 π
(m)
r ρ

(m)
r e−

1
2

(ρ
(m)
r Yi−XT

i φ
(m)
r )2

r = 1, . . . , k, i = 1, . . . , n.

Generalized M-Step: Improve Qpen(θ|θ(m)) w.r.t θ ∈ Θ.

a) Improvement with respect to π:

fix φ at the present value φ(m) and improve

−n−1
n∑
i=1

k∑
r=1

γ̂i,r log(πr) + λ
k∑
r=1

πγr ||φ(m)
r ||1 (6.20)

with respect to the probability simplex

{π;πr > 0 for r = 1, . . . , k and
k∑
r=1

πr = 1}

by a feasible descent step. Denote by π̄(m+1) =
Pn
i=1 γ̂i
n which is a feasible point.

As the simplex is convex, π̄(m+1) − π(m) is a feasible descent direction (Bertsekas
(1995)). Therefore we update π as

π(m+1) = π(m) + t(m)(π̄(m+1) − π(m))

where t(m) ∈ (0, 1]. In practice t(m) is chosen to be the largest value in the grid
{δk; k = 0, 1, 2, . . .} (0 < δ < 1) such that (6.20) is decreased. In our examples
δ = 0.1 worked well. The Limited Minimization Rule or the Armijo Rule (Bertsekas
(1995)) for choosing t(m) are also possible.

b) Minimization with respect to φ and ρ:

A simple calculation shows, that the M-Step decouples for each component into k
distinct optimization problems of the form

− log(ρr) +
1

2nr
||ρrỸ − X̃φr||2 +

nλ

nr

(
π(m+1)
r

)γ
||φr||1, r = 1, . . . , k (6.21)

with

nr =
n∑
i=1

γ̂i,r, (Ỹi, X̃i) =
√
γ̂i,r(Yi, Xi), r = 1, . . . , k.

Problem (6.21) has the same form as (3.7): in particular, it involves convex optimiza-
tion. Closed-form coordinate updates can easily be computed for each component r
(r = 1, . . . , k) using Proposition 3.1:

ρ(m+1)
r =

〈Ỹ , X̃φ(m)
r 〉+

√
〈Ỹ , X̃φ(m)

r 〉2 + 4||Ỹ ||2nr
2||Ỹ ||2

,
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φ
(m+1)
r,j =


0 if |Sj | ≤ nλ

(
π

(m+1)
r

)γ
,(

nλ
(
π

(m+1)
r

)γ
− Sj

)
/||X̃j ||2 if Sj > nλ

(
π

(m+1)
r

)γ
,

−
(
nλ
(
π

(m+1)
r

)γ
− Sj

)
/||X̃j ||2 if Sj < −nλ

(
π

(m+1)
r

)γ
,

where Sj is defined as

Sj = −ρ(m+1)
r 〈X̃j , Ỹ 〉+

p∑
s<j

φ(m+1)
s,r 〈X̃j , X̃s〉+

p∑
s>j

φ(m)
s,r 〈X̃j , X̃s〉

and j = 1, . . . , p.

Because we only improve Qpen(θ|θ(m)), see M-step a) and b), this is a generalized EM
(GEM) algorithm. We call it the block coordinate descent generalized EM algorithm
(BCD-GEM). Its numerical properties are discussed in Section 6.2.

Remark 6.1. For the convex penalty function with γ = 0, a minimization with respect to
π in M-step a) is achieved with π(m+1) =

Pn
i=1 γ̂i
n , i.e. using t(m) = 1. Then, our M-Step

corresponds to exact coordinate-wise minimization of Qpen(θ|θ(m)).

6.2 Numerical Convergence of the BCD-GEM algorithm

We are addressing here convergence properties of BCD-GEM algorithm described in Sec-
tion 6.1. A detailed account of the convergence properties of the EM algorithm in a general
setting has been given by Wu (1983). Under regularity conditions including differentiabil-
ity and continuity, convergence to stationary points is proofed for the EM algorithm. For
the GEM algorithm similar statements are true under conditions which are often hard to
verify.

As a GEM algorithm, our BCD-GEM algorithm has the descent property which means,
that the criterion function is reduced in each iteration,

−n−1`
(γ)
pen,λ(θ(m+1)) ≤ −n−1`

(γ)
pen,λ(θ(m)). (6.22)

Since −n−1`
(0)
pen,λ(θ) is bounded from below (Proposition 3.2), the following result holds.

Proposition 6.1. For the BCD-GEM algorithm, −n−1`
(0)
pen,λ(θ(m)) decreases monotoni-

cally to some value ¯̀> −∞.

In Remark 6.1 we noted, that for the convex penalty function with γ = 0, the M-Step of
the algorithm corresponds to exact coordinate-wise minimization of Qpen(θ|θ(m)). In this
case convergence to a stationary point can be shown.

Theorem 6.1. Consider the BCD-GEM algorithm for the criterion function in (3.9) with
γ = 0. Then, every cluster point θ̄ ∈ Θ of the sequence {θ(m);m = 0, 1, 2, . . .}, generated
by the BCD-GEM algorithm, is a stationary point of the criterion function in (3.9).

A proof is given in Appendix C. It uses the crucial facts that Qpen(θ|θ′) is a convex
function in θ and that it is strictly convex in each coordinate of θ.
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7 Simulations and real data example

7.1 Simulations

We consider four different simulation setups. Simulation scenario 1 compares the per-
formance of the unpenalized MLE (Flexmix, according to the name of the R-package)
with our estimator from Section 3.2 (FMRLasso) and Section 3.3 (FMRAdapt) in a situ-
ation where the total number of noise covariates grows successively; Simulation 2 explores
sparsity; Simulation 3 compares cross-validation and BIC; and Simulation 4 compares the
different penalty functions with the parameters γ = 0, 1/2, 1. For every setting, the results
are based on 100 independent simulation runs.

All simulations are based on Gaussian FMR models as in (2.2): the coefficients πr, βr, σr
and the sample size n are specified below. The covariate X is generated from a multivariate
normal distribution with mean 0 and covariance structure as specified below.

Unless otherwise specified, the penalty with γ = 1 is used in all simulations. As explored
empirically in Simulation 4, in case of balanced problems (approximately equal πr), the
FMRLasso performs similarly for all three penalties. In unbalanced situations the best
results are typically achieved with γ = 1. In addition, unless otherwise specified the true
number of components k is assumed to be known.

For all models, training-, validation- and test data are generated of equal size n. The esti-
mators are computed on the training data, with the tuning parameter (e.g. λ) selected by
minimizing twice the negative log-likelihood (log-likelihood loss) on the validation data. As
performance measure, the predictive log-likelihood loss (twice the negative log-likelihood)
of the selected model is computed on the test data.

Regarding variable selection, we count a co-variable X(j) as selected if β̂r,j 6= 0 for at least
one r ∈ {1, . . . , k}. To assess the performance of FMRLasso on recovering the sparsity
structure, we report the number of truly selected covariates (True Positives) and falsely
selected covariates (False Positives).

Obviously, the performances depend on the signal to noise ratio (SNR) which we define
for an FMR model as:

SNR =
Var(Y )

Var(Y |βr = 0; r = 1, . . . , k)
=
∑k

r=1 πr(β
T
r Cov(X)βr + σ2

r )∑k
r=1 πrσ

2
r

,

where the last inequality follows since E[X] = 0.

7.1.1 Simulation 1

We consider five different FMR models: M1, M2, M3, M4 and M5. The parameters
(πk, βk, σk), the sample size n of the training-, validation- and test-data, the correlation
structure of covariates corrl,m = corr(Xl, Xm) and the signal to noise ratio (SNR) are
specified in Table 1. Models M1, M2, M3 and M5 have two components and five active
covariates, whereas model M4 has three components and six active covariates. M1, M2
and M3 differ only in their variances σ2

1, σ2
2 and hence have different signal to noise

ratios. Model M5 has a non-diagonal covariance structure. Furthermore in model M5 the
variances σ2

1, σ2
2 are tuned to achieve the same signal to noise ratio as in model M1.
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We compare the performance of the maximum likelihood estimator (MLE), the FMRLasso
and the FMRAdapt in a situation where the number of noise covariates grows successively.
For the models M1, M2, M3, M5 with two components we start with ptot = 5 (no noise
covariates) and go up to ptot = 125 (120 noise covariates). For the three component
model M4 we start with ptot = 6 (no noise covariates) and go up to ptot = 155 (149 noise
covariates).

The box-plots in Figures 1 - 5 of the predictive log-likelihood loss, denoted by Error, the
True Positives (TP) and the False Positives (FP) over 100 simulation runs summarize the
results for the different models. We read off from the box-plots that the MLE performs
very badly when we add noise covariates. On the other hand our penalized estimators
remain stable. For example, for M1 the MLE with ptot = 20 performs worse than the
FMRLasso with ptot = 125, or for M4 the MLE with ptot = 10 performs worse than the
FMRLasso with ptot = 75. Impressive is also the huge gain of the FMRAdapt method
over FMRLasso in terms of log-likelihood loss and false positives.

7.1.2 Simulation 2

In this Section we explore the sparsity properties of the FMRLasso. The model specifi-
cations are given in Table 2. Consider the ratio of pact : n : ptot. The total number of
covariates ptot grows faster than the number of observations n and the number of active
covariates pact: when ptot is doubled, pact is raised by one and n is raised by fifty from
model to model. In particular, we obtain a series of models which gets “sparser” as n
grows (larger ratio n/pact). In order to compare the performance of the FMRLasso we
report the True Positive Rate (TPR) and the False Positive Rate (FPR) defined as:

TPR =
#truly selected covariates

#active covariates
,

FPR =
#falsely selected covariates

#inactive covariates
.

These numbers are reported in Figure 6. We see that the False Positive Rate approaches
zero for sparser models indicating that the FMRLasso recovers the true model better in
sparser settings regardless of the large number of noise covariates.

M1 M2 M3 M4 M5
n 100 100 100 150 100
β1 (3,3,3,3,3) (3,3,3,3,3) (3,3,3,3,3) (3,3,0,0,0,0) (3,3,3,3,3)
β2 (-1,-1,-1,-1,-1) (-1,-1,-1,-1,-1) (-1,-1,-1,-1,-1) (0,0,-2,-2,0,0) (-1,-1,-1,-1,-1)
β3 - - - (0,0,0,0,-3,2) -
σ 0.5, 0.5 1, 1 2, 2 0.5, 0.5, 0.5 0.95, 0.95
π 0.5, 0.5 0.5, 0.5 0.5, 0.5 1/3, 1/3, 1/3 0.5, 0.5

corrl,m δl,m δl,m δl,m δl,m 0.8|l−m|

SNR 101 26 12.1 53 101

Table 1: Models for simulation 1.
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Figure 1: Simulation 1, Model M1. Top: predictive log-likelihood loss (Error) for MLE,
FMRLasso, FMRAdapt. Bottom: False Positives (FP) and True Positives (TP) for FM-
RLasso and FMRAdapt.

pact 3 4 5 6 7 8 9
n 50 100 150 200 250 300 350
ptot 10 20 40 80 160 320 640
β1 (3,3,3,0,0,. . . )
β2 (-1,-1,-1,0,0,. . . )
σ 0.5, 0.5
π 0.5, 0.5

Table 2: Series of models for simulation 2 which gets “sparser” as n grows: when ptot is
doubled, pact is raised by one and n is raised by fifty from model to model.

7.1.3 Simulation 3

So far we regarded the number k of components as given, while we have chosen an optimal
λopt by minimizing the negative log-likelihood loss on validation data. In this section we
compare the performance of 10-fold cross-validation and the BIC criterion presented in
Section 3.4 for selecting the tuning parameters k and λ. We use model M1 of Section 7.1.1
with ptot = 25, 50, 75. For each of these models we tune the FMRLasso estimator according
to the following strategies:

(1) Assume the number of components is given (k = 2). Choose the optimal tuning
parameter λopt using 10-fold cross-validation.

(2) Assume the number of components is given (k = 2). Choose λopt by minimizing the
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Figure 2: Simulation 1, Model M2. Same notation as in Figure 1.
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Figure 3: Simulation 1, Model M3. Same notation as in Figure 1.
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Figure 4: Simulation 1, Model M4. Same notation as in Figure 1.
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Figure 5: Simulation 1, Model M5. Same notation as in Figure 1.
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Figure 6: Simulation 2 compares the performance of the FMRLasso for a series of models
which gets “sparser” as the sample size grows. Top: True Positive Rate (TPR). Bottom:
False Positive Rate (FPR) over 100 simulation runs.

BIC criterion (3.13).

(3) Choose the number of components k ∈ {1, 2, 3} and λopt by minimizing the BIC
criterion (3.13).

The results of this simulation are presented in Figure 7, where box-plots of the log-
likelihood loss (Error) are shown. For the model with ptot = 25 all three strategies perform
equally well. The BIC criterion in strategy (3) chooses always k = 2. For the model with
ptot = 50 the BIC strategies (2) and (3) are superior over cross-validation. Strategy (3)
chooses in ninety-six simulation runs k = 2 and in four runs k = 3. With ptot = 75 again
the BIC strategies (2) and (3) perform better than cross-validation. Strategy (3) chooses
once k = 1, ninety-five times k = 2, and four times k = 3.

7.1.4 Simulation 4

In the preceding simulations we always used the value γ = 1 in the penalty term of
the FMRLasso estimator (3.9). In this Section we compare the FMRLasso for different
values γ = 0, 1/2, 1. First we compute the FMRLasso for γ = 0, 1/2, 1 on model M1
of Section 7.1.1 with ptot = 50. Then we do the same calculations for an “unbalanced”
version of this model with π1 = 0.3 and π2 = 0.7.

In Figure 8 the box-plots of the log-likelihood loss (Error), the False Positives (FP) and
the True Positives (TP) over 100 simulation runs are shown. We see that the FMRLasso
performs similarly for γ = 0, 1/2, 1. Nevertheless the value γ = 1 is slightly preferable in
the “unbalanced” setup.
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Figure 7: Simulation 3 compares different strategies for choosing the tuning parameters
k and λ. The box-plots show the predictive log-likelihood loss (Error) of the FMRLasso,
tuned by strategies (1), (2) and (3), for model M1 with ptot = 25, 50, 75.

γ=0 γ=1/2 γ=1

24
0

28
0

32
0

36
0

40
0

44
0

48
0

Error

M
1:

 π
1=

0.
5,

 π
1=

0.
5

γ=0 γ=1/2 γ=1

0
5

10
15

20
25

30
35

FP

γ=0 γ=1/2 γ=1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

TP

γ=0 γ=1/2 γ=1

24
0

28
0

32
0

36
0

40
0

44
0

48
0

Error

M
1:

 π
1=

0.
3,

 π
1=

0.
7

γ=0 γ=1/2 γ=1

0
5

10
15

20
25

30
35

FP

γ=0 γ=1/2 γ=1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

TP

Figure 8: Simulation 4 compares the FMRLasso for different values γ = 0, 1/2, 1. The
upper row of the panels shows the box-plots of the log-likelihood loss (Error), the False
Positives (FP) and the True Positives (TP) for model M1 with ptot = 50 and π1 = π2 = 0.5.
The lower row of the panels shows the same box-plots for an “unbalanced” version of model
M1 with π1 = 0.3 and π2 = 0.7.

7.2 Real data example

We now apply the FMRLasso to a data set about riboflavin (vitamin B2) production
by Bacillus Subtilis. The real-valued response variable is the logarithm of the riboflavin
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production rate. The data has been kindly provided by DSM (Switzerland). There are
p = 4088 covariates (genes) measuring the logarithm of the expression level of 4088 genes.
There are measurements of n = 146 genetically engineered mutants of Bacillus Subtilis.
The population seems to be rather heterogenous as there are different strains of Bacillus
Subtilis which are cultured under different fermentation conditions. We do not know
the different homogeneity subgroups. For this reason a FMR model with more than one
component might be more appropriate than a simple linear regression model.

We compute the FMRLasso estimator for k = 1, . . . , 6 components. To keep the computa-
tional effort reasonable we use only the 100 covariates (genes) exhibiting the highest em-
pirical variances. We choose the optimal tuning parameter λopt by 10-fold cross-validation
(using the log-likelihood loss). As a result we get six different estimators which we com-
pare according to their cross-validated log-likelihood loss (CV Error). These numbers are
plotted in Figure 9. The estimator with three components performs clearly best, resulting
in a 17% improvement in prediction over a (non-mixture) linear model, and it selects 46
genes. In Figure 10 the coefficients of the twenty most important genes, ordered according
to
∑3

r=1 |β̂r,j |, are shown. The important variables do not show opposite signs of the
estimated regression coefficients among the three different mixture components. However,
it happens that some covariates (genes) exhibit a strong effect in one or two mixture
components but none in the remaining other components. Finally, for comparison, the
one-component (non-mixture) model selects 26 genes where 22 selected genes from the
one-component model are also selected in the the three-component model.

CV Error

Nr. components
1.0 2.0 3.0 4.0 5.0

32
.5

34
.0

35
.5

37
.0

38
.5

Figure 9: Cross-validated negative log-likelihood loss (CV Error) for the FMRLasso esti-
mator when varying over different numbers of components.

8 Discussion

We have presented an `1-penalized estimator for a finite mixture of high-dimensional
Gaussian regressions where the number of covariates may greatly exceed sample size.
Such a model and the corresponding Lasso-type estimator are useful to blindly account
for often encountered inhomogeneity of high-dimensional data. On a high-dimensional real
data example, we demonstrate a 17% gain in prediction accuracy over a (non-mixture)
linear model.

The computation and mathematical analysis in such a high-dimensional mixture model is
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Figure 10: Coefficients of the twenty most important genes, ordered according to∑3
r=1 |βr,j |, for the prediction optimal model with three components.

challenging due to the non-convex behavior of the negative log-likelihood. Regarding the
computation, a simple reparameterization is beneficial and the `1-penalty term makes the
optimization problem numerically better behaved. We develop an efficient generalized EM-
algorithm and we prove its numerical convergence to a stationary point. Regarding the
statistical properties, besides standard low-dimensional asymptotics, we present a non-
asymptotic oracle inequality for the Lasso-type estimator in a high-dimensional setting
with general, non-convex but smooth loss functions. The mathematical arguments are
different than what is typically used for convex losses.

A Proofs for Section 4

Proof of Theorem 4.1. The regularity assumptions (A)-(C) of Fan and Li (2001) are ful-
filled for finite mixtures of Gaussians (Lehmann (1983), page 442). Therefore, the Theorem
follows from Theorem 1 of Fan and Li (2001).

Proof of Theorem 4.2. Without loss of generality consider a two class mixture with k = 2.

Assertion 1. Let θ̂ be a root-n consistent local minimizer of −n−1`adapt(θ) (construction
as in Fan and Li (2001)).

For all (r, j) ∈ S from consistency of θ̂ we easily see that P[(r, j) ∈ Ŝ]→ 1. It then remains
to show that for all (r, j) ∈ Sc, P[(r, j) ∈ Ŝc]→ 1. Assume the contrary, i.e. w.l.o.g there
is a s ∈ {1, . . . , p} with φ1,s = 0 such that φ̂1,s 6= 0 with non-vanishing probability.

By using Taylor’s theorem there exists a (random) vector θ̃ on the line segment between
θ0 and θ̂ such that

1
n

∂`adapt
∂φ1,s

|θ̂

=
1
n

∂`

∂φ1,s
|θ0︸ ︷︷ ︸

(1)

+
1
n

∂`′

∂φ1,s
|θ0︸ ︷︷ ︸

(2)

(
θ̂ − θ0

)
+

1
2

(
θ̂ − θ0

)T 1
n

∂`′′

∂φ1,s
|θ̃︸ ︷︷ ︸

(3)

(
θ̂ − θ0

)
− λπ̂γw1,ssgn(φ̂1,s).

Now, term (1) is of order OP ( 1√
n

) (central limit theorem). Term (2) is of order OP (1)
(law of large numbers). Term (3) is of order OP (1) (law of large numbers and regularity
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condition on 3rd derivatives). Therefore we have

1
n

∂`adapt
∂φ1,s

|θ̂ = OP (
1√
n

) +
(
OP (1) +

(
θ̂ − θ0

)T
OP (1)

)(
θ̂ − θ0

)
− λπ̂γw1,ssgn(φ̂1,s).

As θ̂ is root-n consistent we get

1
n

∂`adapt
∂φ1,s

|θ̂ = OP (
1√
n

) + (OP (1) + oP (1)OP (1))OP (
1√
n

)− λπ̂γw1,ssgn(φ̂1,s)

=
1√
n

(
OP (1)− nλ√

n
π̂γw1,ssgn(φ̂1,s)

)
.

From the assumption on the initial estimator we have:

nλ√
n
w1,s =

nλ√
n|φini1,s|

=
nλ

OP (1)
→∞ as nλ→∞.

Therefore the second term in the bracket dominates the first and the probability of the
event

{
sgn

(
1
n
∂`adapt
∂φ1,s

|θ̂
)

= −sgn(φ̂1,s) 6= 0
}

tends to 1. But this contradicts the assump-

tion that θ̂ is a local minimizer (i.e. 1
n
∂`adapt
∂φ1,s

|θ̂ = 0).

Assertion 2. Write θ = (θS , θSc). From part 1) it follows that with probability tending to
one θ̂S is a root-n local minimizer of −n−1`adapt (θS , 0).

By using a Taylor expansion:

0 =
1
n
`′adapt|θ̂S =

1
n
`′|θ0,S +

1
n
`′′|θ0,S︸ ︷︷ ︸
(1)

(
θ̂S − θ0,S

)
+

1
2

(
θ̂S − θ0,S

)T
︸ ︷︷ ︸

(2)

1
n
`′′′|θ̃S︸ ︷︷ ︸
(3)

(
θ̂S − θ0,S

)

−λ


γπ̂γ−1

∑
(1,j)∈S w1,j |φ̂1,j | − γ(1− π̂)γ−1

∑
(2,j)∈S w2,j |φ̂2,j |

π̂γw1,Ssgn(φ̂1,S)
(1− π̂)γw2,Ssgn(φ̂2,S)

0
0

 .

Now term (1) is of order −IS(θ0) + oP (1) (law of large numbers); term (2) is of order
oP (1) (consistency); and term (3) is of order OP (1) (law of large numbers and regularity
condition on 3rd derivatives). Therefore we have

√
n

1
n
`′|θ0,S + (−IS(θ0) + oP (1))

√
n(θ̂S − θ0,S)−

√
nλOP (1) = 0

or

(−IS(θ0) + oP (1))
√
n(θ̂S − θ0,S)−

√
nλOP (1) = − 1√

n
`′|θ0,S (A.23)

Notice that 1√
n
`′|θ0,S  d N (0, IS(θ0)) by the central limit theorem. Furthermore

√
nλ =

o(1) as λ = o(n−1/2).

Therefore
√
n(θ̂S − θ0,S) d N (0, IS(θ0)) follows from equation (A.23).
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B Proofs for Section 5

Proof of Theorem 5.1. On T , defined in (5.19) with λ0 = c4

√
log4(n)/n (c4 as in Lemma

5.3; i.e. Mn = c4

√
log(n) in (5.17)), we have the basic inequality

Ē(θ̂|θ0) + λ‖φ̂‖1 ≤ Tλ0

[
(‖φ̂− φ0‖1 + ‖η̂ − η0‖2) ∨ λ0

]
+ λ‖φ0‖1 + Ē(θ0|θ0).

Note that ‖η̂ − η0‖2 ≤ 2K and Ē(θ0|θ0) = 0. Hence, for n sufficiently large,

Ē(θ̂|θ0) + λ‖φ̂‖1 ≤ Tλ0(‖φ̂− φ0‖1 + 2K) + λ‖φ0‖1 + Ē(θ0|θ0)
≤ Tλ0(‖φ̂‖1 + ‖φ0‖1 + 2K) + λ‖φ0‖1 + Ē(θ0|θ0),

and therefore also

Ē(θ̂|θ0) + (λ− Tλ0)‖φ̂‖1 ≤ Tλ02K + (λ+ Tλ0)‖φ0‖1 + Ē(θ0|θ0).

It holds that λ ≥ 2Tλ0 (since λ = C
√

log4(n)/n for some C > 0 sufficiently large),

λ0 = O(
√

log4(n)/n) and λ = O(
√

log4(n)/n), and due to the assumption about ‖φ0‖1
we obtain on the set T that Ē(θ̂|θ0)→ Ē(θ0|θ0) = 0 (n→∞). Finally, the set T has large
probability, as shown by Lemma 5.2 and using Proposition 5.1 and Lemma 5.3 for FMR
models.

Proof of Lemma 5.1. It is clear that

E(θ|θ0) = (θ − θ0)T I(θ0)(θ − θ0)/2 + rθ,

where

|rθ| ≤
‖θ − θ0‖31

6

∫
sup
θ∈Θ

max
j1,j2,j3

∣∣∣∣ ∂3lθ
∂θj1∂θj2∂θj3

∣∣∣∣fθ0dµ
≤ d3/2C3

6
‖θ − θ0‖32.

Hence
E(θ|θ0(x)) ≥ ‖θ − θ0(x)‖22Λ2

min/2− d3/2C3‖θ − θ0(x)‖32/6.

Now, apply the auxiliary lemma below, with K2
0 = dK2, Λ2 = Λ2

min/2, and
C = d3/2C3/6.

Auxiliary Lemma. Let h : [−K0,K0]→ [0,∞) have the following properties:

(i) ∀ ε > 0 ∃ αε > 0 such that infε<|z|≤K0
h(z) ≥ αε,

(ii) ∃ Λ > 0, C > 0, such that ∀ |z| ≤ K0, h(z) ≥ Λ2z2 − C|z|3.

Then ∀ |z| ≤ K0,
h(z) ≥ z2/C2

0 ,

where

C2
0 = max

[
1
ε0
,
K2

0

αε0

]
, ε0 =

Λ2

2C
.
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Proof. If ε0 > K0, we have h(z) ≥ Λ2z2/2 for all |z| ≤ K0.

If ε0 ≤ K0 and |z| ≤ ε0, we also have h(z) ≥ (Λ2 − ε0C)z2 ≥ Λ2z2/2.

If ε0 ≤ K0 and ε0 < |z| ≤ K0, we have h(z) ≥ αε0 = K2
0αε0/K

2
0 ≥ |z|2αε0/K2

0 .

Proof of Theorem 5.2. On T

Ē(θ̂|θ0) + λ‖φ̂‖1 ≤ Tλ0

[
(‖φ̂− φ0‖1 + ‖η̂ − η0‖2) ∨ λ0

]
+ λ‖φ0‖1 + Ē(θ0|θ0).

By Lemma 5.1,
Ē(θ̂|θ0) ≥ ‖θ̂ − θ0‖2Qn/c

2
0,

and Ē(θ0|θ0) = 0.

Case 1 Suppose that
‖φ̂− φ0‖1 + ‖η̂ − η0‖2 ≤ λ0.

Then we find
Ē(θ̂|θ0) ≤ Tλ2

0 + λ‖φ̂− φ0‖1 + Ē(θ0|θ0)

≤ (λ+ Tλ0)λ0.

Case 2 Suppose that
‖φ̂− φ0‖1 + ‖η̂ − η0‖2 ≥ λ0,

and that
Tλ0‖η̂ − η0‖2 ≥ (λ+ Tλ0)‖φ̂S − (φ0)S‖1.

Then we get

Ē(θ̂|θ0) + (λ− Tλ0)‖φ̂Sc‖1 ≤ 2Tλ0‖η̂ − η0‖2
≤ 4T 2λ2

0c
2
0 + ‖η̂ − η0‖22/(2c2

0)
≤ 4T 2λ2

0c
2
0 + Ē(θ̂|θ0)/2.

So then
Ē(θ̂|θ0) + 2(λ− Tλ0)‖φ̂Sc‖1 ≤ 8T 2λ2

0c
2
0.

Case 3 Suppose that
‖φ̂− φ0‖1 + ‖η̂ − η0‖2 ≥ λ0,

and that
Tλ0‖η̂ − η0‖2 ≤ (λ+ Tλ0)‖φ̂S − (φ0)S‖1.

Then we have
Ē(θ̂|θ0) + (λ− Tλ0)‖φ̂Sc‖1 ≤ 2(λ+ Tλ0)‖φ̂S − φ0‖1.

So then
‖φ̂Sc‖1 ≤ 6‖φ̂S − (φ0)S‖1.

We can then apply the compatibility condition to φ̂− φ0. This gives

Ē(θ̂|θ0) + (λ− Tλ0)‖φ̂Sc‖1 ≤ 2(λ+ Tλ0)
√
s‖φ̂S − φ0‖2.

≤ 2(λ+ Tλ0)
√
sκ‖ĝ − g0‖Qn
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≤ 4(λ+ Tλ0)2c2
0κ

2s+ Ē(θ̂|θ0)/2.

So we arrive at
Ē(θ̂|θ0) + 2(λ− Tλ0)‖φ̂Sc‖1 ≤ 8(λ+ Tλ0)2c2

0κ
2s.

Proof of Lemma 5.3. Let Z be a standard normal random variable. Then by straightfor-
ward computations, for all M > 0,

E|Z|l{|Z| > M} ≤ 2 exp[−M2/2],

and
E|Z|2l{|Z| > M} ≤ (M + 2) exp[−M2/2].

Thus, for n independent copies Z1, . . . , Zn of Z, and M = 2
√

log n,

P

(
1
n

n∑
i=1

|Zi|l{|Zi| > M} > 4 log n
n

)

≤ P

(
1
n

n∑
i=1

|Zi|l{|Zi| > M} − E|Z|l{|Z| > M} > 2log n
n

)

≤ nE|Z|2l{|Z| > M}
4(log n)2

≤ 2
n
.

The result follows from this, as

G1(Y ) = eK |Y |+K,

and Y has a normal mixture distribution.

C Proofs for Sections 3 and 6

Proof of Proposition 3.2. We restrict ourself to a two class mixture with k = 2. Consider
the function u(ξ) defined as

u(ξ) = exp(`(0)
pen(ξ))

∝
n∏
i=1

{(
π

1
σ1
e

−(Yi−X
′
iβ1)2

2σ2
1 + (1− π)

1
σ2
e

−(Yi−X
′
iβ2)2

2σ2
2

)
e
−λ
n
||β1||1
σ1 e

−λ
n
||β2||1
σ2

}
. (C.24)

We will show that u(ξ) is bounded from above on ξ = (σ1, σ2, β1, β2, π) ∈ Ξ = R2
>0×R2p×

[0, 1]. Then clearly −n−1`
(0)
pen(θ) is bounded from below on θ = (ρ1, ρ2, φ1, φ2, π) ∈ Θ =

R2
>0 × R2p × (0, 1).

The critical point for unboundedness is if we choose for an arbitrary sample point i ∈
1, . . . , n a β∗1 such that Yi − X ′iβ

∗
1 = 0 and let σ1 → 0. Without the penalty term

exp(−λ
n
||β∗1 ||1
σ1

) in (C.24) the function would tend to infinity as σ1 → 0. But as Yi 6= 0 for
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all i ∈ 1, . . . , n, β∗1 cannot be zero and therefore exp(−λ
n
||β∗1 ||1
σ1

) forces u(ξ) to tend to 0 as
σ1 → 0.

Let’s give a more formal proof for boundedness of u(ξ). Choose a small 0 < ε1 < minY 2
i

and ε2 > 0. As Yi 6= 0, i = 1 . . . n, there exists a small constant m > 0 such that

0 < minY 2
i − ε1 ≤ (Yi −Xiβ1)2 (C.25)

holds for all i = 1 . . . n as long as ||β1||1 < m and

0 < minY 2
i − ε1 ≤ (Yi −Xiβ2)2 (C.26)

holds for all i = 1 . . . n as long as ||β2||1 < m.

Furthermore there exists a small constant δ > 0 such that

1
σ1
e
− (minY 2

i −ε1)

2σ2
1 < ε2 and

1
σ1
e
−λ
n
m
σ1 < ε2 (C.27)

holds for all 0 < σ1 < δ and

1
σ2
e
− (minY 2

i −ε1)

2σ2
2 < ε2 and

1
σ2
e
−λ
n
m
σ2 < ε2 (C.28)

holds for all 0 < σ2 < δ.

Define the set K = {(σ1, σ2, β1, β2, π) ∈ Ξ; δ ≤ σ1, σ2}. Now u(ξ) is trivially bounded on
K. From the construction of K and equations (C.25)-(C.28) we easily see that u(ξ) is also
bounded on Kc and therefore bounded on Ξ.

Proof of Theorem 6.1. The density of the complete data is given by

fc(Y,∆|θ) =
n∏
i=1

k∏
r=1

π
∆i,r
r

(
ρr√
2π
e−

1
2

(ρrYi−X′iφr)2

)∆i,r

,

whereas the density of the observed data is given by

fobs(Y |θ) =
n∏
i=1

k∑
r=1

πr
ρr√
2π
e−

1
2

(ρrYi−X′iφr)2

θ = (φ1, . . . , φk, ρ1, . . . , ρk, π1, . . . , πk−1) ∈ Θ = Rkp × Rk
>0 ×Π ⊂ Rkp+k+(k−1) = RD

Π = {π;πr > 0 for r = 1, . . . , k − 1 and
k−1∑
r=1

πr < 1}, πk = 1−
k−1∑
r=1

πr.

Furthermore the conditional density of the complete data given the observed data is given
by k(Y,∆|Y, θ) = fc(Y,∆|θ)/fobs(Y |θ). Then, the penalized negative log-likelihood fulfills
the equation

νpen(θ) = −n−1`
(0)
pen,λ(θ) = −n−1 log fobs(Y |θ)+λ

k∑
r=1

||φr||1 = Qpen(θ|θ′)−H(θ|θ′) (C.29)
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where Qpen(θ|θ′) = −n−1E[log fc(Y,∆|θ)|Y, θ′] + λ
∑k

r=1 ||φr||1 (compare Section 6.1) and
H(θ|θ′) = −n−1E[log k(Y,∆|Y, θ)|Y, θ′].

By Jensen’s inequality we get the following important relationship:

H(θ|θ′) ≥ H(θ′|θ′) ∀ θ ∈ Θ, (C.30)

see also Wu (1983). Qpen(θ|θ′) and H(θ|θ′) are continuous functions in θ and θ′. If we think
of them as functions in θ with fixed θ′ we write also Qpen,θ′(θ) and Hθ′(θ). Furthermore
Qpen,θ′(θ) is a convex function in θ and strictly convex in each coordinate of θ. As a last
preparation we give a definition of a stationary point for non-differentiable functions (see
also Tseng (2001)):

Definition C.1. Let u be a function defined on a open set U ⊂ RD. x ∈ U is called
stationary point if u′(x; d) = limα↓0

u(x+αd)−u(x)
α ≥ 0 ∀d ∈ RD.

We are now ready to start with the proof which is inspired by Bertsekas (1995).

Proof: Let θm = θ(m) be the sequence generated by the BCD-GEM algorithm. We need to
prove that for a converging subsequence θmj → θ̄ ∈ Θ, θ̄ is a stationary point of νpen(θ).
Taking directional derivatives of equation (C.29) yields

ν ′pen(θ̄; d) = Q′pen,θ̄(θ̄; d)− 〈5Hθ̄(θ̄), d〉.

Note that 5Hθ̄(θ̄) = 0 as Hθ̄(x) is minimized for x = θ̄ (equation (C.30)). Therefore it
remains to show that Q′

pen,θ̄
(θ̄; d) ≥ 0 for all directions d. Let

zmi = (θm+1
1 , . . . , θm+1

i , θmi+1, . . . , θ
m
D ).

Using the definition of the algorithm we have:

Qpen,θm(θm) ≥ Qpen,θm(zm1 ) ≥ . . . ≥ Qpen,θm(zmD−1) ≥ Qpen,θm(θm+1). (C.31)

Additionally from the properties of GEM (equation (C.29) and (C.30)) we have:

νpen(θ0) ≥ νpen(θ1) ≥ . . . ≥ νpen(θm) ≥ νpen(θm+1). (C.32)

Equation (C.32) and the converging subsequence imply that the sequence {νpen(θm);m =
0, 1, 2, . . .} converges to νpen(θ̄). Further we have:

0 ≤ Qpen,θm(θm)−Qpen,θm(θm+1) = νpen(θm)− νpen(θm+1) +Hθm(θm)−Hθm(θm+1)︸ ︷︷ ︸
≤0

≤ νpen(θm)− νpen(θm+1)︸ ︷︷ ︸
→νpen(θ̄)−νpen(θ̄)=0

. (C.33)

We conclude that the sequence {Qpen,θm(θm)−Qpen,θm(θm+1);m = 0, 1, 2, . . .} converges
to zero.

We now show that {θmj+1
1 − θmj1 } converges to zero (j → ∞). Assume the contrary, in

particular that {zmj1 − θmj} does not converge to 0. Let γmj = ||zmj1 − θmj ||. Without
loss of generality (by restricting to a subsequence) we may assume that there exists some

γ̄ > 0 such that γmj > γ̄ for all j. Let smj1 = z
mj
1 −θmj
γmj

. smj1 differs from zero only along
the first component. As smj1 belongs to a compact set (||smj1 || = 1) we may assume that
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s
mj
1 converges to s̄1. Let us fix some ε ∈ [0, 1]. Notice that 0 ≤ εγ̄ ≤ γmj . Therefore,
θmj + εγ̄s

mj
1 lies on the segment joining θmj and z

mj
1 , and belongs to Θ because Θ is

convex. As Qpen,θmj (.) is convex and z
mj
1 minimizes this function over all values that

differ from θmj along the first coordinate, we obtain

Qpen,θmj (z
mj
1 ) = Qpen,θmj (θ

mj + γmjs
mj
1 ) ≤ Qpen,θmj (θmj + εγ̄s

mj
1 ) ≤ Qpen,θmj (θmj ).

(C.34)
From equation (C.31) and (C.34) we conclude

0 ≤ Qpen,θmj (θ
mj )−Qpen,θmj (θmj + εγ̄s

mj
1 )

(C.34)︷︸︸︷
≤ Qpen,θmj (θ

mj )−Qpen,θmj (z
mj
1 )

(C.31)︷︸︸︷
≤ Qpen,θmj (θ

mj )−Qpen,θmj (θmj+1).

Using (C.33) and continuity of Qpen,x(y) in both arguments x and y we conclude by taking
the limit j →∞:

Qpen,θ̄(θ̄ + εγ̄s̄1) = Qpen,θ̄(θ̄) ∀ε ∈ [0, 1].

Since γ̄s̄1 6= 0 this contradicts the strict convexity of Qpen,θ̄(x1, θ̄2, . . . , θ̄D) as a function
of the first block-coordinate. This contradiction establishes that zmj1 converges to θ̄.

From the definition of the algorithm we have:

Qpen(zmj1 |θ
mj ) ≤ Qpen(x1, θ

mj
2 , . . . , θ

mj
D |θ

mj ) ∀x1.

By continuity and taking the limit j →∞ we obtain:

Qpen,θ̄(θ̄) ≤ Qpen,θ̄(x1, θ̄2, . . . , θ̄D) ∀x1.

Repeating the argument we conclude that θ̄ is a coordinatewise minimum. Therefore,
following Tseng (2001), θ̄ is easily seen to be a stationary point of Qpen,θ̄(.), in particular
Q′
pen,θ̄

(θ̄; d) ≥ 0 for all directions d.
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