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Abstract

Background: The joint analysis of several categorical variables is a common task in many areas of biology, and is

becoming central to systems biology investigations whose goal is to identify potentially complex interaction

among variables belonging to a network. Interactions of arbitrary complexity are traditionally modeled in

statistics by log-linear models. It is challenging to extend these to the high dimensional and potentially sparse

data arising in computational biology. An important example, which provides the motivation for this article, is

the analysis of so-called full-length cDNA libraries of alternatively spliced genes, where we investigate

relationships among the presence of various exons in transcript species.

Results: We develop methods to perform model selection and parameter estimation in log-linear models for the

analysis of sparse contingency tables, to study the interaction of two or more factors. Maximum Likelihood

estimation of log-linear model coefficients might not be appropriate because of the presence of zeros in the

table’s cells, and new methods are required. We propose a computationally efficient `1- penalization approach

extending the Lasso algorithm to this context, and compare it to other procedures in a simulation study. We

then illustrate these algorithms on contingency tables arising from full-length cDNA libraries.

Conclusions: We propose regularization methods that can be used successfully to detect complex interaction

patterns among categorical variables in a broad range of biological problems involving categorical variables.
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Background

One of the most striking discoveries of the genomic era is the unexpectedly small number of genes in the

human genome. This amount has decreased from more than 100000 [1] to an estimated number of roughly

between 20000 and 25000 ( [2, 3]), tens of thousands less than initially expected and essentially the same

number as found in phenotypically much simpler organisms. A question of overriding biological significance

is, how complex phenotypes of higher organisms arise from limited genomes. Part of the explanation may

be that many genes undergo a process called alternative RNA splicing, which can generate many distinct

proteins from a single gene.

RNA splicing is a post-transcriptional process that occurs prior to mRNA translation. After the gene has

been transcribed into a pre-messenger RNA (pre-mRNA), it consists of intronic regions destined to be

removed during pre-mRNA processing (RNA splicing), as well as exonic sequences that are retained within

the mature mRNA. After transcription occurs the actual splicing process, where it is decided which exons

are retained in the mature message and which are targets for removal. In general, exons and introns are

retained and deleted in different combinations to create a diverse array of mRNAs from a common coding

sequence. This process is known as alternative RNA splicing. Depending on the source, the percentage of

alternatively spliced genes lies between 35% and 60% ( [4, 5, 6, 7, 8, 9, 10]). By screening many full-length

cDNAs it is possible to record the complete cDNA from a mature RNA for the same gene again and again

and a full-length cDNA library, also known as single-gene library (SGL), builds up. The library contains

detailed information about how specific exon combinations go together. This information is directly related

to the functional regions of the proteins as they are grouped in domains which in many cases correspond to

a single exon which encodes these domains. For example a transcription factor consists of a DNA binding

domain and a regulatory domain. Thus the alteration of the exon structure corresponds to an alteration in

the function of this particular domain. The central premise is that a dependency in the domains points to

a functional association. If domains interact functionally then their splicing should be co-regulated. And

this co-regulation has direct biological significance because it shows us which variable components also

interact in the expressed protein. Because the polypeptide is intricately folded and tightly packed,

segments that are separated by dozens of introns in the primary transcript may encode domains that
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interact functionally within the protein. These domains need not be structural neighbors even in the folded

protein, but may interact through electrical or van der Waals forces, effects of global conformational

changes, or even associations with other proteins. Because of these intricacies, there are no inherent

distance restrictions, or limits on the number of interacting sites, and separate domains may combine their

functional effect in unpredictable ways.

Due to the large number of potential combinations in highly alternatively spliced genes, any library will

only comprise a small portion of the total theoretically possible inventory of combinations. Statistically,

this leads to sparse contingency tables in which dimensions represent exons and cells represent variants.

The investigation of interactions among categorical variables where not all possible combinations are

observed, means addressing a model selection problem that is challenging both inferentially and

computationally.

As far as alternative splicing is concerned, there is an important reason to determine this interaction

structure: searching for intrapeptide interactions in functional assays is a very difficult, open-ended

problem, where statistical analysis of the splicing interaction structure in the transcriptome can simplify

this task enormously by identifying the sets of interacting domains. And as more investigators become

interested in this type of information, and large-scale single-gene libraries become available, there is a

strong need for reliable statistical methods for analyzing the resulting datasets.

We develop different statistical methods to analyse sparse contingency tables in order to determine the

underlying interaction pattern and we use graphical models to visualize these patterns. The methods are

compared in a simulation study and illustrated on full-length cDNA libraries.

Results
General introduction to contingency tables and Log-linear Models

In this section we provide general definitions and notations.

Assume we have q categorical random variables or factors, C = {C1, . . . , Cq}, where each Cj can take on a

finite number gj of possible values, called levels. The vector (c1, . . . , cq) represents a particular combination

of levels of the joint random variable C = {C1, . . . , Cq}. The total cardinality of C is m =
∏q
j=1 gj , which

corresponds to the m different combinations of levels (m = 2q when all Cj are dichotomous, as in our

splicing example).

We simplify the notation by mapping each configuration of C to a unique natural number i ∈ {1, ...,m}
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with a (bijective) function f :

f : (c1, . . . , cq)↔ i ∈ {1, . . . ,m},

so we may write ci = (c1, . . . , cq). For n observations of C, the corresponding q-way contingency table has

m cells, each listing the frequency of a particular configuration ci:

nc1,...,cq
= ni,

m∑
i=1

ni = n.

A general introduction to contingency tables can be found in [11].

If the observations are independent, with pi the probability of sampling configuration ci, the distribution of

the cell counts (n1, . . . , nq)t is multinomial with probability p = (p1, . . . , pq).

In the splicing example, we may consider the Cj as dichotomous random variables representing q sites of

alternative splicing, each with two levels, denoted by cj ∈ {1,−1}, corresponding to the presence or

absence of exon j in a transcript. The contingency table therefore has m = 2q cells, with each cell

represented by the q-dimensional binary vector ci = (c1, . . . , cq). A log-linear model for the cell

probabilities can be written the following way:

log pi = β∅ +
∑

l∈{1,...,q}

βlcl +
∑
j,k

j<k∈{1,...,q}

βjkcjck + . . .+ β12...qc1c2 · · · cq. (1)

A general log-linear model represents p as:

log (p) = Xβ, (2)

where β is a vector of unknown coefficients and X a suitable design matrix as indicated below.

Let’s assume that the cell probabilities are expressed in the following way:

log pc1,...,cq
= δ∅ + δC1

c1 + . . .+ δCq
cq

+ δC1,C2
c1,c2 + . . .+ δC1,...,Cq

c1,...,cq
, (3)

where δ∅ is the global mean, δC1
c1 is the main effect of the first variable and only depends on the

distribution of C1. Similarly δC1,C2
c1,c2 is the first order interaction between the first two variables and its

value only depends on the joint distribution of these two variables.

We now look for a suitable parametrization X̃Ci of the vector spaces spanned by the main effects δCi , a

parametrization X̃Ci,Cj for the vector spaces spanned by the first order interactions δCi,Cj and so on. To

ensure identifiability, we impose constraints on these matrices and denote the resulting matrices by XCi ,

XCi,Cj and so on. The design matrix X finally consists of these submatrices. The constitution of the
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design matrix X for factors with two levels can directly be derived from (1). The derivation of the design

matrix X from (3) in the case of more than two levels per factor is basically an analysis of variance

(ANOVA) parametrization with poly-contrasts. Details can be found in the Additional file Section 1.

Sometimes we may assume a smaller model without some of the interaction terms. It is of the form as in

(2) with some columns removed from the design matrix X. We denote matrices of the form XCj1 ,...,Cjk by

Xa, with a = {Cj1 , . . . , Cjk} ⊆ C. The corresponding subvector of β is denoted by βa.

Graphical Models

A powerful way for visualizing conditional dependencies among variables is given by a graph. A graph

G = (V, E) consists of a finite set V of vertices and a finite set E of edges between these vertices. In our

context, the vertices correspond to the different discrete random variables. We form the so-called

Conditional Independence Graph by connecting all pairs of vertices that appear in the same generator, that

is the maximal terms a ⊆ C which are present in the model. To translate a vector β into a graphical model

we look for βa 6= 0 with βb = 0 ∀a ⊂ b (where b is a strict super-set of a and |a| > 1) and we draw edges

between all vertices corresponding to a. From this graph we can directly read off all marginal and

conditional independences by the global Markov property for undirected graphs which states: if two sets of

variables a and b are separated by a third set of variables c then a and b are conditionally independent

given c (a⊥⊥b|c), where for three subsets a, b and c of V, we say c separates a and b if all paths from a to b

intersect c. For details, see [12].

Model selection

In this section we introduce different model selection strategies for log-linear models. We first develop an

`1-regularization model selection approach, which is then expanded to the new so-called

level -`1-regularization approach. In addition, different Bayesian model selection strategies, which we use

for comparisons, are explained in the Additional file 2 Section.

Non-Hierarchical versus hierarchical models

Hierarchical models are a subclass of models such that if an interaction term βa is zero, then all higher

order interaction terms βb for b ⊇ a are also zero. If we consider the example above with 2 levels, this

means for example that if the first order interaction coefficient βij = 0 then all higher order interaction

coefficients including i and j are also zero, i.e. βijk = 0,∀k. While it is possible that the true underlying
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interaction model may not be hierarchical from a biological standpoint, a difficulty in the use of

non-hierarchical models arises from the fact that they are not invariant under reparametrization. We have

chosen the design matrix X with some constraints to ensure identifiability, and we used a specific, namely

an orthonormal basis. In terms of ANOVA, this choice is equivalent to choosing a poly-contrast. We could

have imposed different constraints or have chosen a different basis, and this would have resulted in a

different design matrix X or in terms of ANOVA, a different choice of contrast. Suppose we have found an

interaction vector β for one parametrization of the log-linear model and that this vector corresponds to a

non-hierarchical model, meaning there is at least one lower order interaction term βa equal to zero, while

βb 6= 0 for at least one b ⊇ a. If we reparametrize the model, using a different design matrix, the coefficient

for the model term a may no longer be zero. On the other hand, by reparametrizing a hierarchical model,

all zero terms remain zero after reparametrization. Therefore, hierarchicity is preserved after

reparametrization while non-hierarchicity depends on the parametrization. This is a distinct advantage of

working within the hierarchical class. In a hierarchical model, all zero coefficients can directly be

interpreted in terms of conditional independence, while this is not true for non-hierarchical models.

`1-Regularized model selection

The Lasso, originally proposed by [13] for linear regression, performs regularized parameter estimation and

variable selection at the same time. The Lasso estimate is defined as follows:

β̂
λ

= arg min
β

∑
i

(Y −Xβ)2i + λ
∑
j

|βj |

 ,
where Y = (Y1, . . . , Yn) is the response vector. This can also be viewed as a penalized Maximum

Likelihood estimator, as
∑
i(Y −Xβ)2i is proportional to the negative log-likelihood function for Gaussian

linear regression. While the MLE for the general regression model is no longer uniquely defined and very

poor in the case of more variables than observations, the Lasso estimator is still reasonable as long as

λ > 0. For our analysis, we have a similar problem, namely that the MLE does not exist in case of zero

counts in the contingency table: a detailed description of the existence of the MLE in general log-linear

interaction models is given in [14]. Inspired by the Lasso, we estimate our parameter vector β by the

following expression:

β̂
λ

= arg min
β

−l(β) + λ
∑
j

| βj |

 , (4)
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where l(β) is the log-likelihood function l(β) = log Pβ[n] ∝
∑m
i=1

nn

n (Xβ)n. This minimization has to be

calculated under the additional constraint that the cell probabilities add to 1:

m∑
i=1

exp {(Xβ)i} = 1. (5)

A problem of the optimization (4) is that the solution is no longer independent of the choice of the

orthogonal subspaces Xa. That is, if any set of orthogonal columns Xa of X is reparametrized by a

different orthogonal set, we get a different solution. To avoid this undesirable outcome we use a penalty

that is intermediate between the `1- and the `2-penalty. This penalty, called group-`1-penalty, has the

following form: ∑
a⊆C

‖βa‖`2 , where ‖βa‖2`2 =
∑
j

(βa)2j

Originally, this has been proposed by [15] for the linear regression problem with factor variables. The

estimator of β then becomes

β̂
λ

= arg min
β

−l(β) + λ
∑
a⊆C
a6=∅

‖βa‖`2

 , (6)

subject to the constraint in (5). By imposing a penalty function on the coefficients of the log-linear

interaction terms, overfitting as it might occur by using MLE is reduced. Furthermore, the `1-penalty

encourages sparse solutions for the single components of β, the group `1-penalty encourages sparsity at the

interaction level, meaning that the vector βa, which corresponds to the interaction term a is either present

or absent in the model as a whole. In case of factors with only 2 levels, the group `1-penalty and the

`1-penalty are equivalent.

For both the `1-, and the group `1-regularization, the parameter λ can be assessed by cross-validation: we

divide the individual counts into a number of equal parts and in turn leave out one part for the rest to

form a training contingency table with cell counts ntrain. The solution for an array of values for λ, the

so-called solution path, is calculated according to an algorithm described in the following Implementation

section. The corresponding vectors of cell probabilities are denoted by p
(
β̂
λ
)

. We then use the remainder

of the cell counts ntest to calculate the predictive negative log-likelihood score

−
∑m
i=1 ntest,i · log

(
pi(β̂

λ
)
)

∑m
i=1 ntest,i

, (7)

which is proportional to the out-of-sample negative log-likelihood. This score is on the same scale when

varying the number of observations and may therefore be used to compare contingency tables of the same
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dimension but with different numbers of cell entries. The parameter λ is chosen as the value which

minimizes the cross-validated score in (7). We use a ten-fold cross-validation in our example.

The resulting model does not necessarily have to be hierarchical and if we consider the hierarchical model

induced by this procedure, it might happen that the final model is large for example if a single high order

interaction is estimated to be active. To address this, we set up an algorithm described in the next Section.

Level-`1-regularized model selection

In order to prevent the procedure from choosing single high-order interactions, we alter the `1-regularized

algorithm described in the previous Section: we do not exclusively apply it to the fully saturated model

but also to submodels with lower order interactions. Precisely, a model is fitted with main effects only, and

the predictive negative log-likelihood score (7) is calculated for the best main effects model (level 1). The

same is done for the model including all main effects and first order interactions (level 2). Proceeding

accordingly, we get |C| log-likelihood scores corresponding to the |C| levels. The level with minimal score

(7) is then chosen (and within this selected level, we have an `1-regularized estimate).

With this procedure the tendency of including a single high-order interaction while most of its lower order

interactions are absent is decreased, and the inclusion is only forced if the predictive negative log-likelihood

score strongly speaks in favour of the inclusion. Therefore we tend to select sparser models which can be

better hierarchized and interpreted in terms of conditional independence, in contrast to the ordinary

`1-model selection procedure.

Implementation
Algorithm for `1-regularization for factors with two levels

For the regularization approaches we calculate β̂
λ

over a large number of values of λ in order to do some

cross-validation using (7). For this purpose, an efficient algorithm is required. As one can easily verify by

introducing Lagrange multipliers, finding the solution to (6) under the constraint (5) is equivalent to

minimizing an unconstrained function g(β):

g(β) = −l(β) +
m∑
i=1

exp (µi) + λ
∑
a⊆C
a6=∅

‖βa‖`2 , (8)

with µ = Xβ and l(β) ∝
∑
i
ni

n (Xβ)i. Here, g is a convex function. If each factor has two levels only, as in

our application with single-gene libraries, we can set up an algorithm, which efficiently yields the estimates

for a whole sequence of parameters λ. Let A denote the set of active interaction terms, which means for
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a ∈ A it holds that βa 6= 0; XA is the corresponding sub-matrix of X,βA the corresponding sub-vector of

β and gA is g restricted to the subspace βA. We restrict ourselves to the currently active set A, where

∇gA and ∇2gA are well-defined:

∇gA(βA, λ) = −Xt
A{

n
n
− · exp (XAβA)}+ λ(0, sign(βA))t

∇2gA(βA, λ) = Xt
Adiag {exp (Xβ)}XA.

The algorithm, which is an adaption of the path following algorithm proposed by [16], is set up as follows:

(1) Start with β̂ = (− log (m), 0, . . . , 0)

(2) Set: λ0 = 1,A = {∅} and t = 0.

(3) While (λt > λmin)

(3.1) λt+1 = λt − ε

(3.2) A = A ∪ {j /∈ A : |[Xt · nn − exp
(
Xβ̂
)

]j | > λt+1}

(3.3) β̂ is updated as β̂t+1 = β̂t −∇2gA(β̂t, λt+1)
−1
· ∇gA(β̂t, λt+1).

(3.4) A = A \ {j ∈ A : |β̂t+1,j | < δ}

(3.5) t = t+ 1

The pairs (β̂t, λt), obtained from the algorithm above, represent the estimates from (6) under the

constraint (5) for a range of penalty parameters λt e.g. (t = ε, 2ε, . . .). The choice of the step length ε

represents the tradeoff between computational complexity and accuracy. To increase accuracy, one can

perform more than one Newton step (3.3) if the gradient starts deviating from zero. The coefficient δ is

also flexible. Typically it is chosen in the order of ε. The lowest λ for which one wants the solution to be

calculated is denoted by λmin.

Technical details concerning the algorithm can be found in the Appendix.

Simulation study
Data

We choose the true underlying interaction vector β consisting of 5 factors of 2 levels. By enumerating the

factors from 1 to 5, the generators of the model are 345 + 235 + 234 + 135 + 123 + 14, which means that all

third and fourth order interactions are absent, only five of ten second order interactions and all first order
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interactions are present. The corresponding coefficients of β are independently simulated using a normal

distribution with mean zero and variance one.

Then, 250 draws from a multinomial distribution with probability vector p where log (p) = Xβ, are taken.

This corresponds to a reasonable number of cDNAs in a single-gene library. This is then repeated 10 times.

With our choice of β, the resulting contingency tables are sparse. With the simulated cell counts, β̂ is

estimated with different methods described in the previous sections and these methods are then compared

as follows:

Criteria

As a model selection score (MSS), we consider the fraction of correctly assigned model terms:

MSS = 1− 1
m

m∑
i=1

|1{βi 6=0} − 1{bβi 6=0}|.

Moreover, we consider the root mean squared error for the interaction coefficients,

RMSE =

√√√√ 1
m

m∑
i=1

(β̂i − βi)2.

For assessing how much the estimation of β varies over multiple datasets, we calculate for every coefficient

β̂i the estimated standard deviation σ̂i. The means of these standard deviations are reported as

SPREAD =
1
m

m∑
i=1

σ̂i,

a measure of variability.

To compare the different procedures for estimation of probabilities p = exp (Xβ), we calculate the negative

log-likelihood score (NLS) similar to the score in (7):

NLS(β̂) = −
m∑
i=1

pi · log
(
pi(β̂)

)
.

Results of simulation study

The results of the simulation study are summarized in Table 1, where we also include the MAP estimators

of the Bayesian approaches described in the Additional file Section 2. We notice that the penalty-based

regularization approaches proposed in this article leads to comparable or better results than the Bayesian

approaches with respect to the NLS-score, RMSE and the variation (SPREAD), though the results of

Bayesian approaches vary with the prior and the set of possible priors has not been extensively explored.
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Table 1: Comparison of different methods to estimate the interaction strength vector β. MSS, NLS, RMSE
and SPREAD are described in the Implementation section. The additional methods relaxed `1-regularization
and `2-regularization listed in the Table are explained in the Results Section.

MSS NLS RMSE SPREAD
Penalty-based regularization methods:

`1-regularization 69.7% 2.20 0.228 0.144
Level-`1-regularization 89.7% 2.22 0.237 0.179
Relaxed `1-regularization 82.2% 2.22 0.233 0.154
`2-regularization - 2.20 0.238 0.130

MCMC without model selection:
σ2 = 2 - 2.32 0.747 0.401
σ2 = 1 - 2.27 0.467 0.287
σ2 = 1/2 - 2.24 0.294 0.201

MCMC with model selection:
σ2 ∼ Γ−1(2, 3) 81.5% 2.23 0.294 0.231

σ2 = 2 76.6% 2.25 0.431 0.342
σ2 = 1 78.4% 2.24 0.331 0.265
σ2 = 1/2 76.6% 2.23 0.281 0.225

MCMC with hierarchical model selection:
σ2 ∼ Γ−1(2, 3) 84.1% 2.22 0.255 0.180

σ2 = 2 80.6% 2.29 0.415 0.284
σ2 = 1 83.4% 2.26 0.308 0.221
σ2 = 1/2 83.4% 2.24 0.247 0.178
σ2 = 1/10 86.3% 2.20 0.236 0.097
σ2 = 1/100 69.7% 2.28 0.420 0.033

The level- `1-regularization and the relaxed `1-regularization (see below) are both competitive and can be

better than MCMC for model selection.

The results of the MCMC procedures are sensitive to the choice of the prior value or the prior distribution

for σ2. A flat prior for αa (σ2 = 2) results in worse performance than that of a prior that shrinks the

coefficients more towards zero (σ2 = 1/2). This suggests that specification of this prior hyperparameter

may be difficult in practice, while we can easily optimize λ in the regularization approach by

cross-validation.

The MCMC approaches without model selection perform poorly, as should be expected from data generated

by a sparse model. MCMC methods based on a non-hierarchical model selection are also clearly inferior to

the hierarchical counterpart. This is not surprising, as we have simulated data from a hierarchical model.

In Table 1 we have also added an additional approach, denoted by `2, the equivalent to the
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`1-regularization but using an `2-penalty instead of an `1-penalty on the coefficients of the log-linear

model. This method is equivalent to the MAP estimator with Gaussian priors on βa, with the parameter of

the distribution optimized by cross-validation. This Ridge-type method does not perform variable

selection, but it is competitive for all other criteria that we assessed.

In addition we consider the relaxed `1-regularization approach. Rather than using a single penalty

parameter λ, the idea of this method is to control variable selection and parameter estimation by

incorporating two penalty parameters. For linear regression it has been proven theoretically as well as

empirically [17] that under suitable conditions the relaxed `1-regularization is better than Lasso.

Overall, the level-`1-regularization has good model selection performance (high MSS score) in combination

with low negative log-likelihood score (NLS) and a low mean squared error for the true β (RMSE). In

addition, it is feasible to optimize the tuning parameter λ by cross-validation as the computational cost is

very low compared to the MCMC approaches. On the other hand, posterior distributions of estimates from

MCMC methods provide additional information about uncertainty in the model space, compared to point

estimates from `1− or `2− regularization.

Application to single-gene libraries
Dataset

We estimate the splicing interaction pattern for a dataset corresponding to the itpr1 gene, one of three

mammalian genes encoding receptors for the second messenger inositol 1,4,5-trisphosphate (InsP3 ). This

gene is subject to alternative RNA splicing, with seven sites of transcript variation, 6 of these within the

ORF and among these, q = 5 were completely assessed in the single-gene libraries. Five single-gene

libraries were built, one for adult rat cerebrum as well as four for different stages of postnatal cerebellar

development, namely on days 6, 12, 22 and 90, the latter being considered as adult. Each library consists

of between 179 and 277 transcripts which were assessed, i.e.
∑m
j=1 nj ∈ [179, 277]. This gene is 89%

identical at the cDNA level and 95% identical at the amino acid level with the human receptor gene. The

complete dataset can be found in [18].

Results of application to Single-Gene Libraries

Unless stated differently, we report the results using the level `1-penalization method. We display the

interaction vector β̂ graphically by plotting the components β̂j for the different tissue and development

stages in Figure 1. Our results suggest that the exons interact mainly in pairs and there is no reliably
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Figure 1: The upper panel shows the estimated splicing interaction vectors β̂ of rat cerebellum tissues at
postnatal days six, 12 and 22. The lower panel shows the splicing interaction vector β̂ of rat cerebellum
tissues at the age of 90 days, which is considered adult, as well as the splicing interaction vector β̂ of rat
cerebral tissue at the age of 90 days. Within an interaction degree, the sequence of coefficients is ordered
from left to right as follows: e.g. for 2nd order interactions, 123, 124, 125, . . . , 345, where 1, . . . , 5 represent
exons 12, 23B, 40, 41, and 42 in the rip3r1 gene, as described in [18].
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estimated higher order interaction in the splicing interaction pattern of rat cerebellum. We further notice

that the main interaction pattern is very well conserved over different developmental stages. A strong

mutual interaction between exons number three, four and five can be observed in all development stages of
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rat cerebellum as well as in the cerebral tissue. The biggest changes in the interaction pattern during

development of rat cerebellum occur from postnatal day six to day 12. This can be seen at position

number 10 on the x-axis in Figure 1, and it corresponds to the first order interaction between exons two

and three, and from day 12 to day 16, the first main effect changes in sign and magnitude. The first main

effect decreases progressively from day 6 to adult, reversing in sign between day 12 and 22. Between day 22

and 90, the interaction pattern is strongly conserved. Comparing the splicing interaction patterns between

cerebellum and cerebrum in the adult rat, we see a much more complex pattern in the cerebrum, involving

several second order interactions, and therefore a clear distinction from that of the cerebellum.

The conditional independence graphs for the estimated log-linear models are drawn in Figure 2, where the

thickness of the edges are proportional to the corresponding coefficient of the interaction vector β̂ (the

largest, if there are several giving rise to the same edge) and the radius of the vertices are chosen

proportional to the corresponding main effect coefficient. Figure 2 graphically exploits the strongly

conserved interactions between exons three, four and five. Except for a rather strong interaction between

exon two and three on day six, all other interactions appear to be rather small. The graphical

representation of the interaction pattern of adult rat cerebrum reveals a more complex interaction pattern

with no conditional independences.

The approaches and results presented here can provide valuable insight into the underlying processes in

alternative splicing in general, and specifically in the brain development experiments considered here. Most

striking is the strong conservation over developmental stages at day 12, 22 and 90 (adult); some differences

are showing between postnatal day six and day 12. Also, the conservation between the cerebellum and

cerebrum is less pronounced than over developmental stages. Finally, second- or higher-order interaction

terms seem to be of minor relevance, suggesting that in this gene/tissue combination, direct interaction

mainly happens between pairs of exons, but not combinations of three or more exons.

We have also estimated β with the hierarchical Bayesian approach using MCMC. For the choice of σ2 = 1

this resulted in very similar interaction patterns as for the level `1-penalization method. For σ2 = 2 it led

to remarkably different results. In addition to this, a further dataset was analyzed where the details can be

found in the Additional file Section 3.

Conclusions

We have developed an efficient method for identifying interaction patterns of categorical variables. This

can be used to fit a graphical model which is a valuable tool to visualize the conditional dependence
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Figure 2: Conditional independence graphs for the estimated log-linear models for the itpr1 gene. For each
graph, the predictive probability score (7) is reported as a goodness of fit measure. Note the strong mutual
interaction between exons three, four and five.
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structure among the random variables. In a simulation study, the results of the new level-`1-regularization

method are superior in comparison to `1-regularization and slightly better than the MAP estimator from
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some of the MCMC methods we considered. With real data, the level `1-regularization and hierarchical

Bayesian approach led to similar results, subject to a specific choice of priors for the Bayesian method. An

important computational advantage of the level-`1-method in comparison to MCMC, is that

cross-validation becomes feasible which in turn allows for an empirical choice of the tuning parameter.

While the methodology described in this article is motivated by the study of exon splicing interactions in

single-gene transcriptomes, it provides a general and flexible toolbox for regularization analysis in relatively

high dimensional, sparse contingency tables. Model selection in high dimensional contingency tables has

been a traditionally challenging area, and we hope that our generalization of regularization methodologies

to this context will prove useful in a variety of areas of computational biology and biostatistics. Several

technologies generate categorical data: these include SNP chips that provide genotype and copy number

information at the DNA level, sequencing technologies, assays that study binding properties of proteins

and binding of RNA to DNA, a variety of disease phenotypes, and more. In most of these contexts the

interactions among the variables are critical features in systems biology investigations that aim at studying

how the components of complex systems work together in influencing biological outcomes. For example,

the log-linear models described here provide a natural approach for fitting very general classes of networks

to discrete data. The level-`1-regularization is a general tool which can be applied to a wide variety of

problems involving sparse contingency tables.

An R package called logilasso will be available for download on the Comprehensive R Archive Network

(CRAN).
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Appendix

We note that if β is a minimum of g, then βA is a minimum of gA.

In our application with single-gene libraries, all factors have two levels only, which allows to construct an

efficient algorithm. Since the gradient

∇

−l(β) +
m∑
j=1

exp (µj)

 = −Xt · (n
n
− exp (Xβ)),

where exp(Xβ) is understood as the componentwise exponential function, it follows that for a minimum

βA of gA, the following equation holds:

∇gA(βA) = −Xt
A · (

n
n
− exp (XAβ)) + (0, sign(βA))t · λ = 0 (9)

Without loss of generality, we can restrict ourselves to the subspace β ∈ R− × Rm−1, because the

constraint (5) can only be satisfied for β∅ < 0 as is proved in the following Lemma 1. Therefore β∅ ∈ A.

Lemma 1. β∅ < 0 for a minimum of g(β) for all λ ∈ R+.

Proof.

log (p) = Xβ < 0 which yields (1, . . . , 1)Xβ = mβ∅ < 0 this implies β∅ < 0.

This holds because (1, . . . , 1) is orthogonal to all columns of X except for the first one.

Additionally for β being a minimum, a necessary condition is:

|(Xt · (n
n
− exp (Xβ)))j | < λ,∀j /∈ A. (10)

Conditions (9) and (10) are sufficient for β being a minimum of (8). To find the β’s that solve these

equations for an array of values for λ, we set up a so-called path following algorithm. The idea is to start

from an optimal solution βλ0 for λ0, and follow the path for decreasing λ, using a second-order

approximation for βA. In the following, we restrict ourselves to the currently active set A, omitting the

index A. It then holds:

∇g(βt+1, λt+1) = 0 ≈ ∇g(βt, λt+1) +∇2g(βt, λt+1)δβ. This implies (11)

δβ = −∇2g(βt, λt+1)−1∇g(βt, λt+1).

The algorithm tries to follow the optimal path as close as possible. At each step, it aims to meet the

conditions (9) and (10). In step (3.2), the active set A is identified, which forces β̂ to meet the condition

(10). In step (3.3), a Newton step as described in (11) is performed. Starting from a solution which meets

condition (9), the new β̂
λ

approximately meets (9) again.
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Additional files
Additional file 1 – Parametrization of log-linear model

A possible parametrization of the vector space spanned e.g. by δC1 , span(δC1) = X̃C1 ∈ Rm×|C1|, is given

as follows: the jth column takes on the value 1 if the variable c1 of the corresponding cell takes on level j

and 0 otherwise. Similarly for X̃C1,C2 ∈ Rm×(|C1|·|C2|), there is a 1 in the first column, if the corresponding

cell has c1 as well as c2 taking on its first level. Of course the resulting matrix is highly overparametrized

and to ensure identifiability, we have to impose constraints. By definition the vector space spanned by the

constant vector δ∅ is a subspace of the column space of X̃C1 , analogously the column space spanned by

X̃C1 and X̃C2 is a subspace of the column space spanned by X̃C1,C2 and the same holds for higher order

interactions: The vector space spanned by an interaction of order k is always a superspace of all

vectorspaces spanned by all corresponding interactions of order k− 1. We then finally define XCj1 ,...,Cjk by

the orthogonal complement of the vector space spanned by {X̃Cj2 ,...,Cjk , X̃Cj1 ,Cj3 ,...,Cjk , X̃Cj1 ,...,Cjk−1 } in

X̃Cj1 ,...,Cjk . The dimensionality of the resulting submatrix is Rm×((|Cj1 |−1)...(|Cjk
|−1)). We can easily prove

that the resulting design matrix is an orthogonal matrix. We generally normalize the column vectors to

length
√
m, such that the first column is a column of 1’s.

The log-linear interaction model (3) takes on the following form in matrix formulation:

log (p) = Xβ.

Additional file 2 – Bayesian model selection
Non-hierarchical Bayesian model selection

The Bayesian approach we choose is essentially the same as chosen by [19] and closely related to what was

proposed by [20,21,22]. We use a Markov chain Monte Carlo algorithm based on Stochastic Search

Variable Selection (SSVS): SSVS is a procedure proposed by [21] to perform variable selection in the

standard linear regression model. We adapt this procedure to log-linear models. But instead of assuming a

normal mixture model for the coefficients of interest as in SSVS, we follow an approach proposed by [22],

and assume the coefficients to be a mixture of a point mass at zero and a normal distribution. Following

the notation introduced in the main text, the complete model can be described as follows:

n ∼Multinom(p) with log(p) = Xβ,
βa|γa ∼ (1− γa)I0 + γaN (0, σ2

a1da
) independent for all a ⊆ C,

γa ∼ Ber(prγa) independent for all a ⊆ C,
σ2
a ∼ Γ−1(l, u) independent for all a ⊆ C,

(12)

where I0 is a point mass at zero and γa is a Bernoulli variable with probability parameter prγa
reflecting

prior belief that the corresponding interaction term βa is not equal to zero. The parameters σ2
a follow an

19



inverse gamma distribution with parameters l and u. In our simulation study, we also considered fixed

values for σ2
a. The choice of the prior parameter l, u and prγa is discussed in the Implementation section.

In the absence of strong prior belief, it is reasonable to assume that all σ2
a are identically distributed. By

imposing prior distributions on the log-linear parameters βa, it would be possible to incorporate further

prior knowledge in the form of existence of correlation or signs of correlation between the different criteria

C. One way is to use a prior with expectation different from zero for the corresponding log-linear term

(E [βa|γa = 1] 6= 0). See for example [23] for a more detailed discussion on normal priors for the log-linear

parameters βα.

We introduce variables αa, where αa ∼ N (0, σ2
a1da) and we set βa = αa if γa = 1 and βa = 0 if γa = 0

independent of the value of αa: βa = αaγa has then the desired distribution in (12). This construction is

mentioned, but not implemented, in [22].

The calculation of the posterior distribution f(γ,α,σ2|n) is now required. This cannot be done directly

and Monte Carlo approximations are needed, for example from Gibbs sampling. We first calculate the

univariate conditional distributions of the parameters αa or components of αa if it is a vector:

f(αa|n,γ,α\a,σ2) ∝ f(n|γ,α)f(αa|σ2
a) ∝ exp {n · (X∅α∅ +Xaαaγa)}f(αa|σ2

a).

Although this univariate conditional density is not of any recognized form, we can prove that it is

log-concave (see Lemma 2 at the end of this section for details) and therefore sampling from it can be

efficiently done using adaptive rejection sampling, as proposed by [24]. Sampling σ2
a is straightforward, as

f(σ2
a|n,γ,α,σ2

\a) = f(σ2
a|αa) ∝ f(αa|σ2

a)f(σ2
a), (13)

and we can easily show that σ2
a|αa ∼ Γ−1(α2

a/2 + l, u+ 1/2). Therefore we can sample σ2
a from an inverse

gamma distribution. In the case where σ2
a is assumed to be fixed, this sampling step can be omitted. To

sample from f(γa|n,γ\a,α,σ2), we compute the conditional Bayes factor BF in favour of γa = 1 versus

γa = 0. The conditional posterior distribution of γa is Bernoulli with pγa
= BF

1+BF . Thus we can sample

γa ∼ Ber(pγa).

The Bayes factor BF is given by

BF =
f(n|γa = 1,γ\a,α)prγa

f(n|γa = 0,γ\a,α)(1− prγa
)
.

The parameters αa, σ2
a and γa are updated in turn for all a ⊆ C. In this way we are able to efficiently

sample from the full posterior f(α,γ,σ2|n) and derive from it the posterior of f(β,γ,σ2|n). From the
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marginal posterior distribution f(γ|n), we can estimate the model probabilities by the sample proportions

for γ, with the most promising models corresponding to the most frequently observed γ. From f(β|n, γ)

we can derive the distribution for the interaction strength vector β conditional on the model γ.

Hierarchical Bayesian model selection

We adapt the algorithm described above in a way that allows only moves from one hierarchical model to

another, so that we never leave the class of hierarchical models. A hierarchical model is determined by its

generators. The only individual model term which may be removed from a hierarchical model so that it

remains hierarchical is a generating term. In addition, [25] define the dual generators, which are the

minimal terms that are not present in the model. The only individual model terms which may be added to

the model so that it remains hierarchical are the dual generators.

We consider all hierarchical models to be equally likely and denote the set of generators and dual

generators of a hierarchical model corresponding to γ with Gγ . We use a Metropolis Hastings algorithm to

sample from the full posterior distribution f(γ,α,σ2|n). We propose a move from one model γt to the

next model γt+1 by choosing an element Gγt . Thus we randomly sample an element a ∈ Gγt and the

corresponding γa is set to one or zero respectively. The resulting γ is denoted as γt+1. The corresponding

move is accepted with acceptance probability:

min
(

1,
f(n|γt+1,αt)|Gγt |
f(n|γt,αt)|Gγt+1 |

)
,

where |G| refers to the number of models included in each set of generators G and this refers to the

probability of proposing each model. The sampling procedure for αa and σ2
a is performed exactly as in the

non-hierarchical case described in the previous section.

Prior specification for Bayesian methods

For the Bayesian estimation of the parameter vector, we must specify the parameters for the prior

distribution of σ2
a: σ2

a plays a role that is similar to that of the parameter λ in the Lasso. The lower σ2
a, the

smaller the estimated coefficient β̂a. An empirical Bayes approach to the implementation could be to

specify this parameter by cross-validation. While feasible for the `1-regularization approaches,

cross-validation becomes prohibitive for the MCMC approaches because of the computational

demands. [23] proposed a fixed value of two for all a in C, e.g. σ2
a = σ2. Placing a normal prior with mean

zero and variance two on each αa means that with probability 0.95, each of these effects will increase or
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decrease the ratio of any two cell probabilities by a factor of no more than 10. This is a relatively vague

prior, and can be appropriate when no prior information is available. However, our simulation study will

illustrate that the final results can be highly sensitive to the choice of this value. To mitigate this

sensitivity, we assume σ2 to have an inverse gamma distribution with mean and variance equal to one, as

described in the Model Selection section.

In addition, for non-hierarchical model selection, we have to specify the prior distribution for γa. We set

γa ∼ Ber(prγa
), where prγa

reflects prior belief that the corresponding interaction term Ua is present.

Without prior knowledge, we assume here that all possible models are a priori equally likely, corresponding

to prγa = 1/2 for all a ⊆ C.

This prior is especially attractive when coupled with MAP estimation, as done here, because it effectively

cancels out of the MAP calculation. In other situations, this prior may be less compelling. For example, it

may be of interest to report posterior probabilities of properties of sets in the model space, such as

marginal posteriors of the inclusion of certain coefficients or marginal posteriors of the presence of high

order interactions. Then one has to evaluate carefully the mass that priors give to those sets, and one

might have to reconsider the choice of the prior distributions to get reasonable posterior probabilities of

these sets. In addition, as q, the number of exons, increases, estimating the MAP in the model space

becomes difficult and marginal posteriors of summaries such as the model size or the maximum order of

interaction may be all that can be reliably estimated. In those circumstances, we suggest graphing these

posteriors along with the corresponding priors probabilities, and/or to report Bayes factors.

Lemma 2. The function f(αa|n,γ,α\a) is log-concave for the prior distributions chosen as described in

(12).

Proof. Without loss of generality we assume that αa is univariate. The proof for the case that αa is a

vector is exactly the same but for a single component of αa. We have to prove that the function h(αa) is

concave for

h(αa) = nα∅ + ntXaαaγa −
1

2σ2
α2
a,

where α∅ is the normalizing constant ensuring that all cell probabilities add up to one. This constant

depends on αa. As the last two terms are concave it remains to be shown that nα∅(αa) is concave. For

γa = 0 this term is constant and h(αa) is therefore concave. For γa = 1, we set X ′ = X\∅ and α′ = α\∅, it
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then holds

h(αa) = nα∅ = −n log
m∑
i=1

exp ((X ′α′)i),

h′(αa) = −n Xt
a exp (X ′α′)∑m

i=1 exp ((X ′α′)i)
,

h′′(αa) = −n
(X2

a)t exp (X ′α′)
∑m
i=1 exp ((X ′α′)i)− (Xt

a exp (X ′α′))2

(
∑m
i=1 exp ((X ′α′)i))2

,

where exp (X ′α′) has to be understood as the componentwise application of the exponential function and

likewise for X2
a . We now have to show that h′′(αa) is less than zero. If we denote exp (X ′α′) by u and Xa

with x, it is sufficient to prove that

m∑
j=1

x2
juj

m∑
i=1

ui − (xtu)2 ≥ 0.

The above expression is

∑
i,j
j<j

((x2
jujui + x2

iuiuj)− (2xiuixjuj)) =
∑
i,j
j<j

(x2
j + x2

i − 2xixj)uiuj =
∑
i,j,i<j

(xj − xi)2uiuj ,

which is greater than zero, as u > 0. This proves Lemma 2.

Additional file 3 – Additional datasets

We consider two cDNA libraries from two different developmental stages of human brain, for the gene

CACNA1G encoding the low voltage-activated calcium channel gene Cav3.1. This gene is known to be

alternatively spliced at q = 9 sites. Detailed information on this dataset can be found in Emerick et al.

(2006).

Results

We estimate the interaction pattern β̂ with the step `1-regularization method. For the fetal as well as for

the adult tissue, a model involving first order interactions only is estimated. By looking at the interaction

graphs in Figure 3, we clearly see that the patterns exhibit differences. While in the fetal tissue, exon eight

interacts with most other exons, this is no more the case for adult tissue where exon number five seems to

play a key role. Exon five and eight correspond to exon 30B and exon 35 in Emerick et al. (2006).

We already know that exon 30B plays a key role, because the deletion of segment 30B causes a frameshift,

resulting in premature chain termination caused by an early stop codon downstream of this splice site in
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the new translation reading frame. Transcripts with this condition are often eliminated before they can be

translated into proteins through a process called nonsense-mediated decay (NMD). Thus the frequency of

these splice variants in the cDNA library may significantly under-represent their rate of production

through transcription and splicing. NMD is an efficient way to use alternative splicing to turn off

expression of a single gene in a specific class of cells, without altering gene expression in ways that might

effect other genes or even the same gene in neighboring cells of the same tissue. This type of activity shows

as a fairly high degree of splicing interactions between this site and other sites, reflecting splicing details in

the particular classes of cells where this gene is inactivated by NMD.
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Figure 3: Top: Comparison between the interaction pattern β̂ of fetal and adult tissue. Below: Independence
graphs of the estimated log-linear models. On the left are the estimated models, on the right with the
strongest interactions only. Within an interaction degree, the sequence of coefficients is ordered from left to
right as follows: e.g. for 2nd order interactions, 123, 124, 125, . . . , 789, where 1, . . . , 9 represent exons 25A,
14, 25B, 26, 30B, 31A, 34, 35, 38B as described in Emerick et al. (2006). We clearly see differences between
fetal and adult tissue, especially if we look at the reduced models.
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