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An example: Riboflavin production in Bacillus Subitilis
in collaboration with DSM (former Roche Vitamines)

response variables Y € R: riboflavin production rate
covariates X € RP: expressions from p = 4088 genes
sample size n = 71 from a “homogeneous” population of
genetically engineered mutants of Bacillus Subtilis

p > nand

high quality data

goal: improve riboflavin production rate of Bacillus Subtilis



more refined question:
what is the effect of knocking-down a single gene on the
riboflavin production rate?

~ this is a question of interventional type; not association

outline:
we will use intervention calculus (e.g. Pearl) ~ causal analysis

» in the high-dimensional framework

» based on observational data only ~» we will infeer
minimal bounds for interventional/causal effects



(high-dimensional) regression:

p
Y =) gX04e,
=1
Var(X 1)) = 1 for all j

;| measures the importance of variable X ) in terms of
“association”

i.e. change of Y as a function of X () when keeping all other
variables X ) fixed
~» not very realistsic for our problem
if we change one gene, some others will also change
and these are not (cannot be) kept fixed



Intervention calculus
“dynamic” notion of importance:
if we set a variable X () to a value x (intervention)
~» some other variables X ¥) (k # j) and maybe Y will change

we want to quantify the total effect of
X on Y plus “all changed” X () on Y

a graph or influence diagram will be very useful
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for simplicity in this talk: just consider DAG’s
(for ancestral graphs with hidden variables: work in progress)

for DAG's: recursive factorization of joint distribution

p
P(Y,X®, . X®)y=p(y[x ) TTP(x1x ¢P20)
=1

for intervention calculus: use truncated factorization (e.g. Pearl)
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P(Y,X® x @) x(3)
= P(Y|X® XCHp(X®x@)p(x ®)x )P (x ()

Example

truncated factorization for do(X (?) = x),
i.e. intervention at X (@ by setting it to the value x:
P(Y,X® X®do(x @ = x))
— (Y|X(1),X(3)) XOXE = x)P(XOX@ =x).1
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P(Y |do(X® = x)) = /P(Y X® X @) |do(X @ = x))dX Ddx ©)

= /P(Y|x<1),x<3))P(x<1>|x<2> = x)P(X®) X = x)dx Hdx @



the intervention distribution P (Y |do(X(?) = x)) can be
calculated from

» observational data
~» need to estimate conditional distributions

» an influence diagram
~» need to estimate structure of a graph/influence diagram

intervention effect: for example
LY [do(x? = x)] = [ yP(y|do(x @) = x))dy
intervention effect at xg : ;(IE[Y 1do(X @) = x)]|x=x,

in the Gaussian case: Y, XM, ... X(P) ~ Npiq (i, X),

0

S LY [do(X () = x)]= 6, for all x



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect



when having no unmeasured confounder (variable):
intervention effect (as defined) = causal effect
otherwise: we have an intervention effect “within the system of

measured variables” which is better than considering just
association



recap: Gaussian case
Ox E[Y ‘dO(X ) = X)] = 9] for all x

forY ¢ pa(j):
t; is the regression parameter in

Y =X+ 3" 6X® +error
kepa(j)

N\
j = 2, pa(j) = {3,4} ‘\/



Example 2
Intervention versus association
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Y =X® 4 xO) 4 ¢

X@ =3

XM = 0.8x@ 4 )
XB) = 0.8x(3 4 ()

intervention effect: 6, = 1.6

6, = 63 = 1 ~» X(@ has largest interventional importance
regression effect: 5, =0

B1 = B3 = 1~ X2 has smallest (zero) interventional imp.



Inferring interventional effects
main problem: inferring DAG from data
~» impossible: can only infer equivalence class of DAG’s
~ for each variable X (), can only estimate
set of interventional effects
the population parameters: sets of interventional effects

conceptual “procedure”:

» probability distribution P from a DAG, generating the data
~» true underlying equivalence class of DAG’s

» find all DAG-members of true equivalence class: Gy, ...,Gm

» for every DAG-member G;, and every variable X ():
single interventional effect 0, ;
summarize them by

©O={6;;r=1....mj=1,...p}

population quantity



unique values may occur:

it may happen that for some j: 01 =055 = ..., 0n;
i.e. the jth interventional effect is unique

but in general, the population parameter is a (multi-) set ©
it holds that:

for every j: true intervention effect from true DAG 0y € ©

strict

typically: {fej; j =1,...,p} C ©
Pearl:

“...a causal concept cannot be defined
N’
single causal effect

from the distribution alone”



If you want a single number for every variable ...

Minimal absolute value
wj = mrin|9,7j| (i=1,...,p),
‘gtrue,j‘ > Qj

minimal absolute effect «; is a lower bound for true absolute
intervention effect



Multiplicities
the assumed values of 0y j,...,0m; are

Vajs-- g (K< m)
7 j Oceurs n(vy, j) times

» values |y | (j =1,2,3,4,...) =

» multiplicities: m =7 2 )
unique effect in red R

» (weighted) mean: e ) o or
Zrn('Yr,j)"Yr,j’/7: 1 8,
> 16r1/7 gf‘

using the additional concept of multiplicities
we can define an average interventional effect




Computationally tractable algorithm:
population version

conceptually: so far, we described ©nyp by finding/searching
for all members (DAG’s) within an equivalence class of DAG’s

searching all DAG’s is computationally infeasible if p is large
(we actually can do this up to p ~ 15)

instead of finding all m DAG’s within an equivalence class ~»
compute all intervention effects without finding all DAG'’s



P= CPDAG
——
equiv. class of DAG’s

» directed edge in CPDAG: every member (DAG) in
equivalence class has this directed edge

» undirected edge in CPDAG: some members (DAG’s) have
this edge with opposite directions

» no edge in CPDAG: no edge for every member (DAG)



Local algorithm to find all intervention effects 6
(Maathuis, Kalisch & PB, 2008)

input: CPDAG (true underlying equivalence class of DAG’s)

|
>
>

parents of X (): pa(j)
undirected neighbors of X 1): undir-neigh(j)
consider all subsets S of undir-neigh(j)
make S a set of parental nodes of j ~» new graph Gs_,;
check whether new graph Gs_,; has no new v-structure
with collider j: if yes, denote the set by S
for all such S+ and all j: regression

= 05, i XV + Pk cpag) O, 4 XY + e, 05, X + error
denote by @|oca| = {0s, j; aII subsets S+}

CPDAG

AN /\ /\
NSNS NS

Y vs. XU 4 X3 Y vs. X(




Theorem (Maathuis, Kalisch & PB, 2008)

Ol0cal = ©,where equality is in terms of sets
but the mutiplicities are not the same

huge computational gain if p is large, e.g. p ~ 5’000



Estimation

difficult part: estimation of CPDAG (equivalence class of DAG'’s)
~» estimation of structure (model-selection)

use the PC-algorithm (Spirtes & Glymour, 1991)

underlying crucial assumption:

distribution P is faithful to the true underlying DAG

i.e. all conditional (in-)dependencies can be read-off from the
DAG (using the Markov property)



implication of faithfulness:
for the skeleton of the true DAG (directions of edges are
removed)

edge between i and |
& X dependent of X0 given X%) forall S € {1,...,p}

considering all subsets is only “conceptual” ~» see below
(and impossible to compute)

note: for conditional independence graph and regression

edge between i and j
& X dependent of X ) given {X®); k £i,j}



in the Gaussian case: need to estimate whether

Parcor(X ), XXy =00or £0
conceptually for all subsets S; but in fact, only for "some”

thanks to faithfulness, we can gradually move-up from marginal
to higher-order partial correlations
~» key feature to deal with p > n



PC-algorithm: a rough outline
for estimating the skeleton of underlying DAG

1. start with the full graph (all edges present)

2. remove edge i — j if standard sample correlation
Cor(X®, X0 is small
by using Fisher’'s Z-transform and exact null-distribution of
zero correlation

3. move-up to partial correlations of order 1.:

Pl,] pi kPj k

P|,1|k—
V@ =202 - )

4. remove edge i — | if standard sample correlation

Parcor(X 1), X 1| k) is small for some k in the current
neighborhood of i or j (thanks to faithfulness)




5. move-up to partial correlations of order 2 via recursive
formula

6. remove edge i — j if standard sample correlation
Parcor(X (), X 1)|xX (k) X (©)) is small for some k. 7 in the
current neighborhood of i or j (thanks to faithfulness)

7. until removal of edges is not possible anymore,
i.e. stop at minimal order of partial correlation where
edge-removal becomes impossible

one tuning parameter (cut-off parameter) « for truncation of
estimated Z -transofrmed partial correlations

if the graph is “sparse” (few neighbors) ~ few iterations only
and only low-order partial correlations play a role

and thus: the estimation algorithm works for p > n problems



modification of the above algorithm (for estimation of some
separating sets) yields an estimate of the CPDAG (equivalence
class of DAG’S)

Theorem (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2008)

» XA XP) ~ NG (i, T) faithful to a DAG
> p=pn=0(n?) (0 < a < oco) (high-dimensional)
» max; [ne(j)| = o(n) (sparsity)

» non-zero (partial) correlations > n—1/2
maximal (partial) correlation < C < 1

Then: for some suitable o = an
P[sl@)n(a) = true skeleton] = 1 — O(exp(Cn!~?))
P[CPDAG(a) = true CPDAG] = 1 — O(exp(Cn'~?))
P[Broca(cr) #=1 0] = 1 — O(exp(Cn?))



computational complexity:

crudely bounded to be polynomial in p
sparser underlying structure ~» faster algorithm

we can easily do the computations for
sparse cases with p ~ 10* ~ 2-5 hrs CPU time

log10( Processor Time [s] )
1

—— E[N]=2
~4- E[N]=8

il

T T T T
1.0 & 2.0 25 3.0



How well can we do?

two methods:
» local algorithm: as described
» global algorithm:

searching for all DAG’s within an equivalence class
and computing intervention effects from all these DAG’s

for our simulation models:
could compute with global method up to p = 14
whereas local algorithm can handle large p ~ 10*



n = 1000, p = 8, E[neighborhood — size] = 3

densities of intervention effects 4, including multiplicties
local (black) and global (red) method; true values (blue)

—t
--¢




n = 2000 (left); n = 20 (right); p = 10;
E[neighborhood — size] = 4

MSE for lower bound: E[(min, |9Ar7j| — min; |0r7j|)2]

g °]
£ i
£ i

| e |

~» for small n: global algorithm slightly better
but computationally infeasible for p > 15



Riboflavin production with Bacillus Subitilis

Y : riboflavin production rate
covariates X € RP: expressions from p = 4088 genes
sample size n = 71 from a “homogeneous” population of
genetically engineered mutants of Bacillus Subtilis

goal: estimate intervention effects of the p = 4088 genes



we use regularization parameter o = 0.01

(a more principled choice via sub-sampling/bootstraping is
possible)

multiplicities of 6:

Multiplicities of Effects

g
g

g

degree of uniqueness is high ~ min; \ér,j\ is “tight” lower bound



bootstrap analysis (10 replicates)

median of bootstrapped min, ]é;*’j |, forallj=1,2,...,p

Median of Effects (8B=10)

EEEEEE

top 10 genes (variables) indicated by vertical line



bootstrapped min; |67 (top 10),
ranked by median of bootstrapped values

eeeeeeee

median of bootstrapped minimal intervention effects > 0.85
~» log-productivity of riboflavin changes by > 0.85 under 1-fold
change of gene expression



one interesting gene aomng the “top10” which
» is biologically “plausible”
» has not been modified so far — but DSM plans to do so



if you do not trust asymptotics...
we have a scoring wich is built upon intervention calculus
~» use local FDR (Efron, 2001-2006) to quantify “high”

200
|
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I

Frequency

100
I

0.0 0.2 0.4 0.6 0.8 1.0 12 14

MLE: delta: 0.156 sigma: 0.088 p0: 0.962
CME: delta: 0.123 sigma: 0.091 p0: 0.981

cut-off at 0.4 yields local FDR < 0.2
(for bootstrapped median of min; |0, ;|)



Conclusions

» intervention analysis using observational data only:
in absence of an influence diagram (graph)
~» can infer bounds on intervention/causal effects
the bounds are tight (for some variables) if multiplicity of ©
is 1 (for some variables)

» even in the sparse high-dimensional context:
intervention analysis is computationally feasible and
statistically “reasonable” and consistent

» variability and uncertainty:
in absence of anything better so far, we use the bootstrap...

» unmeasured confounders:
conceptually, we can make use of
ancestral graphs (Drton & Richardson) and
e.g. the FCI algorithm (Spirtes, Glymour & Scheines, 2000)



