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Abstract

When a series of (related) linear models has to be estimated it is often
appropriate to combine the different data-sets to construct more efficient esti-
mators. We use `1-penalized estimators like the Lasso or the Adaptive Lasso
which can simultaneously do parameter estimation and model selection. We
show that for a time-course of high-dimensional linear models the convergence
rates of the Lasso and of the Adaptive Lasso can be improved by combining
the different time-points in a suitable way. Moreover, the Adaptive Lasso still
enjoys oracle properties and consistent variable selection. The finite sample
properties of the proposed methods are illustrated on simulated data and on
a real problem of motif finding in DNA sequences.

Keywords: Lasso, Local least squares, Multivariate regression, Variable selection,
Weighted likelihood

1 Introduction

The Lasso (Tibshirani, 1996) has attracted a lot of attention for prediction and
variable selection in linear regression models, including high-dimensional settings
where the number of covariates is much larger than sample size (Greenshtein and
Ritov, 2004; Meinshausen and Bühlmann, 2006; Bunea et al., 2007; van de Geer,
2007; Meinshausen and Yu, 2006; Zhang and Huang, 2007). Not only has the idea of
`1-penalization shown its success in other models (Tibshirani, 1997; Lokhorst, 1999;
Park and Hastie, 2007) but also many extensions of the Lasso in linear regression
models have been proposed, among them are the Fused Lasso (Tibshirani et al.,
2005), the Adaptive Lasso (Zou, 2006) and the Relaxed Lasso (Meinshausen, 2007).
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Also for multivariate regression, penalization estimators were shown to be successful
(Turlach et al., 2005; Similä and Tikka, 2007). In many problems there is a natural
ordering of the response space: our new methodology and theory are exploiting this
fact. If we think of time-course data where we observe a response variable over cer-
tain time-points, the relationship between “neighbouring” time-points is expected to
be stronger than between more distant time-points. Instead of separately estimat-
ing a parameter vector for each time-point, it is often a better strategy to combine
information across different time-points. By putting an appropriate constraint on
the parameter vector we can control certain characteristics, e.g. the smoothness over
time. As an advantage, we may get a more efficient estimator: By pooling of infor-
mation we reduce the variance, typically at the cost of some bias, to achieve a lower
mean squared error. For multivariate regression, Breiman and Friedman (1997) use
the correlation between the responses to construct an estimator with lower mean
squared prediction error. In the discussion of Breiman and Friedman (1997), the idea
of relevance weighted likelihood (Hu and Zidek, 2002) is mentioned (Zidek, 1997).
We use this idea for `1-penalized estimators. By using an estimator which also fits
well for neighbouring time-points, we can not only get a smoother behaviour of the
parameter vector over time but also profit from more efficiency, both in estimation
accuracy and in variable selection.

The rest of this article is organized as follows. In Section 2 we introduce the
Smoothed Lasso estimator and show that it asymptotically reduces the bound on
the mean squared error compared to the univariate Lasso estimator. In Section 3 we
apply the smoothing idea to the Adaptive Lasso and variants thereof and show that
it can consistently select the correct model and has a faster convergence rate than
the univariate estimator. Simulations follow in Section 4 and a real data analysis
for motif search in DNA sequences in Section 5. Section 6 contains the discussion.
All proofs can be found in the Appendix.

2 Smoothed Lasso

We first start with the definition of the Smoothed Lasso estimator and then study
its theoretical properties.

2.1 Definition

Assume that we observe data at N different time-points and that at each time-point
tr, r = 1, . . . , N , we have a linear regression problem of the form

y(tr) = Xβ(tr) + ε(tr),

where X is the n × p design matrix, y(tr) ∈ R
n is the response vector, β(tr) ∈

R
p is the parameter vector corresponding to time-point tr and ε(tr) ∈ R

n is the
corresponding error vector: ε(tr), r = 1, . . . , N are assumed to be i.i.d. random
vectors with i.i.d. components having mean zero and finite variance σ2. Note that
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the design matrix X does not depend on tr in our setup (but it could), and hence we
consider a multivariate linear model. As commonly used for penalized estimation,
we assume that the columns of X are centered and scaled to have empirical column
means 0 and column variances 1.

Remark 2.1. Generalizations of the methodology and theory include that the design
matrix X depends on tr, i.e. X(tr), and that the errors have correlated components
Cov(ε(tr)) = Σ or arise from a dependent, stationary process with respect to the
time-points.

The idea of the Smoothed Lasso is to use an `1-penalty and to suitably combine or
smooth the information of the different time-points. It is defined as

β̂λn,w(tr) = arg min
β

N
∑

s=1

w(ts, tr)‖y(ts) −Xβ‖2
2 + λn

p
∑

j=1

|βj| , (2.1)

where w(ts, tr) are weights satisfying
∑N

s=1w(ts, tr) = 1. A typical choice is

w(ts, tr) ∝ K

(

ts − tr
h

)

,

where K(·) is a univariate kernel, i.e. K(x) ≥ 0, K(x) = K(−x),
∫∞

−∞
K(x)dx = 1,

and h is a bandwidth parameter. Thus, the Smoothed Lasso is β̂(tr) = β̂λn,h(tr),
depending on two tuning parameters.

We can rewrite the weighted optimization problem (2.1) as an ordinary Lasso prob-
lem

β̂λn,h(tr) = arg min
β

‖ỹ(tr) −Xβ‖2
2 + λn

p
∑

j=1

|βj| , (2.2)

where

ỹ(tr) =

N
∑

s=1

w(ts, tr)y(ts).

Hence, any algorithm to solve a standard Lasso problem can be used to calculate
the Smoothed Lasso estimator for a given bandwidth h.

By forcing the estimate β̂(tr) to fit also well for “neighbouring” time-points, a smooth
(non-parametric) trend of β̂(tr) as a function of time is usually inherited (if p < n
this is always true because of strict convexity with respect to β and continuity with
respect to tr of the criterion in (2.2)).

Remark 2.2. Another approach would be to use a Fused Lasso penalty which also
penalizes the absolute value of the differences between neighbouring time-points, i.e.
|βj(tr)−βj(tr−1)|. Such an approach has two drawbacks: First, we have to model all
time-points simultaneously, i.e. fit a model with Np parameters. Moreover, the Fused
Lasso problem is more difficult to solve than the Lasso problem. In our approach
we fit N Lasso problems with p parameters each. Second, if we want to mimick the
behaviour of a bandwidth which is locally adaptive to the underlying true parameter
function β(t), we have to introduce a lot of tuning parameters for the Fused Lasso
and search over a high-dimensional grid when doing cross-validation.
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Remark 2.3. We do not assume that the active set (the set of predictors with
nonzero coefficients) stays the same over all time-points. Our methodology allows
for the fact that some predictors enter or leave the active set along the time-course.

In the next Section we first consider the special case of an orthogonal design and
indeed, we show that the mean squared error is decreased asymptotically.

2.2 Orthogonal Case

We consider the situation where the number of parameters equals the number of ob-
servations and the design matrix is orthogonal, i.e. XTX = nIn, and where the errors
ε(tr) are Gaussian. We focus on a single time-point of interest and therefore omit
the time-index for notational simplicity. In (Donoho and Johnstone, 1994, Theorem
1) it is shown that the (univariate) soft-threshold estimator β̂ST (with threshold
parameter σ

√

2 log(n)/n), which is equivalent to the Lasso in the orthogonal case

(with penalty parameter λ = 2σ
√

2 log(n)n), satisfies

E[‖β̂ST − β‖2
2] ≤ (2 log(n) + 1)

{

σ2

n
+

n
∑

i=1

min

(

β2
i ,
σ2

n

)

}

(2.3)

for all β ∈ R
n and that this bound is asymptotically sharp in a minimax-sense

(Donoho and Johnstone, 1994, Theorem 3). If the non-zero βi’s are not of too low
order (i.e. |βi| � n−1/2), the order of this bound is log(n) |An| /n, where An =
{i | βi 6= 0} denotes the active set of the time-point of interest. Even though we
restrict ourselves to a class of parameter vectors which stay out of the n−1/2-range,
the order of the bound in (2.3) is sharp because the maximal risk is attained for an
element of this class (see the proof of Theorem 3 in Donoho and Johnstone (1994)).

The order log(n) |An| /n can be decreased by the smoothed estimator as shown in
Proposition 2.1.

Proposition 2.1. Assume Gaussian errors ε(tr) and the regularity conditions (RC
1) – (RC 4) described in Appendix A.1. For h = hn � log(n)1/5n−1/5N−1/5 and
N = Nn such that Nh → ∞ (n → ∞) the risk of the Smoothed Lasso from (2.2)
asymptotically satisfies: for λn = 2σ(Nh)−1/2

√

2 log(n)n

E[‖β̂λn,hn
− β‖2

2] ≤ C log(n) |An| /(nNh)
� log(n)4/5 |An| /(n4/5N4/5), n→ ∞.

for all β ∈ R
n and some constant C.

A proof is given in Appendix A.2. .

For a faster convergence rate than log(n) |An| /n (for the unsmoothed Lasso) we
require Nh to converge to infinity which implies that

N = Nn �
(

n

log(n)

)1/4

,

i.e. N can be of much lower order than n for achieving a faster convergence rate for
the minimax bound.
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2.3 General Case

Let us now consider the general case, i.e. we do not restrict ourselves to an orthogonal
design matrix. In particular, we allow for high-dimensional situations where p =
pn � n is increasing very fast as n→ ∞.

Using the results in Meinshausen and Yu (2006) for a fixed design, the univariate
Lasso estimator satisfies under regularity conditions on the design matrix

‖β̂Lasso,λn
− β‖2

2 ≤ OP

(

σ2mλn

n
log(pn)

)

+O

( |An|
mλn

)

, n→ ∞,

where mλn
= Cn2/λ2

n for some constant C. In a certain sense, this bound is tight,
see (Meinshausen and Yu, 2006, Remark 1). We can choose

λn � σ1/2n3/4 log(pn)1/4 |An|−1/4

and arrive at the optimal rate

‖β̂Lasso,λn
− β‖2

2 ≤ OP

(

σn−1/2 log(pn)1/2 |An|1/2
)

, n→ ∞. (2.4)

For proving such a result, assumptions on the design matrix are crucial: Various
authors use different conditions cf. (Meinshausen and Yu, 2006; Bunea et al., 2007;
van de Geer, 2007; Zhang and Huang, 2007). We refer the reader to Meinshausen
and Yu (2006) for a detailed description of the regularity conditions for (2.4).

Proposition 2.2. Assume that the univariate Lasso satisfies (2.4) and denote the

bound on the right hand side of (2.4) by an = σn−1/2 log(pn)1/2 |An|1/2. Furthermore,
assume the regularity conditions (RC1) – (RC4) described in Appendix A.1. Then,

if N = Nn � |An|1/4a
−1/4
n and for some suitable λn and h = hn:

‖β̂λn,hn
− β‖2

2 = oP (an),

i.e. the Smoothed Lasso has a faster convergence rate than the (tight) bound in (2.4)
for the Lasso.

A proof is given in Appendix A.2. Suitable choices for λn and hn in Proposition 2.2
are

hn � N−1/9 |An|−2/9 a2/9
n

and
λn � σ1/2(Nh)−1/4n3/4 log(pn)1/4|An|−1/4.

Using the notation that is introduced at the beginning of the proof of Proposition
2.1 one can derive other asymptotic properties by linking known results for the
Lasso (Greenshtein and Ritov, 2004; Bunea et al., 2007; van de Geer, 2007) with the
smoothed model

ỹ = Xβ̃ + ε̃

and an analysis of the bias term ‖β̃ − β‖q for q ∈ {1, 2} as in (A.8).
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Up to now we only considered the estimation error for β and no variable selection
properties. The smoothing reduces the variance and thus it can be expected that
the Smoothed Lasso selects more (noise) variables than its univariate counterpart.
Empirical evidence of this property is given in Section 4. This problem can be
overcome by a second stage which removes many of the coefficients whose estimates
are close to zero. In fact, already the case with a univariate response often requires
such a second stage for consistent variable selection Zou (2006). We will treat a
special case in the next Section.

3 Smoothed Adaptive Lasso

The Adaptive Lasso (Zou, 2006) weights the penalty for the different coefficients
using an initial estimator β̂init, i.e.

β̂
(β̂init)
λn

= arg min
β

‖y −Xβ‖2
2 + λn

p
∑

j=1

τ̂j |βj| ,

where τ̂j = 1/|β̂init,j|γ for some γ > 0 are weights based on the initial estimator

β̂init. For simplicity we will restrict ourselves to γ = 1. In Zou (2006), the ordinary
least squares (OLS) estimator is used for β̂init: here, we will mainly use the Lasso
and versions thereof. Through a re-scaling of the columns of the design matrix, the
Adaptive Lasso estimator can be formulated as an ordinary Lasso problem, see Zou
(2006).

We can also apply the smoothing technique of Section 2 to the Adaptive Lasso. In
the smoothed case we again replace the residual sum of squares in the objective
function with its smoothed counterpart in (2.2), i.e.

β̂
(β̂init)
λn,h (tr) = arg min

β
‖ỹ(tr) −Xβ‖2

2 + λn

p
∑

j=1

τ̂j |βj| . (3.5)

In Zou (2006), an asymptotic oracle result for the Adaptive Lasso is given for fixed
dimension p. We show that the Smoothed Adaptive Lasso has a faster convergence
rate. Again, as we focus on a single time-point, we omit the time-index for notational
simplicity.

We will consider the situation where the number of variables p is kept fixed as
n → ∞. As before, let A be the active set of the true parameter vector at the
current time-point and Ân be its empirical counterpart.

Theorem 3.1. Assume a fixed design with limn→∞
1
n
XTX = C for some positive

definite matrix C. If β̂init − β = OP (a−1
n ) for some an → ∞, λn

√
Nnhn/

√
n →

0, λnan

√
Nnhn/

√
n → ∞, hn = o(n−1/5N

−1/5
n ) and Nnhn → ∞ (n → ∞), then the

Smoothed Adaptive Lasso in (3.5) satisfies under the regularity conditions (RC1) –
(RC4) described in Appendix A.1:

lim
n→∞

P(Ân = A) = 1
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and
√

nNnhn(β̂
(β̂init)
λn,hn,A − βA)

d→ N(0, σ2
∗(CAA)−1), n→ ∞,

where σ2
∗ = σ2

∫∞

−∞
K2(x)dx, β̂A, βA are the sub-vectors of β̂, β and CAA is the

sub-matrix of C corresponding to the active set A.

A proof is given in Appendix A.2. Thus, if the initial estimator is consistent, we can
find a sequence λn such that the Smoothed Adaptive Lasso has the property of con-
sistent model selection and asymptotic normality on the active set A. Furthermore,
if N = Nn � n1/4, we can choose h = hn = o(n−1/5N

−1/5
n ) such that Nh → ∞.

Thus, as already pointed out in Section 2.2, a relatively small value of N = Nn is
sufficient for achieving an improved convergence rate.

Remark 3.1. The optimal convergence rate n−2/5N−2/5 in Theorem 3.1 can be
achieved using hn � n−1/5N−1/5. Then, the limiting normal distribution becomes
N (BA, σ

2
∗(CAA)−1) for some vector BA with 0 ≤ |BA,j| < ∞ for all j. This is

the same distribution as when using local least squares (with kernel K). Hence, the
Smoothed Adaptive Lasso has an oracle property saying that it is asymptotically as
good as local least squares with the true underlying active set A known beforehand.

3.1 Choice of initial estimator

The choice of the initial estimator will influence the final estimator. In particular,
the sparsity of the final estimator can be maximized by making an appropriate
choice, as discussed below.

We will first focus on univariate estimators, i.e. on estimators which only use the
data of the current time-point. In view of Theorem 3.1, the basic assumption for
the initial estimator is consistency. The ordinary least squares (OLS) method is a
possible choice for low-dimensional problems with fixed dimension p as it is

√
n-

consistent. The Lasso is consistent in an `2-sense, even in the high-dimensional
setting, see Section 2.3. Finally, the Adaptive Lasso is

√
n-consistent for fixed p

(Zou, 2006) and consistent under suitable regularity conditions for p � n (Huang
et al., 2006). For high-dimensional problems the OLS estimator is not appropriate
because it is unstable or even not defined in a p > n situation. The Lasso or
Adaptive Lasso are more appropriate choices.

If the initial estimator is doing variable selection, i.e. some of the coefficients β̂init,j =
0, the smoothed estimator is at least as sparse as the initial estimator: a zero-
coefficient in the initial estimator, i.e. β̂init,j = 0, results in an infinite penalty
for that component, i.e. τ̂j = ∞, forcing the smoothed estimate to be zero, i.e.

β̂j(tr) = 0. This reduces the computational complexity for the smoothing stage
since some or even many predictors can be excluded from the model.

For the case that the initial estimator has a tuning parameter, as with the Lasso
and the Adaptive Lasso, one would in practice tune it to be prediction optimal. For
the Lasso, this produces too large models, i.e. many noise variables are included in
the selected model (Meinshausen and Bühlmann, 2006). However, noise variables
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tend to have small coefficients and will therefore be heavily penalized in the second
smoothing step of the Smoothed Adaptive Lasso.

It is of course also possible to use a smoothed estimator as initial estimator, e.g.
the Smoothed Lasso. In terms of the number of selected variables, as we will see in
Section 4, this is often worse than directly using the univariate counterpart. Due
to the reduced variance, the smoothed initial estimator tends to select too many
variables and not all of them will be eliminated in the second stage of the Smoothed
Adaptive Lasso.

In view of some empirical results in Section 4, we advocate the following: the initial
estimator for the Smoothed Adaptive Lasso is the univariate Adaptive Lasso; the
latter itself uses the univariate Lasso as initial estimator. This amounts to be a three-
stage procedure where all of the estimations are tuned to be prediction optimal using
e.g. some cross-validation scheme. There is substantial agreement by now that two or
more stages are needed to achieve good regularization properties in high-dimensional
settings (Zou, 2006; Meinshausen, 2007; Zou and Li, 2007; Meinshausen and Yu,
2006; Wasserman and Roeder, 2007; Meier and Bühlmann, 2007). As a novelty
here, our third stage involves an additional smoothing operation.

4 Simulations

In this Section we want to evaluate the finite sample properties of the proposed
estimators.

4.1 Design

We consider the following models, similar to Zou (2006):

Model 1: Some large effects

β(t) = (0.45t, 3 sin(t), 3 cos(t− 3), 0, . . . , 0)

Model 2: Many small effects

β(t) = (0.85 + 0.5 sin(t), 0.85 + 0.5 cos(t), 0.85 + 0.5 sin(t− 1),

0.85 + 0.5 cos(t− 1), . . . , 0.85 + 0.5 sin(t− 3),

0.85 + 0.5 cos(t− 3), 0, . . . , 0)

Figure 1 illustrates the two parameter vectors as a function of time t. We use an
equidistant grid on the interval [0, 2π], i.e. tr = (r − 1) 2π

N−1
, r ∈ {1, . . . , N}, where

N = 18. The design matrix X is simulated from a multivariate normal distribution
with mean zero and covariance matrix Σi,j = 0.5|i−j|. The standard deviation of
the error term is chosen from σ ∈ {2, 4} which corresponds to a signal-to-noise
ratio (averaged over N) of approximately {2.7, 0.7} and {3.8, 0.9} for model 1 and
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Figure 1: Parameter functions for model 1 (left) and model 2 (right).

model 2, respectively. We use both a “classical” setup with n = 50, p = 8 and a
high-dimensional setup with n = 100, p = 1000.

The best combination of bandwidth h and penalization parameter λ is being searched
on a two-dimensional grid using an independent validation set of half the size of the
training set. This is done independently for each time-point which means that
we allow for a locally varying bandwidth. The density of the standard normal
distribution is used as kernel function K(·) for the weight function w(·, ·), see Section
2.1.

For the (Smoothed) Adaptive Lasso with (Smoothed) Lasso as initial estimator, we
first determine the optimal penalization parameter for the initial estimator and keep
it fixed when searching for the optimal penalization parameter and bandwidth for
the final estimator.

All estimators which we compare are listed in Table 1.

Univariate Estimators Smoothed Estimators

1. Lasso 4. Lasso
2. Adapt. Lasso with OLS 5. Adapt. Lasso with smoothed OLS
3. Adapt. Lasso with univ. Lasso 6. Adaptive Lasso with 4.

7. Adaptive Lasso with 3.

Table 1: Different estimators

4.2 Performance Measures

To measure the goodness of fit and the ability to pick the model of the correct size
we define the following performance measures.

For the mean squared error we use

MSEβ =
1

N

N
∑

r=1

‖β̂(tr) − β(tr)‖2
2.

9



Moreover, we also report the mean squared prediction error for the regression func-
tion xTβ(tr)

MSEP =
1

N

(

N
∑

r=1

(β̂0(tr) − β0(tr))
2 + (β̂(tr) − β(tr))

T Σ(β̂(tr) − β(tr))

)

,

where β̂0(tr) is the intercept term (and β0(tr) = 0 for our simulations) and Σ is the
covariance matrix of the covariates.

For the number of variables we define the mean model size

MSize =
1

N

N
∑

r=1

|Â(tr)|

and the mean number of false positives

FP =
1

N

N
∑

r=1

p
∑

j=1

1[β̂j(tr)6=0]1[βj(tr)=0].

In applied sciences where (possibly expensive) experiments are conducted to verify
the selected variables (e.g. in biology), the number of false positives is a crucial
quantity one wants to minimize in order to keep the costs low.

4.3 Results

The results can be found in Table 2. For the high-dimensional setting we did not
consider OLS initial estimators. Several conclusions can be made. Let us first focus
on the Lasso estimator. In all simulation settings, smoothing improves the MSEβ

score substantially. The downside for the Smoothed Lasso estimator is that due to
the decreased variance, more noise variables tend to enter the model which results
in larger selected models (with more false positives) than for the univariate Lasso
estimator. However, in practice one would assign a variable importance score to each
coefficient and therefore concentrate first on those with the largest contributions,
whereas many of the false positives have small importance scores only.

Also for the Adaptive Lasso, the MSEβ scores get decreased by smoothing in all
simulation settings. Using a smoothed initial estimator leads to too large models.
Take for example Adaptive Lasso with Smoothed Lasso as initial estimator, i.e.
proposal 6 in Table 1. As we have described above, the Smoothed Lasso tends to
select a too large initial model. Although the Adaptive Lasso can eliminate most
noise variables in the second stage due to their large weights from small coefficients
of the initial estimator, the resulting models still get a bit too large. However, the
estimator is very competitive with respect to prediction performance.

Using a univariate initial estimator, i.e. our proposal 7 in Table 1, to get more
reasonably sized models seems to be a good compromise. It does not only produce
the sparsest models but is often also competitive with respect to MSEβ and MSEP .
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MSEβ MSEP MSize FP MSEβ MSEP MSize FP

Model 1 σ = 2 σ = 4
1. 0.83 (0.17) 0.65 (0.10) 5.67 (0.50) 2.96 (0.47) 3.14 (0.67) 2.50 (0.41) 5.10 (0.57) 2.69 (0.49)
2. 0.71 (0.17) 0.57 (0.10) 4.39 (0.50) 1.82 (0.46) 3.03 (0.71) 2.43 (0.42) 4.13 (0.51) 1.89 (0.44)
3. 0.69 (0.15) 0.56 (0.09) 4.30 (0.48) 1.72 (0.44) 3.05 (0.72) 2.43 (0.44) 4.02 (0.55) 1.79 (0.46)
4. 0.54 (0.14) 0.43 (0.09) 6.26 (0.49) 3.48 (0.48) 1.93 (0.50) 1.51 (0.32) 6.09 (0.61) 3.42 (0.56)
5. 0.46 (0.13) 0.38 (0.08) 4.85 (0.50) 2.15 (0.48) 1.75 (0.46) 1.39 (0.30) 4.89 (0.59) 2.34 (0.54)
6. 0.47 (0.13) 0.38 (0.09) 4.80 (0.51) 2.11 (0.49) 1.80 (0.48) 1.43 (0.33) 4.83 (0.61) 2.29 (0.54)
7. 0.51 (0.14) 0.41 (0.09) 4.06 (0.47) 1.50 (0.44) 2.29 (0.68) 1.73 (0.45) 3.78 (0.52) 1.58 (0.43)

Model 2 σ = 2 σ = 4
1. 1.10 (0.19) 0.86 (0.13) 7.60 (0.17) – 3.22 (0.42) 3.06 (0.62) 6.52 (0.40) –
2. 1.33 (0.23) 0.97 (0.15) 7.35 (0.25) – 4.10 (0.56) 3.62 (0.71) 5.90 (0.52) –
3. 1.30 (0.22) 0.95 (0.15) 7.26 (0.24) – 3.99 (0.53) 3.54 (0.70) 5.79 (0.47) –
4. 0.51 (0.12) 0.42 (0.08) 7.92 (0.08) – 1.42 (0.34) 1.29 (0.33) 7.62 (0.22) –
5. 0.60 (0.14) 0.47 (0.10) 7.64 (0.21) – 1.72 (0.43) 1.46 (0.37) 7.11 (0.35) –
6. 0.64 (0.14) 0.49 (0.10) 7.60 (0.21) – 1.84 (0.45) 1.53 (0.40) 6.99 (0.39) –
7. 0.84 (0.20) 0.61 (0.15) 7.14 (0.28) – 2.94 (0.57) 2.54 (0.79) 5.62 (0.48) –

Model 1 σ = 2 σ = 4
1. 2.16 (0.36) 1.48 (0.23) 27.35 (5.13) 24.92 (5.11) 5.67 (0.70) 4.22 (0.61) 19.83 (4.86) 18.05 (4.80)
3. 1.07 (0.30) 0.76 (0.18) 7.11 (1.93) 4.79 (1.89) 4.73 (0.84) 3.36 (0.59) 6.07 (2.08) 4.51 (2.02)
4. 1.05 (0.18) 0.78 (0.12) 41.51 (6.62) 38.87 (6.61) 3.12 (0.50) 2.41 (0.40) 42.94 (7.01) 40.54 (6.99)
6. 0.48 (0.11) 0.40 (0.09) 12.74 (3.44) 10.14 (3.42) 2.25 (0.50) 1.81 (0.33) 17.66 (4.34) 15.36 (4.34)
7. 0.74 (0.29) 0.49 (0.14) 5.10 (1.32) 2.79 (1.28) 3.80 (0.90) 2.47 (0.57) 4.74 (1.53) 3.19 (1.47)

Model 2 σ = 2 σ = 4
1. 1.37 (0.23) 1.69 (0.34) 32.90 (6.13) 25.71 (6.17) 3.93 (0.56) 5.42 (0.95) 28.24 (5.06) 22.84 (5.20)
3. 1.52 (0.22) 1.22 (0.23) 12.13 (2.16) 5.82 (2.14) 5.43 (0.57) 5.35 (0.81) 11.70 (2.76) 7.54 (2.70)
4. 0.50 (0.08) 0.51 (0.09) 46.56 (8.63) 38.60 (8.62) 1.41 (0.26) 1.49 (0.31) 51.24 (8.52) 43.49 (8.51)
6. 0.51 (0.09) 0.44 (0.08) 23.41 (5.70) 15.59 (5.70) 1.72 (0.31) 1.55 (0.31) 28.61 (6.66) 21.22 (6.62)
7. 1.00 (0.19) 0.67 (0.14) 9.74 (1.40) 3.52 (1.35) 3.90 (0.50) 3.23 (0.60) 9.14 (1.99) 5.07 (1.92)

Table 2: Mean values of the different performance measures based on 100 simulation runs for n = 50, p = 8 (top) and n = 100, p =
1000 (bottom). Standard deviations are given in parentheses. The low-dimensional case of model 2 can’t have false positives
because all variables are active.
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5 Real data: Motif Finding in DNA Sequences

We apply the smoothing methodology to a problem of motif regression (Conlon
et al., 2003). A motif (typically a 5–15 letter word consisting of letters A, C, G, and
T) is a candidate of a binding site of some functional element, e.g. a transcription
factor (a protein which regulates gene expression). In Beer and Tavazoie (2004) a
collection of various gene expression time-course experiments and a set of candidate
motifs for yeast is provided. Gene expression values for a total of 2587 genes are
available and p = 666 motif candidates are used to build the motif scores for each
gene. These measure how well the motifs are represented in the upstream regions
of the genes. We focus on a time-course experiment spanning N = 12 different
time-points. In summary we have 2587 observations of a 666 dimensional predictor
(the motif scores) and a one-dimensional response (the gene expression value) at
each of the 12 time-points. Thus, each row of the design matrix X corresponds to
a gene and each column to a motif score. The element xi,j measures how well the
jth motif score is represented in the upstream region of the ith gene.

To illustrate the smoothing methods and the effect of different sizes for the training
set, we use random subsets of different sizes as training set. An independent valida-
tion set is used to determine the prediction optimal tuning parameters. The size of
the validation set is half the size of the training set. The remaining data is used as
test-set.

The results for a training set of size 1300 is given in Table 3. In terms of prediction
error, there is not much gain when smoothing the estimators for this data-set, es-
pecially for the Adaptive Lasso. A reason for this may be the large variance of the
error term. Note that for a new test observation (xtest, ytest) we have

Extest,ytest
[(ŷ − ytest)

2] = E[(xT β̂ − xTβ)2] + σ2.

The error variance σ2 is likely to be the dominating quantity since motif regression is
known to be very noisy. In terms of variable selection, the smoothing step decreases

1 2 3 4 5 6 7 8 9 10 11 12

1. 0.07 0.13 0.44 2.71 1.52 1.66 1.98 2.55 3.17 2.77 3.02 2.92
3. 0.07 0.13 0.45 2.82 1.59 1.75 2.05 2.64 3.26 2.81 3.09 3.04
4. 0.07 0.13 0.44 2.71 1.52 1.66 1.99 2.52 3.17 2.78 3.02 2.91
7. 0.07 0.13 0.45 2.86 1.59 1.76 2.06 2.65 3.27 2.85 3.10 3.06

1. 35 28 74 155 133 157 154 141 124 106 123 109
3. 10 6 29 80 85 35 47 31 40 30 42 49
4. 35 29 70 155 123 157 177 178 124 98 126 112
7. 4 5 21 71 46 29 34 22 29 22 35 43

Table 3: Mean squared prediction error (top) and number of selected variables
(bottom) for the training set of size 1300. Rows: 4 different methods, as described
in Table 1. Columns: 12 different time-points.

the model size for the Adaptive Lasso estimator and is potentially reducing the
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number of false positives: In particular for time-points tr = 1, 3, 5, 7, 8, 9, 10 the
Smoothed Adaptive Lasso yields much sparser model fits. For the Lasso estimator,
the smoothing has a tendency to increase the number of selected variables resulting
in rather large models. This coincides with our findings in Section 4. If we decrease
the training sample size to 200 we see some small improvement with respect to the
mean squared prediction error (not shown).

6 Discussion

We propose smoothing techniques for `1-penalized (Lasso-type) estimators for a
time-course of high-dimensional linear models. We show theoretically that for the
Lasso and the Adaptive Lasso, better estimates in terms of the mean squared er-
ror can be obtained by combining the responses of different time-points in a suit-
ably weighted way. Empirically, the Smoothed Adaptive Lasso estimator yields the
sparsest models with competitive mean squared error performance when using the
univariate Adaptive Lasso as initial estimator. The Smoothed Lasso estimator has
very good performance with respect to the mean squared error but selects too many
noise variables in general. An additional thresholding stage would be necessary if
the primary interest is in variable selection.

The smoothing methodology can also be applied to generalized linear models (GLM).
The main difference is that we can’t rewrite the smoothed estimator as an ordinary
lasso problem as in (2.2). This implies that the computational burden increases: In
the worst case (depending on the support of the kernel and the bandwidth h), by
stacking the response variables and design matrices of the different time-points, the
total sample size is Nn, which can be substantially larger than n in (2.2), while the
dimensionality is still p.

Our methodology applies to more general problems than time-course settings. For
example, we can directly treat the situation of different (heterogeneous) data-sets
(y(t), X), t = 1, . . . , N (or (y(t), X(t)), t = 1, . . . , N) with n(t)×1 response vectors
and n(t) × p design matrices, where t is the index for the various data-sets. All we
need is a suitable pseudo-distance d(t, s) among the different data-sets indexed by t
and s. The weights in (2.2) are then of the form

w(t, s) ∝ K

(

d(t, s)

h

)

.

The pseudo-distance d(·, ·) could be learned from the data, e.g. based on some
pseudo-metrics for clustering different data-sets.

Whether the multivariate view over different time-points (or different data-sets) pays
off for a particular problem is not clear a-priori. However, our methodology encom-
passes the univariate Lasso methods, by choosing the bandwidth h = 0. Hence,
using some cross-validation scheme enables to find out whether pooling informa-
tion over different time-points (or data-sets) is worthwhile and if so, the Smoothed
(Adaptive) Lasso from the multivariate approach renders more accurate estimates.
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A Proofs

A.1 Regularity Conditions

We denote by β(t) ∈ R
p the true underlying parameter vector as a function of time

t.

(RC1) Curvature of underlying function

βj(t) is twice continuously differentiable with supj

∣

∣β
′′

j (t)
∣

∣ ≤ C <∞ for all t
and some constant C.

(RC2) Equidistant grid

For the asymptotic implications we assume that we have an equidistant grid
around the time-point of interest tr of the form

ts = tr +
s

N
,

where s = −bN/2c, . . . , bN/2c. Note that we enumerate using negative
values of s as well.

(RC3) Sampling Points

For the time-point of interest tr we assume that if βj(tr) = 0 it follows
that there is an open neighbourhood Uj 3 tr, such that βj(u) = 0 ∀ u ∈ Uj.
Moreover we require infj diam(Uj) > δ for some δ > 0. I.e. for the time-point
of interest no variable enters or leaves the active set.

(RC4) Compact kernel

The kernel function K(·) is assumed to have compact support on [−1, 1].

A.2 Proofs

Proof of Proposition 2.1

As we focus on a single time-point tr we omit the time index for notational simplicity,
whenever possible. For the smoothed response ỹ we have the model

ỹ = Xβ̃ + ε̃N ,

at the time-point of interest, where

β̃ =

bNhc
∑

s=−bNhc

w (ts, tr)β (ts)
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and

ε̃N =

bNhc
∑

s=−bNhc

w (ts, tr) ε (ts) .

Note that (ε̃N)1, . . . , (ε̃N)n are i.i.d. with mean zero and variance given below.

We can now use the decomposition

‖ ˆ̃β − β‖2
2 ≤ 2‖ ˆ̃β − β̃‖2

2 + 2‖β̃ − β‖2
2. (A.6)

The first term is “classical”. We can use the theory of Donoho and Johnstone (1994)
with respect to an error term with reduced variance. For the asymptotic variance
we have

Var((ε̃N)i) = Var





bNhc
∑

s=−bNhc

w (ts, tr) ε (ts)i





= σ2

bNhc
∑

s=−bNhc

w2
(

tr +
s

N
, tr

)

= σ2

(

1
Nh

)2∑bNhc
s=−bNhcK

2
(

s/N
h

)

{

1
Nh

∑bNhc
s=−bNhcK

(

s/N
h

)}2 .

Using a Riemann sum approximation we arrive at

Var((ε̃N)i) ∼
σ2

Nh

(
∫

K2(x)dx

)

, (A.7)

i.e. the error variance is of order 1/(Nh).

Let us now consider the bias term. If βi(tr) = 0 it follows with the compactness
assumption of the kernel and (RC3) that for h = hn small enough β̃i(tr) = 0. If
βi(tr) 6= 0 we have

β̃i(tr) =

bNhc
∑

s=−bNhc

w (ts, tr) βi

(

tr +
s

N

)

=

bNhc
∑

s=−bNhc

w (ts, tr)

{

βi(tr) + β
′

i(tr)
s

N
+

1

2
β

′′

i (τs)
s2

N2

}

= βi(tr) +

bNhc
∑

s=−bNhc

w (ts, tr)
1

2
β

′′

i (τs)
s2

N2
,

where |τs − tr| ≤ s
N

.
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Hence by (RC1)

∣

∣

∣
β̃i(tr) − βi(tr)

∣

∣

∣
≤ (Nh)2

N2
C

bNhc
∑

s=−bNhc

w (ts, tr) = Ch2.

Therefore
‖β̃ − β‖2

2 ≤ |An|C2h4, (A.8)

for h = hn small enough.

If we choose hn � log(n)1/5n−1/5N−1/5 all terms in (A.6) are of the same order.
�

Proof of Proposition 2.2

We use the decomposition in (A.6). Since the variance in the smoothed case is of
order 1/(Nh), see (A.7), we obtain

‖ ˆ̃β − β̃‖2
2 ≤ OP ((Nh)−1/2an). (A.9)

On the other hand, we have by (A.8)

‖β̃ − β‖2
2 � |An|h4. (A.10)

The optimal rate for the bandwidth minimizing the terms in (A.9) and (A.10) is

hopt = N−1/9
n |An|−2/9 a2/9

n → ∞, n→ ∞

and we obtain using (A.6), (A.9) and (A.10)

‖ ˆ̃
β − β‖2

2 ≤ OP ((Nhopt)
−1/2an). (A.11)

Since
Nhopt � N8/9

n |An|−2/9 a2/9
n → ∞, n→ ∞

because Nn � |An|1/4 a
−1/4
n , we see from (A.11) that a faster convergence rate oP (an)

is achieved.
�

Proof of Theorem 3.1

As in the proof of Proposition 2.1 we have the model

ỹ = Xβ̃ + ε̃N

for the smoothed response ỹ. Multiplying both sides with
√
Nh results in

˜̃y = X̃β̃ + ˜̃εN , (A.12)

16



with ˜̃y =
√
Nhỹ, X̃ =

√
NhX and ˜̃εN =

√
Nhε̃N .

Note that the variance of the error term ˜̃εN depends on N . As can be seen from
(A.7), we have for N → ∞

Var
((

˜̃εN

)

i

)

∼ σ2

∫

K2(x)dx.

Using the rescaled model (A.12) we can now adapt the proof of Zou (2006).

Let us first focus on the problem on the original scale. We re-parameterize the
parameter vector β as

β = β̃ +
u√
nNh

,

or u =
√
nNh(β − β̃) ∈ R

p. The quantity of interest is û =
√
nNh( ˆ̃β − β̃), where

û = arg min
u

ψn(u),

with

ψn(u) =

∥

∥

∥

∥

∥

ỹ −
p
∑

j=1

xj

(

β̃j +
uj√
nNh

)

∥

∥

∥

∥

∥

2

2

+ λn

p
∑

j=1

ŵj

∣

∣

∣

∣

β̃j +
uj√
nNh

∣

∣

∣

∣

.

By multiplying ψn(u) with Nh we can rewrite û = arg min
u

ψ̃n(u), where

ψ̃n(u) =

∥

∥

∥

∥

∥

˜̃y −
p
∑

j=1

x̃j

(

β̃j +
uj√
nNh

)

∥

∥

∥

∥

∥

2

2

+ λ̃n

p
∑

j=1

ŵj

∣

∣

∣

∣

β̃j +
uj√
nNh

∣

∣

∣

∣

,

and λ̃n = Nhλn. Now we can follow the proof of Zou (2006). With slight changes,
because of the non-constant variance of the error-term, we arrive at

√
nNh( ˆ̃βA − β̃A)

d→ N(0, σ2
∗(CAA)−1),

where A is the active set of the unsmoothed parameter vector, i.e. the parameter
vector at the current time-point. Finally, observe that

√
nNh(

ˆ̃
βA − βA) =

√
nNh(

ˆ̃
βA − β̃A) +

√
nNh(β̃A − βA),

and that we get for the second term analogously as in (A.8), using |An| ≤ p <∞,

nNh‖β̃A − βA‖2
2 ≤ CnNh5

for some constant C. If we choose h = o(n−1/5N−1/5) the asymptotic normality part
follows.

The proof of model selection consistency is analogous to Zou (2006).
�
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