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Abstract

We propose Sparse Boosting (the SparseL2Boost algorithm), a variant on boosting with the
squared error loss. SparseL2Boost yields sparser solutions than the previously proposed
L2Boosting by minimizing some penalized L2-loss functions, the FPE model selection
criteria, through small-step gradient descent. Although boosting may give already rel-
atively sparse solutions, for example corresponding to the soft-thresholding estimator in
orthogonal linear models, there is sometimes a desire for more sparseness to increase pre-
diction accuracy and ability for better variable selection: such goals can be achieved with
SparseL2Boost.

We prove an equivalence of SparseL2Boost to Breiman’s nonnegative garrote estimator
for orthogonal linear models and demonstrate the generic nature of SparseL2Boost for
nonparametric interaction modeling. For an automatic selection of the tuning parameter in
SparseL2Boost we propose to employ the gMDL model selection criterion which can also be
used for early stopping of L2Boosting. Consequently, we can select between SparseL2Boost
and L2Boosting by comparing their gMDL scores.

Keywords: Lasso, Minimum description length (MDL), Model selection, Nonnegative
garrote, Regression

1. Introduction

Since its inception in a practical form in Freund and Schapire (1996), boosting has ob-
tained and maintained its outstanding performance in numerous empirical studies both in
the machine learning and statistics literatures. The gradient descent view of boosting as
articulated in Breiman (1998, 1999), Friedman et al. (2000) and Rätsch et al. (2001) pro-
vides a springboard for the understanding of boosting to leap forward and at the same
time serves as the base for new variants of boosting to be generated. In particular, the
L2Boosting (Friedman, 2001) takes the simple form of refitting a base learner to residuals
of the previous iteration. It coincides with Tukey’s (1977) twicing at its second iteration
and reproduces matching pursuit of Mallat and Zhang (1993) when applied to a dictionary
or collection of fixed basis functions. A somewhat different approach has been suggested
by Rätsch et al. (2002). Bühlmann and Yu (2003) investigated L2Boosting for linear base

c©2006 Peter Bühlmann and Bin Yu.
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procedures (weak learners) and showed that in such cases, the variance or complexity of
the boosted procedure is bounded and increases at an increment which is exponentially di-
minishing as iterations run – this special case calculation implies that the resistance to the
over-fitting behavior of boosting could be due to the fact that the complexity of boosting
increases at an extremely slow pace.

Recently Efron et al. (2004) made an intriguing connection for linear models between
L2Boosting and Lasso (Tibshirani, 1996) which is an `1-penalized least squares method.
They consider a modification of L2Boosting, called forward stagewise least squares (FSLR)
and they show that for some special cases, FSLR with infinitesimally small step-sizes pro-
duces a set of solutions which coincides with the set of Lasso solutions when varying the
regularization parameter in Lasso. Furthermore, Efron et al. (2004) proposed the least an-
gle regression (LARS) algorithm whose variants give a clever computational short-cut for
FSLR and Lasso.

For high-dimensional linear regression (or classification) problems with many ineffective
predictor variables, the Lasso estimate can be very poor in terms of prediction accuracy and
as a variable selection method, see Meinshausen (2005). There is a need for more sparse
solutions than produced by the Lasso. Our new SparseL2Boost algorithm achieves a higher
degree of sparsity while still being computationally feasible, in contrast to all subset selec-
tion in linear regression whose computational complexity would generally be exponential
in the number of predictor variables. For the special case of orthogonal linear models, we
prove here an equivalence of SparseL2Boost to Breiman’s (1995) nonnegative garrote esti-
mator. This demonstrates the increased sparsity of SparseL2Boost over L2Boosting which
is equivalent to soft-thresholding (due to Efron et al. (2004) and Theorem 2 in this article).

Unlike Lasso or the nonnegative garrote estimator, which are restricted to a (generalized)
linear model or basis expansion using a fixed dictionary, SparseL2Boost enjoys much more
generic applicability while still being computationally feasible in high-dimensional problems
and yielding more sparse solutions than boosting or `1-regularized versions thereof (see
Rätsch et al., 2002; Lugosi and Vayatis, 2004). In particular, we demonstrate its use in the
context of nonparametric second-order interaction modeling with a base procedure (weak
learner) using thin plate splines, improving upon Friedman’s (1991) MARS.

Since our SparseL2Boost is based on the final prediction error criterion, it opens up the
possibility of bypassing the computationally intensive cross-validation by stopping early
based on the model selection score. The gMDL model selection criterion (Hansen and Yu,
2001) uses a data-driven penalty to the L2-loss and as a consequence bridges between the
two well-known AIC and BIC criteria. We use it in the SparseL2Boost algorithm and
for early stopping of L2Boosting. Furthermore, we can select between SparseL2Boost and
L2Boosting by comparing their gMDL scores.

2. Boosting with the squared error loss

We assume that the data are realizations from

(X1, Y1), . . . , (Xn, Yn),

where Xi ∈ R
p denotes a p-dimensional predictor variable and Yi ∈ R a univariate response.

In the sequel, we denote by x(j) the jth component of a vector x ∈ R
p. We usually assume
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that the pairs (Xi, Yi) are i.i.d. or from a stationary process. The goal is to estimate
the regression function F (x) = E[Y |X = x] which is well known to be the (population)
minimizer of the expected squared error loss E[(Y − F (X))2].

The boosting methodology in general builds on a user-determined base procedure or
weak learner and uses it repeatedly on modified data which are typically outputs from the
previous iterations. The final boosted procedure takes the form of linear combinations of
the base procedures. For L2Boosting, based on the squared error loss, one simply fits the
base procedure to the original data to start with, then uses the residuals from the previous
iteration as the new response vector and refits the base procedure, and so on. As we will see
in section 2.2, L2Boosting is a “constrained” minimization of the empirical squared error
risk n−1

∑n
i=1(Yi − F (Xi))

2 (with respect to F (·)) which yields an estimator F̂ (·). The
regularization of the empirical risk minimization comes in implicitly by the choice of a base
procedure and by algorithmical constraints such as early stopping or penalty barriers.

2.1 Base procedures which do variable selection

To be more precise, a base procedure is in our setting a function estimator based on the
data {(Xi, Ui); i = 1, . . . , n}, where U1, . . . , Un denote some (pseudo-) response variables
which are not necessarily the original Y1, . . . , Yn. We denote the base procedure function
estimator by

ĝ(·) = ĝ(X,U)(·), (1)

where X = (X1, . . . , Xn) and U = (U1, . . . , Un).
Many base procedures involve some variable selection. That is, only some of the com-

ponents of the p-dimensional predictor variables Xi are actually contributing in (1). In
fact, almost all of the successful boosting algorithms in practice involve base procedures
which do variable selection: examples include decision trees (see Freund and Schapire,
1996; Breiman, 1998; Friedman et al., 2000; Friedman, 2001), componentwise smoothing
splines which involve selection of the best single predictor variable (see Bühlmann and Yu,
2003), or componentwise linear least squares in linear models with selection of the best
single predictor variable (see Mallat and Zhang, 1993; Bühlmann, 2006).

It will be useful to represent the base procedure estimator (at the observed predictors
Xi) as a hat-operator, mapping the (pseudo-) response to the fitted values:

H : U 7→ (ĝ(X,U)(X1), . . . , ĝ(X,U)(Xn)), U = (U1, . . . , Un).

If the base procedure selects from a set of predictor variables, we denote the selected pre-
dictor variable index by Ŝ ⊂ {1, . . . , p}, where Ŝ has been estimated from a specified set Γ
of subsets of variables. To emphasize this, we write for the hat operator of a base procedure

HŜ : U 7→ (ĝ
(X(Ŝ),U)

(X1), . . . , ĝ(X(Ŝ),U)
(Xn)), U = (U1, . . . , Un), (2)

where the base procedure ĝ(X,U)(·) = ĝ
(X(Ŝ),U)

(·) depends only on the components X(Ŝ)

from X. The examples below illustrate this formalism.
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Componentwise linear least squares in linear model (see Mallat and Zhang, 1993;
Bühlmann, 2006)
We select only single variables at a time from Γ = {1, 2, . . . , p}. The selector Ŝ chooses the
predictor variable which reduces the residual sum of squares most when using least squares
fitting:

Ŝ = argmin1≤j≤p

n
∑

i=1

(Ui − γ̂jX
(j)
i )2, γ̂j =

∑n
i=1 UiX

(j)
i

∑n
i=1(X

(j)
i )2

(j = 1, . . . , p).

The base procedure is then

ĝ(X,U)(x) = γ̂Ŝx(Ŝ),

and its hat operator is given by the matrix

HŜ = X(Ŝ)(X(Ŝ))T , X(j) = (X
(j)
1 , . . . , X(j)

n )T .

L2Boosting with this base procedure yields a linear model with model selection and param-
eter estimates which are shrunken towards zero. More details are given in sections 2.2 and
2.4.

Componentwise smoothing spline (see Bühlmann and Yu, 2003)
Similarly to a componentwise linear least squares fit, we select only one single variable
at a time from Γ = {1, 2, . . . , p}. The selector Ŝ chooses the predictor variable which
reduces residual sum of squares most when using a smoothing spline fit. That is, for a
given smoothing spline operator with fixed degrees of freedom d.f. (which is the trace of
the corresponding hat matrix)

Ŝ = argmin1≤j≤p

n
∑

i=1

(Ui − ĝj(X
(j)
i ))2,

ĝj(·) is the fit from the smoothing spline to U versus X(j) with d.f.

Note that we use the same degrees of freedom d.f. for all components j’s. The hat-matrix
corresponding to ĝj(·) is denoted by Hj which is symmetric; the exact from is not of partic-
ular interest here but is well known, see Green and Silverman (1994). The base procedure
is

ĝ(X,U)(x) = ĝŜ(x(Ŝ)),

and its hat operator is then given by a matrix HŜ . Boosting with this base procedure yields
an additive model fit based on selected variables (see Bühlmann and Yu, 2003).

Pairwise thin plate splines

Generalizing the componentwise smoothing spline, we select pairs of variables from Γ =
{(j, k); 1 ≤ j < k ≤ p}. The selector Ŝ chooses the two predictor variables which reduce
residual sum of squares most when using thin plate splines with two arguments:

Ŝ = argmin1≤j<k≤p

n
∑

i=1

(Ui − ĝj,k(X
(j)
i , X

(k)
i ))2,

ĝj,k(·, ·) is an estimated thin plate spline based on U and X(j),X(k) with d.f.,
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where the degrees of freedom d.f. is the same for all components j < k. The hat-matrix
corresponding to ĝj,k is denoted by Hj,k which is symmetric; again the exact from is not of
particular interest but can be found in Green and Silverman (1994). The base procedure is

ĝ(X,U)(x) = ĝŜ(x(Ŝ)),

where x(Ŝ) denotes the 2-dimensional vector corresponding to the selected pair in Ŝ, and
the hat operator is then given by a matrix HŜ . Boosting with this base procedure yields
a nonparametric fit with second order interactions based on selected pairs of variables; an
illustration is given in section 3.4.

In all the examples above, the selector is given by

Ŝ = argminS∈Γ

n
∑

i=1

(Ui − (HSU)i)
2 (3)

Also (small) regression trees can be cast into this framework. For example for stumps,
Γ = {(j, cj,k); j = 1, . . . , p, k = 1, . . . , n − 1}, where cj,1 < . . . < cj,n−1 are the mid-points

between (non-tied) observed values X
(j)
i (i = 1, . . . , n). That is, Γ denotes here the set of

selected single predictor variables and corresponding split-points. The parameter values for
the two terminal nodes in the stump are then given by ordinary least squares which implies
a linear hat matrix H(j,cj,k). Note however, that for mid-size or large regression trees, the
optimization over the set Γ is usually not done exhaustively.

2.2 L2Boosting

Before introducing our new SparseL2Boost algorithm, we describe first its less sparse coun-
terpart L2Boosting, a boosting procedure based on the squared error loss which amounts
to repeated fitting of residuals with the base procedure ĝ(X,U)(·). Its derivation from a
more general functional gradient descent algorithm using the squared error loss has been
described by many authors, see Friedman (2001).

L2Boosting

Step 1 (initialization). F̂0(·) ≡ 0 and set m = 0.

Step 2. Increase m by 1.
Compute residuals Ui = Yi − F̂m−1(Xi) (i = 1, . . . , n) and fit the base procedure to the
current residuals. The fit is denoted by f̂m(·) = ĝ(X,U)(·).
Update

F̂m(·) = F̂m−1(·) + νf̂m(·),

where 0 < ν ≤ 1 is a pre-specified step-size parameter.

Step 3 (iteration). Repeat Steps 2 and 3 until some stopping value for the number of
iterations is reached.
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With m = 2 and ν = 1, L2Boosting has already been proposed by Tukey (1977) under
the name “twicing”. The number of iterations is the main tuning parameter for L2Boosting.
Empirical evidence suggests that the choice for the step-size ν is much less crucial as long
as ν is small; we usually use ν = 0.1. The number of boosting iterations may be estimated
by cross-validation. As an alternative, we will develop in section 2.5 an approach which
allows to use some model selection criteria to bypass cross-validation.

2.3 SparseL2Boost

As described above, L2Boosting proceeds in a greedy way: if in Step2 the base procedure
is fitted by least squares and when using ν = 1, L2Boosting pursues the best reduction of
residual sum of squares in every iteration.

Alternatively, we may want to proceed such that the out-of-sample prediction error
would be most reduced, that is we would like to fit a function ĝX,U (from the class of weak
learner estimates) such that the out-of-sample prediction error becomes minimal. This is
not exactly achievable since the out-sample prediction error is unknown. However, we can
estimate it via a model selection criterion. To do so, we need a measure of complexity of
boosting. Using the notation as in (2), the L2Boosting operator in iteration m is easily
shown to be (see Bühlmann and Yu, 2003)

Bm = I − (I − νHŜm
) · · · · · (I − νHŜ1

), (4)

where Ŝm denotes the selector in iteration m. Moreover, if all the HS are linear (that is the
hat matrix), as in all the examples given in section 2.1, L2Boosting has an approximately
linear representation, where only the data-driven selector Ŝ brings in some additional non-
linearity. Thus, in many situations (for example the examples in the previous section 2.1
and decision tree base procedures), the boosting operator has a corresponding matrix-form
when using in (4) the hat-matrices for HS . The degrees of freedom for boosting are then
defined as

trace(Bm) = trace(I − (I − νHŜm
) · · · (I − νHŜ1

)).

This is a standard definition for degrees of freedom (see Green and Silverman, 1994) and it
has been used in the context of boosting in Bühlmann (2006). An estimate for the prediction
error of L2Boosting in iteration m can then be given in terms of the final prediction error
criterion FPEγ (Akaike, 1970):

n
∑

i=1

(Yi − F̂m(Xi))
2 + γ · trace(Bm). (5)

2.3.1 The SparseL2Boost algorithm

For SparseL2Boost, the penalized residual sum of squares in (5) becomes the criterion to
move from iteration m − 1 to iteration m. More precisely, for B a (boosting) operator,
mapping the response vector Y to the fitted variables, and a criterion C(RSS, k), we use
the following objective function to boost:

T (Y,B) = C

(

n
∑

i=1

(Yi − (BY)i)
2, trace(B)

)

. (6)
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For example, the criterion could be FPEγ for some γ > 0 which corresponds to

Cγ(RSS, k) = RSS + γ · k. (7)

An alternative which does not require the specification of a parameter γ as in (7) is advo-
cated in section 2.5.

The algorithm is then as follows.

SparseL2Boost

Step 1 (initialization). F̂0(·) ≡ 0 and set m = 0.

Step 2. Increase m by 1.
Search for the best selector

S̃m = argminS∈ΓT (Y, trace(Bm(S))),

Bm(S) = I − (I −HS)(I − νHS̃m−1
) · · · (I − νHS̃1

),

(for m = 1: B1(S) = HS).

Fit the residuals Ui = Yi − F̂m−1(Xi) with the base procedure using the selected S̃m which
yields a function estimate

f̂m(·) = ĝS̃m;(X,U)(·),

where ĝS;(X,U)(·) corresponds to the hat operator HS from the base procedure.

Step 3 (update). Update,

F̂m(·) = F̂m−1(·) + νf̂m(·).

Step 4 (iteration). Repeat Steps 2 and 3 for a large number of iterations M .

Step 5 (stopping). Estimate the stopping iteration by

m̂ = argmin1≤m≤MT (Y, trace(Bm)), Bm = I − (I − νHS̃m
) · · · (I − νHS̃1

).

The final estimate is F̂m̂(·).

The only difference to L2Boosting is that the selection in Step 2 yields a different S̃m

than in (3). While Ŝm in (3) minimizes the residual sum of squares, the selected S̃m in
SparseL2Boost minimizes a model selection criterion over all possible selectors. Since the
selector S̃m depends not only on the current residuals U but also explicitly on all previous
boosting iterations through S̃1, S̃2, . . . , S̃m−1 via the trace of Bm(S), the estimate f̂m(·) in
SparseL2Boost is not a function of the current residuals U only. This implies that we cannot
represent SparseL2Boost as a linear combination of base procedures, each of them acting
on residuals only.
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2.4 Connections to the nonnegative garrote estimator

SparseL2Boost based on Cγ as in (7) enjoys a surprising equivalence to the nonnegative
garrote estimator (Breiman, 1995) in an orthogonal linear model. This special case allows
explicit expressions to reveal clearly that SparseL2Boost (aka nonnegative-garrote) is sparser
than L2Boosting (aka soft-thresholding).

Consider a linear model with n orthonormal predictor variables,

Yi =

n
∑

j=1

βjx
(j)
i + εi, i = 1, . . . , n,

n
∑

i=1

x
(j)
i x

(k)
i = δjk, (8)

where δjk denotes the Kronecker symbol, and ε1, . . . , εn are i.i.d. random variables with
E[εi] = 0 and Var(εi) = σ2

ε < ∞. We assume here the predictor variables as fixed and
non-random. Using the standard regression notation, we can re-write model (8) as

Y = Xβ + ε, XTX = XXT = I, (9)

with the n×n design matrix X = (x
(j)
i )i,j=1,...,n, the parameter vector β = (β1, . . . , βn)T , the

response vector Y = (Y1, . . . , Yn)T and the error vector ε = (ε1, . . . , εn)T . The predictors
could also be basis functions gj(ti) at observed values ti with the property that they build
an orthonormal system.

The nonnegative garrote estimator has been proposed by Breiman (1995) for a linear
regression model to improve over subset selection. It shrinks each ordinary least squares
(OLS) estimated coefficient by a nonnegative amount whose sum is subject to an upper
bound constraint (the garrote). For a given response vector Y and a design matrix X (see
(9)), the nonnegative garrote estimator takes the form

β̂Nngar,j = cj β̂OLS,j

such that

n
∑

i=1

(Yi − (Xβ̂Nngar)i)
2 is minimized, subject to cj ≥ 0,

p
∑

j=1

cj ≤ s, (10)

for some s > 0. In the orthonormal case from (8), since the ordinary least squares estimator
is simply β̂OLS,j = (XT Y)j = Zj , the nonnegative garrote minimization problem becomes
finding cj ’s such that

n
∑

j=1

(Zj − cjZj)
2 is minimized, subject to cj ≥ 0,

n
∑

j=1

cj ≤ s.

Introducing a Lagrange multiplier τ > 0 for the sum constraint gives the dual optimization
problem: minimizing

n
∑

j=1

(Zj − cjZj)
2 + τ

n
∑

j=1

cj, cj ≥ 0 (j = 1, ..., n). (11)
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This minimization problem has an explicit solution (Breiman, 1995):

cj = (1 − λ/|Zj |2)+, λ = τ/2,

where u+ = max(0, u). Hence β̂Nngar,j = (1 − λ/|Zj |2)+Zj or equivalently,

β̂Nngar,j =











Zj − λ/|Zj |, if sign(Zj)Z
2
j ≥ λ,

0, if Z2
j < λ,

Zj + λ/|Zj |, if sign(Zi)Z
2
j ≤ −λ.

, where Zj = (XTY)j . (12)

We show in Figure 1 the nonnegative garrote threshold function in comparison to hard-
and soft-thresholding, the former corresponding to subset variable selection and the latter
to the Lasso (Tibshirani, 1996). Hard-thresholding either yields the value zero or the ordi-
nary least squares estimator; the nonnegative garrote and soft-thresholding either yield the
value zero or a shrunken ordinary least squares estimate, where the shrinkage towards zero
is stronger for the soft-threshold than for the nonnegative garrote estimator. Therefore,
for the same amount of “complexity” or “degrees of freedom” (which is in case of hard-
thresholding the number of ordinary least squares estimated variables), hard-thresholding
(corresponding to subset selection) will typically select the fewest number of variables (non-
zero coefficient estimates) while the nonnegative garrote will include more variables and the
soft-thresholding will be the least sparse in terms of the number of selected variables; the
reason is that for the non-zero coefficient estimates, the shrinkage effect, which is slight in
the nonnegative garotte and stronger for soft-thresholding, causes fewer degrees of freedom

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

threshold functions

z

hard−thresholding
nn−garrote
soft−thresholding

Figure 1: Threshold functions for subset selection or hard-thresholding (dashed-dotted
line), nonnegative garrote (solid line) and lasso or soft-thresholding (dashed line).
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for every selected variable. This observation can also be compared with some numerical
results in section 3.

The following result shows the equivalence of the nonnegative garrote estimator and
SparseL2Boost with componentwise linear least squares (using m̂ iterations) yielding coef-

ficient estimates β̂
(m̂)
SparseBoost,j .

Theorem 1 Consider the model in (8) and any sequence (γn)n∈N. For SparseL2Boost with
componentwise linear least squares, based on Cγn as in (7) and using a step-size ν, as
described in section 2.3, we have

β̂
(m̂)
SparseBoost,j = β̂Nngar,j in (12) with parameter λn =

1

2
γn(1 + ej(ν)),

max
1≤i≤n

|ej(ν)| ≤ ν/(1 − ν) → 0 (ν → 0).

A proof is given in section 5. Note that the sequence (γn)n∈N can be arbitrary and
does not need to depend on n (and likewise for the corresponding λn). For the orthogonal
case, Theorem 1 yields the interesting interpretation of SparseL2Boost as the nonnegative
garrote estimator.

We also describe here for the orthogonal case the equivalence of L2Boosting with com-

ponentwise linear least squares (yielding coefficient estimates β̂
(m)
Boost,j) to soft-thresholding.

A closely related result has been given in Efron et al. (2004) for the forward stagewise linear
regression method which is similar to L2Boosting. However, our result is for (non-modified)
L2Boosting and brings out more explicitly the role of the step-size.

The soft-threshold estimator for the unknown parameter vector β, is

β̂soft,j =











Zj − λ, if Zj ≥ λ,

0, if |Zj | < λ,

Zj + λ, if Zj ≤ −λ.

where Zj = (XTY)j . (13)

Theorem 2 Consider the model in (8) and a threshold λn in (13) for any sequence (λn)n∈N.
For L2Boosting with componentwise linear least squares and using a step-size ν, as described
in section 2.2, there exists a boosting iteration m, typically depending on λn, ν and the data,
such that

β̂
(m)
Boost,j = β̂soft,j in (13) with threshold of the form λn(1 + ej(ν)), where

max
1≤j≤n

|ej(ν)| ≤ ν/(1 − ν) → 0 (ν → 0).

A proof is given in section 5. We emphasize that the sequence (λn)n∈N can be arbitrary:
in particular, λn does not need to depend on sample size n.

2.5 The gMDL choice for the criterion function

The FPE criterion function C(·, ·) in (7) requires in practice the choice of a parameter γ. In
principle, we could tune this parameter using some cross-validation scheme. Alternatively,
one could use a parameter value corresponding to well-known model selection criteria such
as AIC (γ = 2) or BIC (γ = log n). However, in general, the answer to whether to use
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AIC or BIC depends on the true underlying model being finite or not (see Speed and Yu,
1993, and the references therein). In practice, it is difficult to know which situation one
is in and thus hard to choose between AIC and BIC. We employ here instead a relatively
new minimum description length criterion, gMDL (see Hansen and Yu, 2001), developed for
linear models. For each model class, roughly speaking, gMDL is derived as a mixture code
length based on a linear model with an inverse Gamma prior (with a shape hyperparameter)
for the variance and conditioning on the variance, the linear model parameter β follows
an independent multivariate normal prior with the given variance multiplied by a scale
hyperparameter. The two hyperparameters are then optimized based on the MDL principle
and their coding costs are included in the code length. Because of the adaptive choices of
the hyperparameters, the resulted gMDL criterion has a data-dependent penalty for each
dimension, instead of the fixed penalty 2 or log n for AIC or BIC, respectively. In other
words, gMDL bridges the AIC and BIC criteria by having a data-dependent penalty log(F )
as given below in (14). The F in the gMDL penalty is related to the signal to noise ratio
(SNR), as shown in Hansen and Yu (1999). Moreover, the gMDL criterion has an explicit
analytical expression which depends only on the residual sum of squares and the model
dimension or complexity. It is worth noting that we will not need to tune the criterion
function as it will be explicitly given as a function of the data only. The gMDL criterion
function takes the form

CgMDL(RSS, k) = log(S) +
k

n
log(F ),

S =
RSS

n − k
, F =

∑n
i=1 Y 2

i − RSS

kS
. (14)

Here, RSS denotes again the residual sum of squares as in formula (6) (first argument of
the function C(·, ·)).

In the SparseL2Boost algorithm in section 2.3.1, if we take

T (Y,B) = CgMDL(RSS, trace(B)),

then we arrive at the gMDL-SparseL2Boost algorithm. Often though, we simply refer
to it as SparseL2Boost.

The gMDL criterion in (14) can also be used to give a new stopping rule for L2Boosting.
That is, we propose

m̂ = argmin1≤m≤MCgMDL(RSSm, trace(Bm)), (15)

where M is a large number, RSSm the residual sum of squares after m boosting iterations
and Bm is the boosting operator described in (4). If the minimizer is not unique, we use
the minimal m which minimizes the criterion. Boosting can now be run without tuning any
parameter (we typically do not tune over the step-size ν but rather take a value such as
ν = 0.1), and we call such an automatically stopped boosting method gMDL-L2Boosting.
In the sequel, it is simply referred to as L2Boosting.

There will be no overall superiority of either SparseL2Boost or L2Boosting as shown in
Section 3.1. But it is straightforward to do a data-driven selection: we choose the fitted
model which has the smaller gMDL-score between gMDL-SparseL2Boost and the gMDL
stopped L2Boosting. We term this method gMDL-sel-L2Boost which does not rely on
cross-validation and thus could bring much computational savings.
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3. Numerical Results

In this section, we investigate and compare SparseL2Boost with L2Boosting (both with
their data-driven gMDL-criterion), and evaluate gMDL-sel-L2Boost. The step-size in both
boosting methods is fixed at ν = 0.1. The simulation models are based on two high-
dimensional linear models and one nonparametric model. Except for two real data sets, all
our comparisons and results are based on 50 independent model simulations.

3.1 High-dimensional linear models

3.1.1 `0-sparse models

Consider the model

Y = 1 + 5X1 + 2X2 + X9 + ε,

X = (X1, . . . , Xp−1) ∼ Np−1(0,Σ), ε ∼ N (0, 1), (16)

where ε is independent from X. The sample size is chosen as n = 50 and the predictor-
dimension is p ∈ {50, 100, 1000}. For the covariance structure of the predictor X, we
consider two cases:

Σ = Ip−1, (17)

[Σ]ij = 0.8|i−j|. (18)

The models are `0-sparse, since the `0-norm of the true regression coefficients (the number
of effective variables including an intercept) is 4.

The predictive performance is summarized in Table 1. For the `0-sparse model (16),
SparseL2Boost outperforms L2Boosting. Furthermore, in comparison to the oracle perfor-
mance (denoted by an asterisk ∗ in Table 1), the gMDL rule for the stopping iteration m̂
works very well for the lower-dimensional cases with p ∈ {50, 100} and it is still reason-
ably accurate for the very high-dimensional case with p = 1000. Finally, both boosting

Σ , dim. SparseL2Boost L2Boosting SparseL2Boost* L2Boosting*

(17), p = 50 0.16 (0.018) 0.46 (0.041) 0.16 (0.018) 0.46 (0.036)
(17), p = 100 0.14 (0.015) 0.52 (0.043) 0.14 (0.015) 0.48 (0.045)
(17), p = 1000 0.77 (0.070) 1.39 (0.102) 0.55 (0.064) 1.27 (0.105)

(18), p = 50 0.21 (0.024) 0.31 (0.027) 0.21 (0.024) 0.30 (0.026)
(18), p = 100 0.22 (0.024) 0.39 (0.028) 0.22 (0.024) 0.39 (0.028)
(18), p = 1000 0.45 (0.035) 0.97 (0.052) 0.38 (0.030) 0.72 (0.049)

Table 1: Mean squared error (MSE), E[(f̂(X) − f(X))2] (f(x) = E[Y |X = x]), in model
(16) for gMDL-SparseL2Boost and gMDL early stopped L2Boosting using the
estimated stopping iteration m̂. The performance using the oracle m which min-
imizes MSE is denoted by an asterisk *. Estimated standard errors are given in
parentheses. Sample size is n = 50.
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methods are essentially insensitive when increasing the number of ineffective variables from
46 (p = 50) to 96 (p = 100). However, with very many, that is 996 (p = 1000), ineffective
variables, a significant loss in accuracy shows up in the orthogonal design (17) and there is
an indication that the relative differences between SparseL2Boost and L2Boosting become
smaller. For the positive dependent design in (18), the loss in accuracy in the p = 1000 case
is not as significant as in the orthogonal design case in (17), and the relative differences
between SparseL2Boost and L2Boosting actually become larger.

It is also worth pointing out that the resulting mean squared errors (MSEs) in design
(17) and (18) are not really comparable even for the same number p of predictors. This is
because, even though the noise level is E|ε|2 = 1 for both designs, the signal levels E|f(X)|2
are different, that is 31 for the uncorrelated design in (17) and 49.5 for the correlated design
in (18). If we would like to compare the performances among the two designs, we should
rather look at the signal-adjusted mean squared error

E|f̂(X) − f(X)|2
E|f(X)|2

which is the test-set analogue of 1−R2 in linear models. This signal adjusted error measure
can be computed from the results in Table 1 and the signal levels given above. We then
obtain for the lower dimensional cases with p ∈ {50, 100} that the prediction accuracies
are about the same for the correlated and the uncorrelated design (for SparseL2Boost and
for L2Boosting). However, for the high-dimensional case with p = 1000, the performance
(of SparseL2Boost and of L2Boosting) is significantly better in the correlated than the
uncorrelated design.

Next, we consider the ability of selecting the correct variables: the results are given
in Table 2. In the orthogonal case, we have argued that SparseL2Boost has a tendency
for sparser results than L2Boosting; see the discussion of different threshold functions in
section 2.4. This is confirmed in all our numerical experiments. In particular, for our
`0-sparse model (16), the detailed results are reported in Table 2. SparseL2Boost selects
much fewer predictors than L2Boosting. Moreover, for this model, SparseL2Boost is a good
model selector as long as the dimensionality is not very large, that is for p ∈ {50, 100},
while L2Boosting is much worse selecting too many false predictors (that is too many false
positives). For the very high-dimensional case with p = 1000, the selected models are
clearly too large when compared with the true model size, even when using SparseL2Boost.
However, the results are pretty good considering the fact that we are dealing with a much
harder problem of getting rid of 996 irrelevant predictors based on only 50 sample points.
To summarize, for this synthetic example, SparseL2Boost works significantly better than
L2Boosting both in terms of MSE, model selection and sparsity, due to the sparsity of the
true model.
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Σ , dim. SparseL2Boost L2Boosting

(17), p = 50: `0-norm 5.00 (0.125) 13.68 (0.438)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 1.00 (0.125) 9.68 (0.438)

(17), p = 100: `0-norm 5.78 (0.211) 21.20 (0.811)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 1.78 (0.211) 17.20 (0.811)

(17), p = 1000: `0-norm 23.70 (0.704) 78.80 (0.628)
non-selected T 0.02 (0.020) 0.02 (0.020)

selected F 19.72 (0.706) 74.82 (0.630)

(18), p = 50: `0-norm 4.98 (0.129) 9.12 (0.356)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 0.98 (0.129) 5.12 (0.356)

(18), p = 100: `0-norm 5.50 (0.170) 12.44 (0.398)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 1.50 (0.170) 8.44 (0.398)

(18), p = 1000: `0-norm 13.08 (0.517) 71.68 (1.018)
non-selected T 0.00 (0.000) 0.00 (0.000)

selected F 9.08 (0.517) 67.68 (1.018)

Table 2: Model (16): expected number of selected variables (`0-norm), expected number of
non-selected true effective variables (non-selected T) which is in the range of [0, 4],
and expected number of selected non-effective (false) variables (selected F) which
is in the range of [0, p − 4]. Methods: SparseL2Boost and L2Boosting using the
estimated stopping iteration m̂ (Step 5 in the SparseL2Boost algorithm and (15)
respectively). Estimated standard errors are given in parentheses. Sample size is
n = 50.

3.1.2 A non-sparse model with respect to the `0-norm

We provide here an example where L2Boosting will be better than SparseL2Boost. Consider
the model

Y =

p
∑

j=1

1

5
βjXj + ε,

X1, . . . , Xp ∼ Np(0, Ip), ε ∼ N (0, 1), (19)

where β1, . . . , βp are fixed values from i.i.d. realizations of the double-exponential density
p(x) = exp(−|x|)/2. The magnitude of the coefficients |βj |/5 is chosen to vary the signal
to noise ratio from model (16), making it about 5 times smaller than for (19). Since
Lasso (coinciding with L2Boosting in the orthogonal case) is the maximum a-posteriori
(MAP) method when the coefficients are from a double-exponential distribution and the
observations from a Gaussian distribution, as in (19), we expect L2Boosting to be better
than SparseL2Boost for this example (even though we understand that MAP is not the
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Bayesian estimator under the L2 loss). The squared error performance is given in Table
3, supporting our expectations. SparseL2Boost nevertheless still has the virtue of sparsity
with only about 1/3 of the number of selected predictors but with an MSE which is larger
by a factor 1.7 when compared with L2Boosting.

SparseL2Boost L2Boosting SparseL2Boost* L2Boosting*

MSE 3.64 (0.188) 2.19 (0.083) 3.61 (0.189) 2.08 (0.078)
`0-norm 11.78 (0.524) 29.16 (0.676) 11.14 (0.434) 35.76 (0.382)

Table 3: Mean squared error (MSE) and expected number of selected variables (`0-norm)
in model (19) with p = 50. Estimated standard errors are given in parentheses.
All other specifications are described in the caption of Table 1.

3.1.3 Data-driven choice between SparseL2Boost and L2Boosting:

gMDL-sel-L2Boost

We illustrate here the gMDL-sel-L2Boost proposal from section 2.5 that uses the gMDL
model selection score to choose in a data-driven way between SparseL2Boost and L2Boosting.
As an illustration, we consider again the models in (16)-(17) and (19) with p = 50 and
n = 50. Figure 2 displays the results in the form of boxplots across 50 rounds of simula-
tions.
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Figure 2: Out-of-sample squared error losses, aveX [(f̂(X) − f(X))2] (f(x) = E[Y |X = x]),
from the 50 simulations for the models in (16)-(17) and (19) with p = 50. gMDL-
sel-L2Boost (gMDL-sel), L2Boosting (L2Boo) and SparseL2Boost (SparseBoo).
Sample size is n = 50.
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The gMDL-sel-L2Boost method performs between the better and the worse of the two
boosting algorithms, but closer to the better performer in each situation (the latter is only
known for simulated datasets). For model (19), there is essentially no degraded performance
when doing a data-driven selection between the two boosting algorithms (in comparison to
the best performer).

3.2 Ozone data with interactions terms

We consider a real data set about ozone concentration in the Los Angeles basin. There
are p = 8 meteorological predictors and a real-valued response about daily ozone concen-
tration; see Breiman (1996). We constructed second-order interaction and quadratic terms
after having centered the original predictors. We then obtain a model with p = 45 predic-
tors (including an intercept) and a response. We used 10-fold cross-validation to estimate
the out-of-sample squared prediction error and the average number of selected predictor
variables. When scaling the predictor variables (and their interactions) to zero mean and
variance one, the performances were very similar. Our results are comparable to the anal-
ysis of bagging in Breiman (1996) which yielded a cross-validated squared error of 18.8 for
bagging trees based on the original eight predictors.

SparseL2Boost L2Boosting

10-fold CV squared error 16.52 16.57
10-fold CV `0-norm 10.20 16.10

Table 4: Boosting with componentwise linear least squares for ozone data with first order-
interactions (n = 330, p = 45). Squared prediction error and average number of
selected predictor variables using 10-fold cross-validation.

We also run SparseL2Boost and L2Boosting on the whole dataset and choose the method
according to the better gMDL-score, that is gMDL-sel-L2Boost (see section 2.5). Some
results are given in Table 5. Based on SparseL2Boost, an estimate for the error variance is
n−1

∑n
i=1(Yi − Ŷi)

2 = 15.56 and the goodness of fit equals R2 =
∑n

i=1(Ŷi −Y )2/
∑n

i=1(Yi −
Y )2 = 0.71, where Ŷi = F̂ (Xi) and Y = n−1

∑n
i=1 Yi.

SparseL2Boost (#) L2Boosting

gMDL-score 2.853 2.862
RSS 15.56 15.24

`0-norm 10 18

Table 5: Boosting with componentwise linear least squares for ozone data with first order-
interactions (n = 330, p = 45). gMDL-score, n−1× residual sum of squares
(RSS) and number of selected terms (`0-norm). (#) gMDL-sel-L2Boost selects
SparseL2Boost as the better method.
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In summary, while SparseL2Boost is about as good as L2Boosting in terms of predictive
accuracy, see Table 4, it yields a sparser model fit, see Tables 4 and 5.

3.3 Binary tumor classification using gene expressions

We consider a real data set which contains p = 7129 gene expressions in 49 breast tumor
samples using the Affymetrix technology, see West et al. (2001). After thresholding to a floor
of 100 and a ceiling of 16,000 expression units, we applied a base 10 log-transformation and
standardized each experiment to zero mean and unit variance. For each sample, a binary
response variable Y ∈ {0, 1} is available, describing the status of lymph node involvement in
breast cancer. The data are available at http://mgm.duke.edu/genome/dna micro/work/.

Although the data has the structure of a binary classification problem, the squared error
loss is quite often employed for estimation. We use L2Boosting and SparseL2Boost with
componentwise linear least squares. We classify the label 1 if p̂(x) = P̂[Y + 1|X = x] > 1/2
and zero otherwise. The estimate for p̂(·) is obtained as follows:

p̂m(·) = 1/2 + F̂m(·),
F̂m(·) the L2- or SparseL2Boost estimate using Ỹ = Y − 1/2. (20)

Note that F̂m(·) is an estimate of p(·) − 1/2. Using this procedure amounts to modelling
and estimating the deviation from the boundary value 1/2 (we do not use an intercept term
anymore in our model). This is usually much better because the L2- or SparseL2Boost
estimate is shrunken towards zero. When using L2- or SparseL2Boost on Y ∈ {0, 1} directly,
with an intercept term, we would obtain a shrunken boosting estimate of the intercept
introducing a bias rendering p̂(·) to be systematically too small. The latter approach has
been used in Bühlmann (2006) yielding worse results for L2Boosting than what we report
here for L2Boosting using (20).

Since the gMDL criterion is relatively new, its classification counterpart is not yet well
developed (see Hansen and Yu, 2002). Instead of the gMLD criterion in (14) and (15), we
use the BIC score for the Bernoulli-likelihood in a binary classification:

BIC(m) = −2 · log-likelihood + log(n) · trace(Bm).

The AIC criterion would be another option: it yields similar, a bit less sparse results for
our tumor classification problem.

We estimate the classification performance by a cross-validation scheme where we ran-
domly divide the 49 samples into balanced training- and test-data of sizes 2n/3 and n/3,
respectively, and we repeat this 50 times. We also report on the average of selected predictor
variables. The reports are given in Table 6.

The predictive performance of L2- and SparseL2Boosting compares favourably with four
other methods, namely 1-nearest neighbors, diagonal linear discriminant analysis, support
vector machine with radial basis kernel (from the R-package e1071 and using its default
values), and a forward selection penalized logistic regression model (using some reasonable
penalty parameter and number of selected genes). For 1-nearest neighbors, diagonal linear
discriminant analysis and support vector machine, we pre-select the 200 genes which have
the best Wilcoxon score in a two-sample problem (estimated from the training dataset
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SparseL2Boost L2Boosting

CV misclassification error 21.88% 23.13%
CV `0-norm 12.90 15.30

Table 6: Boosting with componentwise linear least squares for tumor classification data
(n = 46, p = 7129). Misclassification error and average number of selected predic-
tor variables using cross-validation (with random 2/3 training and 1/3 test sets).

only), which is recommended to improve the classification performance. Forward selection
penalized logistic regression is run without pre-selection of genes. The results are given in
Table 5 which is taken from Bühlmann (2006).

FPLR 1-NN DLDA SVM

CV misclassification error 35.25% 43.25% 36.12% 36.88%

Table 7: Cross-validated misclassification rates for lymph node breast cancer data. Forward vari-

able selection penalized logistic regression (FPLR), 1-nearest-neighbor rule (1-NN), diag-

onal linear discriminant analysis (DLDA) and a support vector machine (SVM)

When using SparseL2Boost and L2Boosting on the whole dataset, we get the following
results displayed in Table 8. The 12 variables (genes) which are selected by SparseL2Boost
are a subset of the 14 selected variables (genes) from L2Boosting. Analogously as in sec-
tion 3.2, we give some ANOVA-type numbers of SparseL2Boosting: the error variability is
n−1

∑n
i=1(Yi − Ŷi)

2 = 0.052 and the goodness of fit equals R2 =
∑n

i=1(Ŷi −Y )2/
∑n

i=1(Yi −
Y )2 = 0.57, where Ŷi = F̂ (Xi) and Y = n−1

∑n
i=1 Yi.

SparseL2Boost (#) L2Boosting

BIC score 35.09 37.19
RSS 0.052 0.061

`0-norm 12 14

Table 8: Boosting with componentwise linear least squares for tumor classification (n =
49, p = 7129). BIC score, n−1× residual sum of squares (RSS) and number
of selected terms (`0-norm). (#) BIC-sel-L2Boost selects SparseL2Boost as the
better method.

In summary, the predictive performance of SparseL2Boost is slightly better than of
L2Boosting, see Table 6, and SparseL2Boost selects a bit fewer variables (genes) than
L2Boosting, see Tables 7 and 8.

18



Sparse Boosting

3.4 Nonparametric function estimation with second-order interactions

Consider the Friedman #1 model Friedman (1991),

Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε,

X ∼ Unif.([0, 1]p), ε ∼ N (0, 1), (21)

where ε is independent from X. The sample size is chosen as n = 50 and the predictor
dimension is p ∈ {10, 20} which is still large relative to n for a nonparametric problem.

SparseL2Boost and L2Boosting with a pairwise thin plate spline, which selects the best
pair of predictor variables yielding lowest residual sum of squares (when having the same
degrees of freedom d.f. = 5 for every thin plate spline), yields a second-order interaction
model; see also section 2.1. We demonstrate in Table 9 the effectiveness of these procedures,
also in comparison with the MARS Friedman (1991) fit constrained to second-order inter-
action terms. SparseL2Boost is a bit better than L2Boosting. But the estimation of the
boosting iterations by gMDL did not do as well as in section 3.1 since the oracle methods
perform significantly better. The reason is that this example has a high signal to noise
ratio. From (Hansen and Yu, 1999), the F in the gMDL penalty (see (14)) is related to
the signal to noise ratio (SNR). Thus, when SNR is high, the log(F ) is high too, leading to
too small models in both SparseL2Boost and L2Boosting: that is, this large penalty forces
both SparseL2Boost and L2Boosting to stop too early in comparison to the oracle stopping
iteration which minimizes MSE. However, both boosting methods nevertheless are quite a
bit better than MARS.

dim. SparseL2Boost L2Boosting MARS SparseL2Boost* L2Boosting*

p = 10 3.71 (0.241) 4.10 (0.239) 5.79 (0.538) 2.22 (0.220) 2.69 (0.185)
p = 20 4.36 (0.238) 4.81 (0.197) 5.82 (0.527) 2.68 (0.240) 3.56 (0.159)

Table 9: Mean squared error (MSE) in model (21). All other specifications are described
in the caption of Table 1, except for MARS which is constrained to second-order
interaction terms.

When increasing the noise level, using Var(ε) = 16, we obtain the following MSEs for
p = 10: 11.70 for SparseL2Boost, 11.65 for SparseL2Boost* with the oracle stopping rule
and 24.11 for MARS. Thus, for lower signal to noise ratios, stopping the boosting iterations
with the gMDL criterion works very well, and our SparseL2Boost algorithm is much better
than MARS.

4. Conclusions

We propose SparseL2Boost, a gradient descent algorithm on a penalized squared error
loss which yields sparser solutions than L2Boosting or `1-regularized versions thereof. The
new method is mainly useful for high-dimensional problems with many ineffective predictor
variables (noise variables). Moreover, it is computationally feasible in high dimensions,
for example having linear complexity in the number of predictor variables p when using
componentwise linear least squares or componentwise smoothing splines (see section 2.1).
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SparseL2Boost is essentially as generic as L2Boosting and can be used in connection with
nonparametric base procedures (weak learners). The idea of sparse boosting could also be
transferred to boosting algorithms with other loss functions, leading to sparser variants of
AdaBoost and LogitBoost.

There is no general superiority of sparse boosting over boosting, even though we did
find in four out of our five examples (two real data and two synthetic data sets) that
SparseL2Boost outperforms L2Boosting in terms of sparsity and SparseL2Boost is as good
or better than L2Boosting in terms of predictive performance. In the synthetic data example
in section 3.1.2, chosen to be the ideal situation for L2Boosting, SparseL2Boost loses 70%
in terms of MSE, but uses only 1/3 of the predictors. Hence if one cares about sparsity,
SparseL2Boost seems a better choice than L2Boosting. In our framework, the boosting
approach automatically comes with a reasonable notion for statistical complexity or degrees
of freedom, namely the trace of the boosting operator when it can be expressed in hat
matrix form. This trace complexity is well defined for many popular base procedures (weak
learners) including componentwise linear least squares and decision trees, see also section
2.1. SparseL2Boost gives rise to a direct, fast computable estimate of the out-of-sample
error when combined with the gMDL model selection criterion (and thus, by-passing cross-
validation). This out-of-sample error estimate can also be used for choosing the stopping
iteration in L2Boosting and for selecting between sparse and traditional boosting, resulting
in the gMDL-sel-L2Boost algorithm.

Theoretical results in the orthogonal linear regression model as well as simulation and
data experiments are provided to demonstrate that the SparseL2Boost indeed gives sparser
model fits than L2Boosting and that gMDL-sel-L2Boost automatically chooses between the
two to give a rather satisfactory performance in terms of sparsity and prediction.

5. Proofs

We first give the proof of Theorem 2. It then serves as a basis for proving Theorem 1.

Proof of Theorem 2. We represent the componentwise linear least squares base procedure

as a hat operator HŜ with Hj = x(j)(x(j))T , where x(j) = (x
(j)
1 , . . . , x

(j)
n )T ; see also section

2.1. The L2Boosting operator in iteration m is then given by the matrix

Bm = I − (I − νH1)
m1(I − νH2)

m2 · · · (I − νHn)mn ,

where mi equals the number of times that the ith predictor variable has been selected during
the m boosting iterations; and hence m =

∑n
i=1 mi. The derivation of the formula above is

straightforward because of the orthogonality of the predictors x(j) and x(k) which implies
the commutation HjHk = HkHj. Moreover, Bm can be diagonalized

Bm = XDmXT with XTX = XXT = I, Dm = diag(dm,1, . . . , dm,n), dm,i = 1 − (1 − ν)mi .

Therefore, the residual sum of squares in the mth boosting iteration is:

RSSm = ‖Y − BmY‖2 = ‖XTY −XTBmY‖2 = ‖Z − DmZ‖2 = ‖(I − Dm)Z‖2,

where Z = XTY.
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The RSSm decreases monotonically in m. Moreover, the amount of decrease RSSm −
RSSm+1 is decaying monotonously in m, because L2Boosting proceeds to decrease the RSS
as much as possible in every step (by selecting the most reducing predictor x(j)) and due to
the structure of (1 − dm,i) = (1 − ν)mi . Thus, every stopping of boosting with an iteration
number m corresponds to a tolerance δ2 such that

RSSk − RSSk+1 > δ2, k = 1, 2, ...,m − 1,

RSSm − RSSm+1 ≤ δ2, (22)

that is, the iteration number m corresponds to a numerical tolerance where the difference
RSSm − RSSm+1 is smaller than δ2.

Since L2Boosting changes only one of the summands in RSSm in the boosting iteration
m + 1, the criterion in (22) implies that for all i ∈ {1, . . . , n}

((1 − ν)2(mi−1) − (1 − ν)2mi)Z2
i > δ2,

((1 − ν)2mi − (1 − ν)2(mi+1))Z2
i ≤ δ2. (23)

If mi = 0, only the second line in the above expression is relevant. The L2Boosting solution
with tolerance δ2 is thus characterized by (23).

Let us first, for the sake of insight, replace the “≤” in (23) by “≈”: we will deal later in
which sense such an approximate equality holds. If mi ≥ 1, we get

((1 − ν)2mi − (1 − ν)2(mi+1))Z2
i = (1 − ν)2mi(1 − (1 − ν)2)Z2

i ≈ δ2,

and hence

(1 − ν)mi ≈ δ
√

1 − (1 − ν)2|Zi|
. (24)

In case where mi = 0, we obviously have that 1 − (1 − ν)mi = 0. Therefore,

β̂
(m)
Boost,i = Ẑi = dm,i = (1 − (1 − ν)mi)Zi ≈ Zi −

δ
√

1 − (1 − ν)2|Zi|
Zi if m1 ≥ 1,

β̂
(m)
Boost,i = 0 if mi = 0.

Since mi = 0 happens only if |Zi| ≤ δ√
1−(1−ν)2

, we can write the estimator as

β̂
(m)
Boost,i ≈











Zi − λ, if Zi ≥ λ,

0, if |Zi| < λ,

Zi + λ, if Zi ≤ −λ.

(25)

where λ = δ√
1−(1−ν)2

(note that m is connected to δ, and hence to λ via the criterion

in (22)). This is the soft-threshold estimator with threshold λ, as in (13). By choosing
δ = λn

√

1 − (1 − ν)2, we get the desired threshold λn.
We will now deal with the approximation in (24). By the choice of δ two lines above,

we would like that

(1 − ν)mi ≈ λn/|Zi|.
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As we will see, this approximation is accurate when choosing ν small. We only have to deal
with the case where |Zi| > λn; if |Zi| ≤ λn, we know that mi = 0 and β̂i = 0 exactly, as
claimed in the right hand side of (25). Denote by

Vi = V (Zi) =
λn

|Zi|
∈ (0, 1).

(The range (0, 1) holds for the case we are considering here). According to the stopping
criterion in (23), the derivation as for (24) and the choice of δ, this says that

(1 − ν)mi > Vi,

(1 − ν)mi+1 ≤ Vi, (26)

and hence

∆(ν, Vi)
def
= ((1 − ν)mi − Vi) ≤ ((1 − ν)mi − (1 − ν)mi+1)

=
ν

1 − ν
(1 − ν)mi+1 ≤ ν

1 − ν
Vi,

by using (26). Thus,

(1 − ν)mi = Vi + ((1 − ν)mi − Vi) = Vi(1 + ∆(ν, Vi)/Vi) = Vi(1 + ei(ν)),

|ei(ν)| = |∆(ν, Vi)/Vi| ≤ ν/(1 − ν). (27)

Thus, when multiplying with (−1)Zi and adding Zi,

β̂
(m)
Boost,i = (1 − (1 − ν)mi)Zi = Zi − ZiVi(1 + ei(ν))

= soft-threshold estimator with threshold λn(1 + ei(ν)),

where max1≤i≤n |ei(ν)| ≤ ν/(1 − ν) as in (27). 2

Proof of Theorem 1. The proof is based on similar ideas as for Theorem 2. The
SparseL2Boost in iteration m aims to minimize

MSBm = RSSm + γntrace(Bm) = ‖Y −Xβ̂
(m)
ms−boost‖2 + γntrace(Bm).

When using the orthogonal transformation by multiplying with XT , the criterion above
becomes

MSBm = ‖Z − β̂
(m)
ms−boost‖2 + γntrace(Bm),

where trace(Bm) =
∑n

i=1(1−(1−ν)mi). Moreover, we run SparseL2Boost until the stopping
iteration m satisfies the following:

MSBk − MSBk+1 > 0, k = 1, 2, . . . ,m − 1,

MSBm − MSBm+1 ≤ 0. (28)

It is straightforward to see for the orthonormal case, that such an m coincides with the
definition for m̂ in section 2.3. Since SparseL2Boost changes only one of the summands in
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RSS and the trace of Bm, the criterion above implies that for all i = 1, . . . , n, using the
definition of MSB,

(1 − ν)2(mi−1)Z2
i (1 − (1 − ν)2) − γnν(1 − ν)mi−1 > 0,

(1 − ν)2miZ2
i (1 − (1 − ν)2) − γnν(1 − ν)mi ≤ 0. (29)

Note that if |Zi|2 ≤ γnν/(1 − (1 − ν)2), then mi = 0. This also implies uniqueness of the
iteration m such that (28) holds or of the mi such that (29) holds.

Similarly to the proof of Theorem 2, we look at this expression first in terms of an
approximate equality to zero, that is ≈ 0. We then immediately find that

(1 − ν)mi ≈ γnν

(1 − (1 − ν)2)|Zi|2
.

Hence,

β̂
(m)
ms−boost,i = (XTBmY)i = (XT XDmXTY)i = (DmZ)i = (1 − (1 − ν)mi)Zi

≈ Zi −
γnνZi

(1 − (1 − ν)2)|Zi|2
= Zi − sign(Zi)

γn

2 − ν

1

|Zi|
.

The right-hand side is the nonnegative garrote estimator as in (12) with threshold γn/(2−ν).
Dealing with the approximation “≈” can be done similarly as in the proof of Theorem

2. We define here

Vi = V (Zi) =
γnν

(1 − (1 − ν)2)|Zi|2
.

We then define ∆(ν, Vi) and ei(ν) as in the proof of Theorem 2, and we complete the proof
as for Theorem 2. 2
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