Stability Selection

Nicolai Meinshausen and Peter Bithlmann
Unwversity of Oxford and ETH Zirich

September 17, 2008

Abstract

Estimation of structure, such as in graphical modeling, cluster analysis or variable
selection, is notoriously difficult, especially for high-dimensional data. We introduce
the new method of stability selection. It is based on subsampling in combination with
(high-dimensional) selection algorithms. As such, the method is extremely general and
has a very wide range of applicability. Stability selection provides finite sample control
for some error rates of false discoveries and hence a transparent principle to choose a
proper amount of regularization for structure estimation or model selection. Maybe even
more importantly, results are typically remarkably insensitive to the chosen amount of
regularization. Another property of stability selection is the improvement over a pre-
specified selection method. We prove for randomized Lasso that stability selection will
be model selection consistent even if the necessary conditions needed for consistency of
the original Lasso method are violated. We demonstrate stability selection for variable
selection, Gaussian graphical modeling and clustering, using real and simulated data.

1 Introduction

Estimation of discrete structure, such as graphs or clusters, or model selection is an age-old problem
in statistics. It has enjoyed increased attention in recent years due to the massive growth of data
across many scientific disciplines. These large datasets often make estimation of discrete structures
or model selection imperative for improved understanding and interpretation. Most classical results
do not cover the loosely defined case of high-dimensional data, and it is mainly in this area where
we motivate the promising properties of our new stability selection.

In the context of regression, for example, an active area of research is to study the p > n case,
where the number of variables or covariates p outnumber the number of observations n; for an early
overview see for example van de Geer and van Houwelingen (2004). In a similar spirit, graphical
modeling with many more nodes than sample size has been the focus of recent research, and cluster
analysis is another widely used technique to infer a discrete structure from observed data.

Challenges with estimation of discrete structures include computational aspects, since corre-
sponding optimization problems are discrete, as well as determining the right amount of regulariza-
tion, for example in an asymptotic sense for consistent structure estimation. Substantial progress



has been made over the last years in developing computationally tractable methods which have
provable statistical (asymptotic) properties, even for the high-dimensional setting with many more
variables than samples. One interesting stream of research has focused on relaxations of some
discrete optimization problems, for example by ¢;-penalty approaches (Donoho and Elad, 2003;
Meinshausen and Biithlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Yuan and Lin, 2007)
or greedy algorithms (Freund and Schapire, 1996; Tropp, 2004). The practical usefulness of such
procedures has been demonstrated in various applications. However, the general issue of select-
ing a proper amount of regularization (for the procedures mentioned above and for many others)
for getting a right-sized structure or model has largely remained a problem with unsatisfactory
solutions.

We address the problem of proper regularization with a very generic subsampling approach
(bootstrapping would behave similarly). We show that subsampling can be used to determine the
amount of regularization such that a certain familywise error rate for type I multiple testing can be
conservatively controlled for finite sample size. Particularly for complex, high-dimensional prob-
lems, a finite sample control is much more valuable than an asymptotic statement with the number
of observations tending to infinity. Beyond the issue of choosing the amount of regularization, the
subsampling approach yields a new structure estimation or model selection scheme which is stable
and rather insensitive to the specification of the familywise error rate. For the more specialized
case of high-dimensional linear models, we prove what we expect in greater generality: namely
that subsampling in conjunction with ¢;-penalized estimation requires much weaker assumptions
on the design matrix for asymptotically consistent variable selection than what is needed for the
(non-subsampled) ¢1-penalty scheme. Furthermore, we show that additional improvements can be
achieved by randomizing not only via subsampling but also in the selection process for the vari-
ables, bearing some resemblance to the successful tree-based Random Forest algorithm (Breiman,
2001). Subsampling (and bootstrapping) has been primarily used so far for asymptotic statistical
inference in terms of standard errors, confidence intervals and statistical testing. Our work here
is of a very different nature: the marriage of subsampling and high-dimensional selection algo-
rithms yields finite sample familywise error control and markedly improved structure estimation or
selection methods.

1.1 Preliminaries and examples

In general, let 8 be a p-dimensional vector, where (3 is sparse in the sense that s < p components
are 0. In other words, ||3||o = s < p. Denote the set of non-zero values by S = {k : O; # 0} and the
set of variables with vanishing coefficient by N = {k : §; = 0}. The goal of structure estimation is
to infer the set S from noisy observations.

As a first supervised example, consider data (X @, Y(l)), (X ("),Y(”)) with univariate re-
sponse variable Y and p-dimensional covariates X. We typically assume some independence struc-
ture among the data. The vector 8 could be the coefficient vector in a linear model

Y =XB+e¢, (1)

where Y = (Y3,...,Y,), X is the n X p design matrix and ¢ = (£1,...,&y,) is the random noise



whose components are independent, identically distributed. Thus, inferring the set S from data is
the well-studied variable selection problem in linear regression. A main stream of classical methods
proceeds to solve this problem by penalizing the negative log-likelihood with the ¢yp-norm |[|3||o
which equals the number of non-zero components of 3. The computational task to solve such
an fyp-norm penalized optimization problem becomes quickly infeasible if p is getting large, even
when using efficient branch and bound techniques. Alternatively, one can relax the £y-norm by the
¢1-norm penalty. This leads to the Lasso estimator (Tibshirani, 1996; Chen et al., 2001) estimator:

P
B = argmingegs |V — XI5+ A |8k, (2)
k=1

where A € RT is a regularization parameter and we typically assume that the covariates are on
the same scale, i.e. || Xg|2 = Z?:l(Xlgi))Q = 1. An attractive feature of Lasso is its computational
feasibility for large p since the optimization problem in (2) is convex. Furthermore, the Lasso is able
to do variable selection by shrinking certain estimated coefficients exactly to 0 and hence, we can
estimate the set S of non-zero 3 coeflicients by S = {k; ﬁAé‘ # 0} which involves convex optimization
only. Substantial understanding has been gained over the last few years about consistency of such
Lasso model selection (Meinshausen and Bithlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006;
Yuan and Lin, 2007), and we present the details in Section 3.1. Among the challenges are the issue
of choosing a proper amount of regularization A\ for consistent model selection and the fact that
restrictive design conditions are needed for asymptotically recovering the true set S of relevant
covariates.

A second example is on unsupervised Gaussian graphical modeling. The data is
XD XM iid ~ Ny, D). (3)

The goal is to infer conditional dependencies among the d variables or components in X =
(X1,...,Xq). It is well-known that X; and X}, are conditionally dependent given all other com-
ponents {Xy); ¢ # j,k} if and only if Z;kl # 0, and we then draw an edge between nodes j and
k in a corresponding graph (Lauritzen, 1996). The structure estimation is thus on the index set
G ={(j,k); 1 <j <k < d} which has cardinality p = (g) (and of course, we can represent G
as a p x 1 vector) and the set of relevant conditional dependencies is S = {(j, k) € G; Ej_kl # 0}.
Similarly to the problem of variable selection in regression, fp-norm methods are computationally
very hard and become very quickly infeasible for moderate or large values of d. A relaxation with
/1-type penalties has also proven to be useful in this context (Meinshausen and Biihlmann, 2006).
A recent proposal is the graphical Lasso (Friedman et al., 2007):

0" = argming ponneg.der. {—108(det(0)) + tr(S0) + A Y _ 61/} (4)
i<k

This amounts to an f;-penalized estimator of the Gaussian log-likelihood, partially maximized

over the mean vector p, when minimizing over all nonnegative definite symmetric matrices. The

estimated graph structure is then S* = {(j,k) € G; (:);\k: # 0} which involves convex optimization

only and is computationally feasible for large values of d.



A third example is on unsupervised clustering. The data is XM, ..., X iid., where X is a
d-dimensional variable. When partitioning the samples into clusters, we can encode this information
with an index set C = {(7,7); 1 < i < j < n} of cardinality p = (g) and a corresponding p x 1
(B-vector whose entries are 1 if the corresponding sample indices belong to the same cluster and zero
otherwise. Thus, the true clustering is given by S = {(i,j) € C; B = 1}. For a fixed number
of clusters, sparsity in the sense that s = |S| is small implies that the clusters are balanced with
about equally many members per cluster.

The structure of the paper is as follows. The generic stability selection approach, its familywise
type I multiple testing error control and some representative examples from high-dimensional linear
models, Gaussian graphical models and clustering are presented in Section 2. A detailed asymptotic
analysis of Lasso and randomized Lasso for high-dimensional linear models is given in Section 3
and more numerical results are described in Section 4. After a discussion in Section 5, we collect
all the technical proofs in the Appendix.

2 Stability selection

Stability selection is not a new model selection technique. Its aim is rather to enhance and improve
existing methods. First, we give a general description of stability selection and we present specific
examples and applications later.

For a generic structure estimation or model selection technique, we have a tuning parameter
A € A C RT that determines the amount of regularization. This tuning parameter could be the
penalty parameter in ¢1-penalized regression, see (2), or in Gaussian graphical modeling, see (4);
or it may be number of steps in forward variable selection or Orthogonal Matching Pursuit (Mallat
and Zhang, 1993) or the number of iterations in Matching Pursuit (Mallat and Zhang, 1993) or
Boosting (Freund and Schapire, 1996); a large number of steps of iterations would have an opposite
meaning from a large penalty parameter, but this doesn’t cause conceptual problems. For every
value A € A, we obtain a structure estimate S* C {1,...,p}. It is then of interest to determine
whether there exists an A € A such that S is identical to S with high probability and how to
achieve that right amount of regularization.

2.1 Stability paths

We motivate the concept of stability paths in the following, first for regression. Stability paths are
derived from the concept of regularization paths. A regularization path is given by the coefficient
value of each variable over all regularization parameters: {ﬁ%‘, A€eA, k=1,...,p}. Stability paths
(defined below) are, in contrast, the probability for each variable to be selected when randomly
resampling from the data. For any given regularization parameter A € A, the selected set SH s
implicitly a function of the samples I = {1,...,n}. We write $* = S*(I) where necessary to
express this dependence.

Definition 1 (Selection probabilities) Let I be a random subsample of {1,...,n} of size [n/2],
drawn without replacement. For every set K C {1,...,p}, the probability of being in the selected
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Figure 1: Left: The Lasso path for the vitamin gene-expression dataset. The paths of the 6 non-
permuted genes are plotted as solid, red lines, while the paths of the 4082 permuted genes are shown
as broken, black lines. Selecting a model with all 6 unpermuted genes invariably means selecting a
large number of irrelevant noise variables. Middle: the stability path of Lasso. The first / variables
chosen with stability selection are truly non-permuted variables. Right: The stability path for the
‘randomized Lasso’ with weakness o = 0.2, introduced later. Now all 6 non-permuted variables are
chosen before any noise variable enters the model.

set SMI) is

iy = P7(K < 8\)). (5)

Remark 1 The probability P* in (5) is with respect to both the random subsampling (and other
sources of randomness if SA s a randomized algorithm, see Section 3.1).

Remark 2 The sample size of |[n/2] is chosen as it resembles most closely the bootstrap (Freedman,
1977; Bihlmann and Yu, 2002), while allowing computationally efficient implementation. But the
approach can be extended to work with different subsample sizes.

For every variable kK = 1,...,p, the stability path is given by the selection probabilities f[g,
r € A. It is a complement to the usual path-plots that show the coefficients of all variables
k =1,...,p as a function of the regularization parameter. It can be seen in Figure 1 that this
simple path plot is potentially very useful for improved model selection for high-dimensional data.

2.2 Example I: Variable selection in regression

We apply stability selection to the Lasso defined in (2). We work with a gene expression dataset
for illustration which is kindly provided by DSM Nutritional Products (Switzerland). For n = 115
samples, there is a continuous response variable measuring the logarithm of riboflavin (vitamin
B2) production rate of Bacillus Subtilis, and we have p = 4088 continuous covariates measuring



the logarithm of gene expressions from essentially the whole genome of Bacillus Subtilis. Certain
mutations of genes are thought to lead to higher vitamin concentrations and the challenge is to
identify those relevant genes via a linear regression analysis. That is, we consider a linear model as
in (1) and want to infer the set S = {k; Gy # 0}.

To see how Lasso and the related stability path cope with noise variables, we randomly permute
all but 6 of the 4088 gene expression across the samples, using the same permutation to keep the
dependence structure between the permuted gene expressions intact. The Lasso path {BA; A €A}
is shown in the left panel of Figure 1, as a function of the regularization parameter A (rescaled so
that A = 1 is the minimal A-value for which the null model is selected and A = 0 amounts to the
Basis Pursuit solution). Three of the “relevant” (unpermuted) genes stand out, but all remaining
three variables are hidden within the paths of noise (permuted) genes. The middle panel of Figure 1
shows the stability path. At least four relevant variables stand out much clearer now than they
did in the regularization path plot. The right panel shows the stability plot for randomized Lasso
which will be introduced in Section 3.1: now all 6 unpermuted variables stand above the permuted
variables and the separation between (potentially) relevant variables and irrelevant variables is even
better.

Choosing the right regularization parameter is very difficult for the original path. The pre-
diction optimal and cross-validated choice include too many variables, as shown in (Meinshausen
and Bithlmann, 2006; Leng et al., 2006), and the same effect can be observed in this example,
where 14 permuted variables are included in the model chosen by cross-validation. We will discuss
model selection for stability paths below. Figure 1 motivates that choosing the right regularization
parameter is much less critical for the stability path and that we have a better chance to select
truly relevant variables.

2.3 Stability selection

In a traditional setting, model selection would amount to choosing one element of the set of models
{$% Ae A}, (6)

where A is again the set of considered regularization parameters, which can be either continuous
or discrete. There are typically two problems: first, the correct model S might not be a member of
(6). Second, even if it is a member, it is typically very hard for high-dimensional data to determine
the right amount of regularization A to select exactly S, or to select at least a close approximation.

With stability selection, we do not simply select one model in the list (6). Instead the data are
perturbed (for example by subsampling) many times and we choose all structures or variables that
occur in a large fraction of the resulting selection sets.

Definition 2 (Stable variables) For a cutoff wy, with 0 < 7y, < 1 and a set of regularization
parameters A, the set of stable variables is defined as

Svstable — {k . rilea]{( ﬂé > 7Tthr}- (7)



We keep variables with a high selection probability and disregard those with low selection
probabilities. The exact cutoff 7, with 0 < 7y, < 1 is a tuning parameter but the results vary
surprisingly little for sensible choices in a range of the cutoff. Neither do results depend strongly
on the choice of regularization A or the regularization region A. See Figure 1 for an example.
We present some guidance on how to choose the cutoff parameter and the regularization region A
below.

2.4 Choice of regularization and error control

A natural goal in recovery of the set S is to include as few variables of the set IV of noise variables
as possible. The choice of the regularization parameter is hence crucial. An advantage of our
stability selection is that the choice of the initial set of regularization parameters A has typically
not a very strong influence on the results, as long as A is varied with reason. Another advantage,
which we focus on below, is the ability to choose this set of regularization parameters in a way
that guarantees, under stronger assumptions, a certain bound on the expected number of false
selections.

Definition 3 (Additional notation) Let S* = UycaS? be the set of selected structures or vari-
ables if varying the reqularization X\ in the set A. Let gp be the average number of selected variables,
qn = E*(|SMI)|), where the expectation E* is with respect to random subsampling. Define V' to be
the number of falsely selected variables with stability selection,

V= ‘N N sttable}'

In general, it is very hard to control V', as the distribution of the underlying estimator ﬁ depends
on many unknown quantities. Exact control is only possible under some simplifying assumptions.

Theorem 1 (Error control) Assume that the distribution of {1{keék}=k € N} is exchangeable
for all A € A. Also, assume that the original procedure is not worse than random guessing, i.e. for
any A € A,
E(|SNSM) . 181
E(NNSA) ~ [N

The number V' of falsely selected variables is then bounded by

(8)

Bv) < L @ ©)
B 27Tthr -1 D ’

where qp is described in Definition §.

The involved exchangeability assumption is perhaps stronger than one would wish, but there does
not seem to be a way of getting error control in the same generality without making similar
assumptions. For regression in (1), the exchangeability assumption is fulfilled if the design is
random and the distribution of {Xj,k € N} is exchangeable. Independence of all variables in
N is a special case. More generally, the variables could have a joint normal distribution with



Cov(Xg, X)) = p for all k,l € N with k # [ and 0 < p < 1. For real data, we have no guarantee
that the assumption is fulfilled but the numerical examples in Section 4 show that the bound holds
up very well.

Note also that the assumption of exchangeability is only needed to prove Theorem 1. All
other benefits of stability selection shown in this paper do not rely on this assumption. Besides
exchangeability, we needed another, quite harmless, assumption, namely that the original procedure
is not worse than random guessing. One would certainly hope that this assumption is fulfilled. If
it is not, the results below are still valid with slightly weaker constants. The assumption seems so
weak, however, that we do not pursue this further.

The threshold value 7, is a tuning parameter whose influence is very small. For sensible
values in the range of, say, mu, € (0.6,0.9), results tend to be very similar. Once the threshold is
chosen at some default value, the regularization region A is determined by the desired error control.
Specifically, for a default cutoff value 74, = 0.9, choosing the regularization parameters A such
that say gy = /0.8 p will control E(V) < 1; or choosing A such that gy = /0.8 ap controls the
familywise error rate (FWER) at level «, i.e. P(V > 0) < a. Of course, we can proceed the other
way round by fixing the regularization region A and choosing 7, such that E (V) is controlled at
the desired level.

Without stability selection, the regularization parameter A\ invariably has to depend on the
unknown noise level of the observations. The advantage of stability selection is that (a) exact error
control is possible, and (b) the method works fine even though the noise level is unknown. This is
a real advantage in high-dimensional problems with p > n, as it is very hard to estimate the noise
level in these settings.

Pointwise Control. For some applications, evaluation of subsampling replicates of S* are already
computationally very demanding for a single value of A. If this single value A is chosen such that
some overfitting occurs and the set 52 is rather too large, in the sense that it contains S with high
probability, the same approach as above can be used and is in our experience very successful as
results typically do not depend strongly on the utilized regularization A. See the example below for
graphical modelling. Setting A = {\}, one can immediately transfer all results above to the case of
what we call here pointwise control. For methods which select structures or incrementally, i.e. for
which §* C 8 for all A > X , pointwise control and control with A = [\, 00) are equivalent since
ﬂz is then monotonically increasing with decreasing A for all k =1,...,p.

2.5 Example II: Graphical modeling

Stability selection is also promising for graphical modelling. Here we focus on Gaussian graphical
models as described in Section 1.1 around formula (3) and (4).

The pattern of non-zero entries in the inverse covariance matrix ¥ ~! corresponds to the edges
between the corresponding pairs of variables in the associated graph and is equivalent to a non-zero
partial correlation (or conditional dependence) between such pairs of variables (Lauritzen, 1996).

There has been interest recently in using ¢;-penalties for model selection in Gaussian Graphical
models due to their computational efficiency for moderate and large graphs (Meinshausen and
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Figure 3:  The same plot as in Figure 2 but with the variables (expression values of each gene)
permuted independently. The empty graph is the true model. With stability selection, only a few
errors are made, as guaranteed by the made error control.



Bithlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2007; Banerjee and El Ghaoui, 2008; Bickel
and Levina, 2008; Rothman et al., 2008). Here we work with the graphical Lasso of (Friedman
et al., 2007), as applied to the data from 160 randomly selected genes from the vitamin gene-
expression dataset (without the response variable) introduced in Section 2.2. We want to infer the
set of non-zero entries in the inverse covariance matrix X ~!. Part of the resulting regularization
path of the graphical Lasso showing graphs for various values of the regularization parameter A, i.e.
{8* X € A} where $* = {(j, k); (2*1)% # 0}, are shown in the first row of Figure 2. For reasons
of display, variables (genes) are ordered first using hierarchical clustering and are symbolized by
nodes arranged in a circle. Stability selection is shown in the bottom row of Figure 2. We pursue
a pointwise control approach. For each value of A\, we select the threshold 7y, so as to guarantee
E(V) < 30, that is we expect fewer than 30 wrong edges among the 12720 possible edges in the
graph. The set Sstable yaries remarkably little for the majority of the path and the choice of ¢
(which is implied by A) does not seem to be critical, as already observed for variable selection in
regression.

Next, we permute the variables (expression values) randomly, using a different permutation for
each variable (gene). The true graph is now the empty graph. As can be seen from Figure 3,
stability selection selects now just very few edges or none at all (as it should). The top row shows
the corresponding graphs estimated with the graphical Lasso which yields a much poorer selection
of edges.

2.6 Example III: Clustering

We show now stability selection for clustering which has been briefly introduced in Section 1.1.
There are potentially many applications and we cannot exhaustively discuss all possibilities, but the
main point is to show that stability selection can work nicely with a wide variety of procedures. Here,
we take K-means clustering with the Hartigan-Wong algorithm (Hartigan, 1975) as the underlying
clustering scheme. In Figure 4, we show the outcome for a 2-dimensional example as a function
of the number of cluster centers. The underlying 2-dimensional data X € R? for i = 1,...,102,
were generated independently for o = 1/4 as follows:

X0~ Ny((1,1),06%1), i=1,...,50,
XD~ NR((~1,-1),0%1),  i=51,...,100,

and X100 = (~1.5,1.5) and X(192) = (1.5, —1.5). The first 100 data samples form thus two
obvious clusters, and the two remaining data points are outliers in the sense that they do not
belong to either of the two obvious clusters. As can be seen in Figure 4, the results of K-means
depend heavily on how many cluster centers are chosen. The number of cluster centers is thus
an important regularization parameter. Even if this parameter is picked in an optimal way, we
cannot recover the true underlying structure of two obvious clusters and two outliers (in the sense
described above). The two outliers are assigned to parts of the two main clusters if using 3 or 4
cluster centers. The two main clusters are broken apart if choosing 3 or more cluster centers and
there is no entirely satisfactory solution.
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Figure 4:  Stability selection applied to clustering. Top row: K-means results if using 2-8 cluster
centers. Points with identical class after K-means clustering are shown in the same color and
plotting symbol. For more than 2 centers, the two obvious clusters are split in various ways. The
outlying points are often associated with elements of the two clusters. Bottom row: the same result
if using stability selection. The outcome is identical for 3-7 cluster centers, putting the two obvious

clusters into one cluster each and assigning the two outlying points to yet two other separate clusters.
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For stability selection, we employ a slightly different perturbation as previously described to
demonstrate that the idea is more widely applicable. We repeat the clustering repeatedly, each
time using only a subset I C {1,...,n} of all samples with |I| = |[n/2] of the original n samples.
Let k be the number of cluster centers chosen for K-means and let C1, ..., Cy be the partitioning of
{1,...,n} into the k clusters by K-means. The quantity f[f ;18 then defined to be the probability
of having samples ¢ and j in the same K-means cluster, conditional of having both ¢ and j in the
set I,

I}, = P*(there exists 1 <k < k: {i,j} € Cis

{i,j} el )

Let the stability clusters C1, ..., C), be the m connectivity components of the graph given by putting
edges between nodes {i, j} if and only if f[iC j > e With 0 < g, < 1 here chosen as 0.75. Note
that the number m of connectivity components can both be larger or smaller than the number
k of clusters used in the underlying K-means clustering. Indeed, in Figure 4, the connectivity
components are always the desired two clusters for all values k = 3,...,7, while the two outliers
comprise an individual cluster each. For k& = 8, one of the two clusters is broken apart. Stability
selection has the same effect for clustering as for regression and graphical model selection. The
choice of the regularization parameter (here k) matters much less than in the original procedure.
Also, insight can be gained into the underlying structure (i.e. having two main clusters and two
outliers) that is not directly accessible in the original procedure. We point out that this approach
is very different from Lange et al. (2004) whose aim is to find an optimal number of clusters via
subsampling and stability, whereas we obtain with our stability selection a new clustering rule.

3 Consistent variable selection

Stability selection is a general technique, applicable to a wide range of applications, some of which
we have discussed above. Here, we want to discuss advantages and properties of stability selection
for the specific application of variable selection in regression with high-dimensional data which is a
well-studied topic nowadays (Meinshausen and Biithlmann, 2006; Zhao and Yu, 2006; Wainwright,
2006). We consider a linear model as in (1) with Gaussian noise,

Y = XB+e, (10)

with fixed n x p design matrix X and e1,...,e, i.id. AN(0,02). The predictor variables are
normalized with || Xj|2 = (Z?Zl(Xlgi))z)l/Q =1forall ke {1,...,p}.

Stability selection is attractive for two reasons. First, the choice of a proper regularization
parameter for variable selection is crucial and notoriously difficult, especially because the noise
level is unknown. With stability selection, results are much less sensitive to the choice of the
regularization. Second, we will show that stability selection makes variable selection consistent in
settings where the original methods fail.

We give general conditions under which consistent variable selection is achieved with stability
selection. Consistent variable selection is understood to be equivalent to

P(Sstatle — 8y 1 n — oo. (11)
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It is clearly of interest to know under which conditions consistent variable selection can be achieved.
In the high-dimensional context, this places a restriction on the growth of the number p of variables
and sparsity |S|, typically of the form |S]|-logp = o(n) (Meinshausen and Biithlmann, 2006; Zhao
and Yu, 2006; Wainwright, 2006). While this assumption is often realistic, there are stronger
assumptions on the design matrix that need to be satisfied for consistent variable selection. For
Lasso, it amounts to the ‘neighborhood stability’ condition (Meinshausen and Biihlmann, 2006)
which is equivalent to the ‘irrepresentable condition’ (Zhao and Yu, 2006; Zou, 2006; Yuan and
Lin, 2007). For Orthogonal Matching Pursuit (which is essentially forward variable selection), the
so-called ‘exact recovery criterion’ (Tropp, 2004) is sufficient and necessary for consistent variable
selection.

Here, we show that these conditions can be circumvented more directly by using stability se-
lection, also giving guidance on the proper amount of regularization. Due to the restricted length
of the paper, we will only discuss the case of Lasso whereas the analysis of Orthogonal Matching
Pursuit is indicated by Remark 3 below.

An interesting aspect is that stability selection with the original procedures alone yields often
very large improvements already. Moreover, when adding some extra sort of randomness in the
spirit of Random Forests Breiman (2001) weakens considerably the conditions needed for consistent
variables selection as discussed next.

3.1 Lasso and randomized Lasso

The Lasso (Tibshirani, 1996; Chen et al., 2001) estimator is given in (2). A natural question to ask
is whether the pattern of non-zero estimated coefficients S = {k; B,? # 0} closely approximates
the set S of true non-zero regression coefficients. It turns out that the design needs to satisfy the
so-called ‘neighborhood stability’ condition (Meinshausen and Bithlmann, 2006) which is equivalent
to the ‘irrepresentable condition’ (Zhao and Yu, 2006; Zou, 2006; Yuan and Lin, 2007):

max Isign(Bs)? (XEXe) T XE X, < 1. (12)

The condition in (12) is sufficient and (almost) necessary (the word “almost” refers to the fact that
a necessary relation is with “<” instead of “<”). If this condition is violated, all one can hope for
is recovery of the regression vector 3 in an fa-sense of convergence by achieving [|3* — 3|2 —p 0 for
n — 00. The main assumption here are bounds on the sparse eigenvalues as discussed below. This
type of £s-convergence can be used to achieve consistent variable selection in a two-stage procedure
by thresholding or, preferably, the adaptive Lasso (Zou, 2006). The disadvantage of such a two-step
procedure is the need to choose several tuning parameters without proper guidance on how these
parameters can be chosen in practice. We propose the randomized Lasso as an alternative. Despite
its simplicity, it is consistent for variable selection even though the ‘irrepresentable condition’ in
(12) is violated.

Randomized Lasso is a new generalization of the Lasso. While the Lasso penalizes the absolute
value || of every component with a penalty term proportional to A, the randomized Lasso changes
the penalty A to a randomly chosen value in the range [, A].
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Randomized Lasso with weakness o € (0, 1]:

Let Wy be ii.d. random variables in [a, 1] for £ = 1,...,p. The randomized
Lasso estimator 4% for regularization parameter A € R is then

P
PV — argmingegy ||Y — Xp|3 + )\Z |§/k;| (13)
k=1

A proposal for the distribution of the weights W, is described below, just before Theorem 2. The
word “weakness” is borrowed from the terminology of weak greedy algorithms (Temlyakov, 2000)
which are loosely related to our randomized Lasso. Implementation of (13) is straightforward by
appropriate re-scaling of the predictor variables (with scale factor Wy, for the k-th variable). Using
these re-scaled variables, the standard Lasso is solved, using for example the LARS algorithm (Efron
et al., 2004) or fast coordinate wise approaches (Friedman et al., 2007; Meier et al., 2008). The
perturbation of the penalty weights is reminiscent of the re-weighting in the adaptive Lasso (Zou,
2006). Here, however, the re-weighting is not based on any previous estimate, but is simply chosen
at random! As such, it is very simple to implement. However, it seems non-sensical at first sight
since one can surely not expect any improvement from such a random perturbation. If applied only
with one random perturbation, randomized Lasso is not very useful. However, applying randomized
Lasso many times and looking for variables that are chosen often will turn out to be a very powerful
procedure.

Consistency for randomized Lasso with stability selection For stability selection with
randomized Lasso, we can do without the irrepresentable condition (12) but need only a condition
on the sparse eigenvalues of the design (Bickel et al., 2007; Candes and Tao, 2007; Meinshausen
and Yu, 2008), also called the sparse Riesz condition in Zhang and Huang (2008).

Definition 4 (Sparse Eigenvalues) For any K C {1,...,p}, let Xx be the restriction of X to
columns in K. The minimal sparse eigenvalue ¢y s then defined for k < p as

| Xkal2
acRM KC{1,...ph:|K|<[k] a2

¢min(k) = (14)

We have to constrain sparse eigenvalues to succeed.

Assumption 1 (Sparse eigenvalues) There exists some C > 1 and some k > 10 such that

M<\/5/;{7 s:|S|. (15)

3/2
('bm/in(cs2)

This assumption (15) is related to the sparse Riesz condition in Zhang and Huang (2008). The

equivalent condition there requires the existence of some C > 0 such that

¢max((2+46)5+ 1) _
b2+ 05+ 1) = (16)
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compare with Remark 2 in Zhang and Huang (2008). This assumption essentially requires that
maximal and minimal eigenvalues, for a selection of order s variables, are bounded away from 0
and oo respectively. In comparison, our assumption is significantly stronger than (16), but at the
same time much weaker than the standard assumption of the ‘irrepresentable condition’ typically
necessary to get results comparable to ours.

Assumption 2 (Minimal non-zero value) The minimal non-zero entries of 3 satisfy, with the
same constant C' from Assumption 1,

k%lkl;lo|ﬁk| > 0.3 (C5)3/2)‘min7

where s = |S| and A\pin = 20(\/55 + 1)+/log(p)/n.

Assuming that the magnitude of relevant variables vanishes slower than 1/4/n is standard. Variables
whose coefficient vanish faster than 1/4/n are clearly not detectable. The involved constants in
Assumptions 1 and 2 are not very tight. These constants and the reliance on the number s of
relevant variables could possibly be improved upon with more elaborate analysis. It is not the
aim of this paper to come up with the weakest possible assumptions. We rather aim to show
in this section that stability selection offers a new selection scheme which requires much weaker
assumptions than the ‘irrepresentable condition’ in (12) for consistent variable selection with the
original Lasso estimator.

We will consider the Lasso solutions for all regularization parameters A in the region A, where
A ={X: X > A\nin}, with the minimal value given Assumption 2; we note that this value is bounded
from below by the choice of A, , with ¢p = a,, = 1 in Zhang and Huang (2008).

We have not specified the exact form of perturbations we will be using for the randomized
Lasso in (13). For the following, we consider the randomized Lasso of (13), where the weights Wy
are sampled independently as W}, = a with probability p,, € (0,1) and W), = 1 otherwise. Other
perturbations are certainly possible and work often just as well in practice.

Theorem 2 Let the weakness o be given by o = vmin(m)/m, for any v € (7/r,1/V/2), and m =
Cs?. If Assumptions 1 and 2 are satisfied and p > 10 and s > 7, there exists some § = &5 € (0,1)
such that for all wy, > 1 — 0§, stability selection with the randomized Lasso satisfies,

p(§stabtle — 8y > 1 —5/p. (17)

For p — oo, we have hence indeed asymptotically consistent variable selection in the sense of (11)
even if the irrepresentable condition (12) is violated.

There is an inherent tradeoff when choosing the weakness . A negative consequence of a low
« is that the design can get closer to singularity and can thus lead to unfavourable conditioning
of the weighted design matrix. On the other hand, a low value of o makes it less likely that
irrelevant variables are selected. This is a surprising result but rests on the fact that irrelevant
variables can only be chosen if the corresponding irrepresentable condition (12) is violated. By
randomly perturbing the weights with a low «, this condition is bound to fail sometimes, lowering
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the selection probabilities for such variables. A low value of « will thus help stability selection to
avoid selecting noise variables with a violated irrepresentable condition (12). In practice, choosing
a in the range of (0.2,0.8) gives very useful results.

Remark 3 In the spirit of Theorem 2, we have also a proof that stability selection for a random-
ized version of Orthogonal Matching Pursuit is asymptotically consistent for variable selection in
linear models, assuming a much weaker condition than the necessary and sufficient exact recovery
condition (Tropp, 2004) for (non-randomized) Orthogonal Matching Pursuit. This indicates that
stability selection has a more general potential for improved structure estimation, beyond the case
for the Lasso presented in Theorem 2.

Relation to other work In related and very interesting work, Bach (2008) has proposed ‘Bo-
lasso’ (for bootstrapped enhanced Lasso) and shown that using a finite number of subsamples of the
original Lasso procedure and applying basically stability selection with 7, = 1 yields consistent
variables selection under the condition that the penalty parameter A vanishes faster than typically

—1/2 and that the model dimension p is fixed. While the latter condition could

assumed, at rate n
possibly be technical only, the first distinguishes it from our results. Applying stability selection to
randomized Lasso, no false variable is selected for all sufficiently large values of A. In other words,
if A\ is chosen ‘too large’ with randomized Lasso, only truly relevant variable are chosen (though a
few might be missed). If A is chosen too large with Bolasso, noise variables might be picked up.
Figure 5 is a good illustration. Picking the regularization in the left plot (without extra random-
ness) to select the correct model is much harder than in the right plot, where extra randomness
is added. The same distinction can be made with two-stage procedures like adaptive Lasso (Zou,
2006) or hard-thresholding (Meinshausen and Yu, 2008; Candes and Tao, 2007), where variables
are thresholded. Picking A too large (and A is notoriously difficult to pick), false variables will
invariably enter the model. In contrast, stability selection with randomized Lasso is not picking

wrong variables if A is chosen too large.

3.2 Example

We illustrate the results on randomized Lasso with a small simulation example: p = n = 200 and
the predictor variables are sampled from a A(0,3) distribution, where ¥ is the identity matrix,
except for the entries 313 = Y93 = p and their symmetrical counterparts. We use a regression
vector # = (1,1,0,0,...,0). The response Y is obtained from the linear model Y = X3 + ¢ in
(1), where €1, ...,ey i.i.d. N(0,1/4). For p > 0.5, the irrepresentable condition in (12) is violated
and Lasso is not able to correctly identify the first two variables as the truly important ones, as it
always includes the third variable superfluously as well. Using the randomized version for Lasso,
the two relevant variables are still chosen with probability close to 1, while the irrelevant third
variable is only chosen with much lower probability; the corresponding probabilities are shown
for randomized Lasso in Figure 5. This allows to separate relevant and irrelevant variables. And
indeed, the randomized Lasso is consistent under stability selection.
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Figure 5:  The stability paths for randomized Lasso with weakness parameters o = 1 (left panel
identical to the original Lasso) and a = 0.5 (middle) and oo = 0.2 (right). Red solid lines are the
coefficients of the first two (relevant variables). The blue broken line is the coefficient of the third
(irrelevant) variable and the dotted lines are the coefficients from all other (irrelevant) variables.

Introducing the randomized version helps avoid choosing the third (irrelevant) predictor variable.
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Figure 6:  Comparison of stability selection with cross-validation for motif regression. For each
simulation setting, the cross-validated solution (for standard Lasso) is indicated by a dot and the
corresponding stability selection (for randomized Lasso, o = 0.5 on the left and o = 1 on the right)
by a red triangle, showing the average proportion of correctly identified relevant variables versus the
average number of falsely selected variables. The cross-validated solution and the stability selection
solution of a single setting are joined by a line. The broken vertical line indicates the value at which
the number of wrongly selected variables is controlled, namely E(V) < 2.5. Looking at stability
selection, the proportion of correctly identified relevant variables is very close to the CV-solution,
while the number of falsely selected variables is reduced dramatically.
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Figure 7:  The average number of falsely selected variables of stability selection (with randomized
Lasso and a € {0.2,0.5,1}) as a function of the average number of falsely selected variables for
standard Lasso. The tuning parameters are chosen in each case to guarantee that 1 relevant variable
is selected (left) or that 3 relevant variables are selected (right). Solutions for the same setup and
different weaknesses o are joined by a vertical lines. Stability selection with randomized Lasso
selects far fewer variables falsely than standard Lasso, across the whole range of signal-to-noise
ratios and sparsities.

4 Numerical Results

To investigate further the effects of stability selection numerically, we focus here on the application
of stability selection to Lasso and randomized Lasso. We use two real datasets as basis for our
simulations. The first is the already mentioned vitamin gene expression data (with p = 4088 and
n = 158) described in Section 2.2. The second dataset (p = 660 and n = 750) is about motif
regression for finding transcription factor binding sites (motifs) in DNA sequences. The response
variable consists of gene expression values (with genes being the samples) and the real-valued
predictor variables are abundance scores for p candidate motifs (for each of the genes). Our dataset
is from a heat-shock experiment with yeast. For a general description and motivation about motif
regression we refer to Conlon et al. (2003).

Each dataset is once used with all n available samples and once with sample size reduced to
|0.6n|. We do not use the response values from these datasets, however, as we need to know which
variables are truly relevant or irrelevant. To this end, we create sparse regression vectors by setting

B =0 for all k = 1,...,p, except for a randomly chosen set S of coefficients, where G, = 1 for
all k € S. The response Y is then simulated as Y = X3 + ¢, where ¢; i.i.d. N(0,02/n) for all
i = 1,...,n, where the rescaling of the variance with n is due to the rescaling of the predictor
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variables to unit norm, i.e. | X® |y = 1. The size s = |S| of the active set is increased in steps of 4
from 4 to 40. The noise level o2 is chosen to effectively have signal-to-noise ratios (SNR) of 0.25,1
and 4.

For each of these settings, Lasso is applied, with randomization and without, and simulations
are run 20 times. We are firstly interested in the cross-validated solution, compared with stability
selection. For stability selection, we chose gy = /0.8p and thresholds of 74, = 0.6, corresponding
to a control of E(V) < 2.5, where V is the number of wrongly selected variables. The control
is mathematically derived under the assumption of exchangeability for the distribution of noise
variables, see Theorem 1. This assumption is most likely not fulfilled for the given dataset and it
is of interest to see how well the bound holds up for real data.

Results are shown in Figure 6 for the motif regression dataset. Stability selection reduces
the number of falsely selected variables dramatically, while maintaining almost the same power
to detect relevant variables. The number of falsely chosen variables is remarkably well controlled
at the desired level, giving empirical evidence that the derived error control is useful beyond the
discussed setting of exchangeability. Stability selection thus helps to select a useful amount of
regularization.

The solution of stability selection cannot be reproduced by simply selecting the right penalty
with Lasso, since stability selection provides a fundamentally new solution. To compare the power
of both approaches, we look at the ranking of variables produced by both approaches. For Lasso,
a variable k is ranked higher than variable £k’ if and only if there exists some A such that ﬂA,? #0
and 52‘,’ = 0 for all N > ), i.e. according to the first appearance in the regularization path. For

stability selection, we simply rank variables according to their selection probability Iﬁzz, where ) is
chosen such that 1/0.8p variables are selected. For a given number u > 1 of desired ‘discoveries’, we
look in both lists how many irrelevant variables need to be selected to include u relevant variables.
Results are shown in Figure 7. Stability selection identifies as many or more correct variables
than the underlying method itself. Often the gain is substantial, irrespective of the sparsity of the
signal and the signal-to-noise-ratio. The weakness of the underlying randomized Lasso seems to
be of secondary importance, although having o < 1 generally helps slightly compared to the non
randomized version with a = 1, as one would expect from the theory.

5 Discussion

Stability selection addresses the notoriously difficult problem of structure estimation or model
selection, especially for high-dimensional problems. For example, cross-validation fails often for
high-dimensional data, sometimes spectacularly. Stability selection is based on subsampling in
combination with (high-dimensional) selection algorithms. The method is extremely general and
we demonstrate its applicability for variable selection in regression, for Gaussian graphical modeling
and for clustering.

Stability selection provides finite sample familywise multiple testing error control (or control of
other error rates of false discoveries) and hence a transparent principle to choose a proper amount
of regularization for structure estimation or model selection. Furthermore, the solution of stability
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selection depends surprisingly little on the chosen regularization which is an additional great benefit
besides error control.

Another property of stability selection is the improvement over a pre-specified selection method.
It is often the case that computationally efficient algorithms for high-dimensional selection are
inconsistent, even in very simple settings. We prove for randomized Lasso, and also for randomized
Orthogonal Matching Pursuit, that stability selection will be model selection consistent even if the
necessary conditions needed for consistency of the original method are violated. And thus, stability
selection will asymptotically select the right model in scenarios where Lasso or Orthogonal Matching
Pursuit fail.

In short, stability selection is the marriage of subsampling and high-dimensional selection algo-
rithms, yielding finite sample familywise error control and markedly improved structure estimation
or selection methods. Both of these main properties are demonstrated on simulated and real data.

6 Appendix

6.1 Sample splitting

An alternative to subsampling is sample splitting. Instead of observing if a given variable is selected
for a random subsample, one can look at a random split of the data into two non-overlapping
samples of equal size |n/2] and see if the variable is chosen in both sets simultaneously. Let I; and
I be two random subsets of {1,...,n} with |[;| = [n/2] for i = 1,2 and I; N [s = (. Define the
simultaneously selected set as the intersection of S*(I7) and S*(I),

S«simult,k — S’/\([l) N SA(IQ)

Definition 5 (Simultaneous selection probability) Define the simultaneous selection proba-
bilities 11 for any set K C {1,...,p} as

ﬂ%mult,)\ _ P*(K C Svsimult,)\)’ (18)

where the probability P* is with respect to the random sample splitting (and any additional random-
ness if SA s a randomized algorithm,).

We work with the selection probabilities based on subsampling but the following lemma lets us
convert these probabilities easily into simultaneous selection probabilities based on sample splitting.
The bound is rather tight for selection probabilities close to 1.

Lemma 1 (Lower bound for simultaneous selection probabilities) For any set K C {1,...,p},
a lower bound for the simultaneous selection probabilities is given by, for every w € €, by

TsmitA > ofy — 1 (19)

Proof. Let I} and I3 be the two random subsets in sample splitting of {1, ...,n} with |I;| = |n/2]
fori = 1,2 and I;NIy = . Denote by sx({1,1}) the probability P*({K C S*(I;)}N{K C S*(I2)}).
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Note that the two events are not independent as the probability is only with respect to a random
split of the fixed samples {1, ...,n} into I; and I5. The probabilities sk ({1,0}), sk ({0,1}), sx({0,0})
are defined equivalently by P*({K C SN(I})}N{K € S*(I)}), P*({K ¢ SMI1)}n{K C S*I»)}),
and P*({K ¢ SMI1)} N{K ¢ $*(I3)}). Note that 157" — s ({1,1}) and

ﬂ;\( = SK({LO}) + SK({L 1}) = SK({O’ 1}) + SK({L 1})
1-1% = sx({0,1}) + 5K ({0,0}) = sk ({1,0}) + sx({0,0})

It is obvious that sk ({1,0}) = sx({0,1}). As sx({0,0}) > 0, it also follows that sx({1,0}) <
1-— f[;‘{ Hence
572 = s ({1,1}) = T — sk ({1,0}) > 20T — 1,

which completes the proof. O

6.2 Proof of Theorem 1

The proof uses mainly Lemma 2. We first show that P(k € S*) < qa/p for all k € N, using the
made definitions S = UyeaS* and gy = E(|S|). Define furthermore Ny = N N S™ to be the
set of noise variables (in N) which appear in S and analogously Uy = S N SA. The expected
number of falsely selected variables can be written as E(|Ny|) = E(|SY|) — E(|UA|) = qa — E(|U4)).
Using the assumption (8) (which asserts that the method is not worse than random guessing), it
follows that E(|Upr|) > E(|Na|)|S|/|N|. Putting together, (1 + |S|/|N|)E(]Na|) < ga and hence
IN|"YE(|N4|) < qa/p. Using the exchangeability assumption, we have P(k € S%) = E(|Na|)/|N|
for all k € N and hence, for k € N, it holds that P(k € S) < qa/p, as desired. Note that this result
is independent of the sample size used in the construction of S A X € A. Now using Lemma 2 below,
it follows that P(maxyep I > ¢) < (q/p)?/€ for all 0 < € < 1 and k € N. Using Lemma 1,
it follows that P(maxyep f[ﬁ > ) < P((maxyep [simultA | 1)/2 > mr) < (qa/p)?/ 2oy — 1).
Hence E(V) = Y e n P(maxyea I} > mr) < a3/ (p(2745 — 1)), which completes the proof. [

Lemma 2 Let K C {1,...,p} and S* the set of selected variables based on a sample size of |n/2].
If P(K C S*) <e, then _
P(ﬂ%mult,)\ > 5) < 52/§'

If P(K C UyepS) < ¢ for some A C RY, then

P(maxII™ > €) < &2/¢.
Proof. Let I1,Io C {1,...,n} be, as above, the random split of the samples {1,...,n} into two
disjoint subsets, where both |I;| = |n/2] for i = 1,2. Define the binary random variable H3 for all
subsets K C {1,...,p}as Hp := 1{K C {S”\(Il)ﬂg’\(fg)}}. Denote the data (the n samples) by Z.
The simultaneous selection probability TI57"* as defined in (18), is then II5™""* = E*(H)) =
E(H3|Z), where the expectation E* is with respect to the random split of the n samples into sets
I, and I5 (and additional randomness if S is a randomized algorithm). To prove the first part, the
inequality P(K C $*) < ¢ (for a sample size |n/2]), implies that P(H} = 1) < P(K C SM1I1))? <
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¢2 and hence E(H}) < 2. Therefore, E(H}) = E(E(H}|Z)) = EIT™) < ¢2 Using a Markov-

type inequality, fP(Hﬁm“lt’)‘ > &) < E(Hﬁmu“’)‘) < 2. Thus P(ﬂﬁmm’)‘ > €) < 2/¢, completing
the proof of the first claim. The proof of the second part follows analogously. O

6.3 Proof of Theorem 2

Instead of working directly with form (13) of the randomized Lasso estimator, we consider the
equivalent formulation of the standard Lasso estimator, where all variables have initially unit norm
and are then rescaled by their random weights W.

Definition 6 (Additional notation) For weights W as in (13), let X* be the matriz of re-scaled
variables, with X}’ = X3.- Wy, for each k =1,...,p. Let ¢y}, and ¢}, be the marimal and minimal

max min

eigenvalues analogous to (14) for X" instead of X.

The proof rests mainly on the two-fold effect a weakness o < 1 has on the selection properties
of the Lasso. The first effect is that the singular values of the design can be distorted if working
with the reweighted variables X" instead of X itself. A bound on the ratio between largest and
smallest eigenvalue is derived in Lemma 3, effectively yielding a lower bound for useful values of a.
The following Lemma 4 then asserts for such values of a that the relevant variables in S are chosen
with high probability under any random sampling of the weights. The next Lemma 5 establishes
the key advantage of randomized Lasso as it shows that the ‘irrepresentable condition’ (12) is
sometimes fulfilled under randomly sampled weights (even though its not fulfilled for the original
data). Variables which are wrongly chosen because condition (12) is not satisfied for the original
unweighted data will thus not be selected by stability selection. The final result is established in
Lemma 7 after a bound on the noise contribution in Lemma 6.

Lemma 3 Define C by (2 +4C)s +1 = Cs? and assume s > 7. Let W be weights generated
randomly in (o, 1], as in (13), and let X* be the corresponding rescaled predictor variables, as
in Definition 6. For o? = vomin(Cs?)/(Cs?), with v € RY, it holds under Assumption 1 for all
random realizations W that

hax(Cs?) _ 7C
Pinin(C'5%) : v (20)

Proof. As ¢max and 1/¢min are monotonically increasing in their respective arguments, it hence
follows that

Pmax(C's?) < e _ (Cs?) 12 (2+4C)s+1)/s

¢3/2 (Cs2) K K

min

< (Cs)"*(3+4C)/x,

where the first inequality follows by Assumption 1, the equality by (2 + 4C)s 4+ 1 = Cs? and the
second inequality by s > 1. It follows that

Gmax(Cs?) 3 +4C | min(Cs?)
Gmin(C's?) = K Cs2 (21)
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Now, let W be again the p x p-diagonal matrix with diagonal entries Wy, = Wi forall k =1,...,p.
Then X% = XW and, taking suprema over all YW with diagonal entries in («, 1],

(Pmax(m))® < sup  sup (| X 0]]2/[|v]|2)?
W veRP:|[vlo<m

= sup sup  (WIWIXTXW0)/0T0 < (dmax(m))?,
W veRP:|jv]o<m
where the last step follows by a change of variable transform o = Wuv and the fact that [jv|op =
IWollp as well as vTv = T W= HTW=15 and thus 979 < vTv < o207 for all W with diagonal
entries in (¢, 1]. The corresponding argument for ¢min(m) yields the bound ¢, (m) > a@min(m).
The claim (20) follows by observing that C > 1 for s > 7, since C' > 1 by Assumption 1 and hence
34+4C <7C. O

Lemma 4 Let AW be the set {k : g # 0} of selected variables of the randomized Lasso
with weakness o € (0,1] and randomly sampled weights W. Suppose that the weakness a® >
(7/K)pmin(Cs%)/(Cs?) and that ming.s, 2o |Bk| > 0.3 (Cs)>2\. Under the assumptions of Theorem
2, there exists a set Qg in the sample space of Y with P(Y € Qy) > 1 — 3/p, such that for all
realizations W = w, forp > 5, if Y € Qy,

|AMY| < Cs? and S C AMwin®, (22)

Proof. Follows mostly from Theorem 1 in Zhang and Huang (2008). To this end, set either a,, = p
and ¢y = 0 or, equivalently, a, = ¢y = 1 in their notation. Setting also ¢* = Cs?, we have
q* < (2+4C)s+1, as, by definition, (2+4C)s+1 = Cs?, as in Lemma 3. The quantity C' = c*/c
in Zhang and Huang (2008) is identical to our notation ¢, (Cs?)/¢%. (Cs?). It is bounded for

all random realizations of W = w, as long as a? > (7/k)¢min(Cs?)/(Cs?), using Lemma 3, by

max((2+40)s +1) _ &
Oin(2+4C)s +1) =

Hence all assumptions of Theorem 1 in Zhang and Huang (2008) are fulfilled, with n; = 0, for any
random realization W = w. Using (2.20)-(2.24) in Zhang and Huang (2008), it follows that there
exists a set (g in the sample space of Y with P(Y € ) > 2 — exp(2/p) — 2/p* > 1 — 3/p for all
p > 5, such that if Y € Qq, from (2.21) in Zhang and Huang (2008),

|AMY US| < (24 4C)s < Cs?, (23)

and, from (2.23) in Zhang and Huang (2008),

SO 1021k ¢ AN < (§€+ %@2 + %@3)5/\2 <5.60°302 < (0.3(Cs)P20)2,  (24)
kesS
having used, for the first inequality, that, in the notation of Zhang and Huang (2008), 1/(c*c.) <
c*/ci. The n~2 factor was omitted to account for our different normalization. For the second
inequality, we used 4C < Cs. Using the assumption about the minimal absolute non-zero value of
£, the last equation implies S C AN, which completes the proof. O
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Lemma 5 Let A C {l,...,p} and k € {1,...,p} \ A. For a® < ¢pmin(m)/(v/2m), with m = Cs?,
there exists a set b, of the sample space of W with Py, () > puw(1—pw)™ such that for allw € Qy,

sup sup [|((X4)TXE)THXE)T X < 27 (25)

A|A|[<m k¢A
where the probability P, is with respect to random sampling of the weights W and py, is, as above,
the probability of choosing weight o for each variable and 1—p,, the probability of choosing weight 1.

Proof. Let w be a realization of W such that w, = a and w; = 1 for all j € A. The probability of
W = w is clearly p, (1 — pw)‘A| under the used sampling scheme for the weights. For these weights,

(X)X THXD XY = a(XEXa) T XA X

Using the bound on «, it hence only remains to be shown that, if || X;||o =1 for all l € {1,...,p},
for all A and k ¢ A and m € N,

sup  sup [(XFXa) " XTI < 10/ (). (26)
A:JAI<m k¢A

Since [|v]1 < +/]A[||7]]2 for any vector v € RI4l it is sufficient to show, for v := (X4 X4) ' X1 X},

sup sup H’YH% S 1/¢min(m)'
A:Al<m k¢ A
As X 47 is the projection of X into the space spanned by X4 and ||Xk|]§ = 1, it holds that
[ X47]13 < 1. Using | Xa7[3 = 77 (X5XA)7 = dmin(JA]][7]3, it follows that [|7][3 < 1/¢min(|A]),

which completes the proof. O

Lemma 6 Let Py = XA(XXXA)*XA? be the projection into the space spanned by all variables in
subset A C {1,...,p}. Suppose p > 10. Then there exists a set Q1 with P(Q1) > 1—2/p, such that
for all w € Qy,

sup sup | X[ (1 — Pa)e| < 20(v/m + 1)y/log(p)/n. (27)

A:|A|<m k¢ A

Proof. Let Q) be the event that maxgcg . |XTe| < ov/2log(p?)/n. As entries in ¢ are i.i.
N(0,0?) distributed, P(Q}) > 1 —1/p for all 6 € (0,1). Note that, for all A C {1,...,p} and
k¢ A, | XFPye| < ||Pacllz. Define Q as

sup [|Pacll> < 20/mlog(p)/n. (28)

|A|<m

It is now sufficient to show that P(Q2{) > 1 — 1/p. Showing the bound P(2) > 1 — 1/p for the
set (28) is related to a bound in Zhang and Huang (2008) and we repeat a similar argument. Each
term +/n||Pae||2/o has a X\2A\ distribution as long as X 4 is of full rank |A|. Hence, using the same
standard tail bound as in the proof of Theorem 3 of Zhang and Huang (2008),

P(nl|Pacl3/o* > |A](1 +41ogp)) < (p"(1 + 4logp)) V2 < 34172,
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having used 1 + 4logp < p for all p > 10 in the last step and thus, using (|f1|) < plAl/|A],

P z1- >0 ()= 30 a2 -

|A|=2 |A|=2
which completes the proof if setting € = Q) N QY and concluding that P(2;) > 1 — 2/p for all
p > 10. O

Lemma 7 Let Z = (X@,Y®)) be the observed data with i = 1,...,n. Let 6, = pu(l — pu)Cs.
Let again f[ﬁ = P,(k € A)"W) be the probability for variable k of being in the selected subset, with

respect to random sampling of the weights W. Then, under the assumptions of Theorem 2, for all
k¢S andp > 10,

12 > 1— 6y i ' >1-—
P(I/{lg/}\(l’[k_l 0w zfandonlysz‘ES)_l 5/p. (29)

Proof. We use event {2y of Lemma 4 and event 2; of Lemma 6. Since, using these two lemmas,
P(QoNh) =21 - P() — P(Q)) 21-3/p—2/p=1-5/p,
it is sufficient to show that, for all w € Qg N Qy,

max I} >1— 6, if and only if k € S (30)
€

We begin with the “only if” part in (30). A variable k ¢ S is in the selected set AMW only if
(XY = XM ) > A (31)

where B)"W’_k is the solution to (13) with the constraint that B;‘W = 0, comparable to the analysis
in Meinshausen and Bithlmann (2006). Let A = {k : 35W:=% £ 0} be the set of non-zero compo-
nents. Let PAF be the projection operator into the space spanned by all variables in the set A. For
all W = w, this is identical to

w w w\T vw\—1 yvw T -1
Then splitting the term (X3)7(Y — X%, A" ~*) in (31) into the two terms
w w w A - w w w AW
(X (1= PO = X258 + (X TPY(Y — X980, (32)
it holds for the right term in (32) that
(X)TPYy — xu a0 < (G TXY(XY)TXY) sign(BMYR)A
< H((XE)TXZ)’I(XZ)TXE”HM-

Looking at the left term in (32), since Y € Qg, we know by Lemma 4 that [A| < Cs® and S C A.
Thus the left term in (32) is bounded from above by

(X)) =P < sup  sup |[(Xp)" (1= Pyl - [ Xpll2/]| Xkll2
AJA|<Cs? k¢ A

< Amin[| X5 2/1[ Xkl 25
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having used Lemma 6 in the last step with A\pj,. Putting together, the two terms in (32) are
bounded, for all w € Q¢ Ny, by

Amin [ X5 12/ 1 Xk ll2 + (X)X ) X)X 1A

Using Lemma 5, there exists a set {2, in the sample space of W with P, (€,) > 1 — d,, such that
H((XE’)TXZF)*l(XE)TXg’Hl < 2714, Moreover, for the same set 2, we have || X2 |la/||Xk|2 =
a < 1/s < 1/7. Hence, for all w € Qy N Q; and, for all w € Q,,, the lhs of (31) is bounded from
above by Amin/7 + A2-1/4 < X\ and variable k ¢ S is hence not part of the set AN Tt follows that
maxjyea fI% < 1 — 0y with §yy = py(1 — pw)032 for all £ ¢ S. This completes the first part of the
proof.

For the second part of the claim (the “if” part), we need to show that, for all winfy N Qq, all
variables k are chosen with probability at least 1 — §,, (with respect to random sampling of the
weights W). For all w € Qg, however, it follows directly from Lemma 4 that S C APmin W Hence,
for all k € S, maxyecn f[g > 1:[2"““ = 1, which completes the proof. O

Since the statement in Lemma 7 is a reformulation of the assertion of Theorem 2, the proof of
the latter is complete.
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