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Peter Bühlmann

Seminar für Statistik, ETH Zürich
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An example: Riboflavin production in Bacillus Subtilis

in collaboration with DSM (former Roche Vitamines)

response variables Y ∈ R: riboflavin production rate

covariates X ∈ Rp: expressions from p = 4088 genes

sample size n = 71 from a “homogeneous” population of

genetically engineered mutants of Bacillus Subtilis

p � n and

high quality data
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goal: improve riboflavin production rate of Bacillus Subtilis



more refined question:

what is the effect of knocking-down a single gene on the

riboflavin production rate?

; this is a question of interventional type; not association

outline:

we will use intervention calculus (e.g. Pearl) ≈ causal analysis

I in the high-dimensional framework

I based on observational data only ; we will infeer

minimal bounds for interventional/causal effects



(high-dimensional) regression:

Y =

p∑
j=1

βjX
(j) + ε,

Var(X (j)) ≡ 1 for all j

|βj | measures the importance of variable X (j) in terms of

“association”

i.e. change of Y as a function of X (j) when keeping all other

variables X (k) fixed

; not very realistsic for our problem

if we change one gene, some others will also change

and these are not (cannot be) kept fixed



Intervention calculus
“dynamic” notion of importance:

if we set a variable X (j) to a value x (intervention)

; some other variables X (k) (k 6= j) and maybe Y will change

we want to quantify the total effect of

X (j) on Y plus “all changed” X (k) on Y

a graph or influence diagram will be very useful
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quantify total effect of X (2) to Y



for simplicity in this talk: just consider DAG’s

(for ancestral graphs with hidden variables: work in progress)

for DAG’s: recursive factorization of joint distribution

P(Y ,X (1), . . . ,X (p)) = P(Y |X (pa(Y )))

p∏
j=1

P(X (j)|X (pa(j)))

for intervention calculus: use truncated factorization (e.g. Pearl)



Example
Example 2
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P(Y ,X (1),X (2),X (3))

= P(Y |X (1),X (3))P(X (1)|X (2))P(X (3)|X (2))P(X (2))

truncated factorization for do(X (2) = x),
i.e. intervention at X (2) by setting it to the value x :

P(Y ,X (1),X (3)|do(X (2) = x))

= P(Y |X (1),X (3))P(X (1)|X (2) = x)P(X (3)|X (2) = x) · 1

P(Y |do(X (2) = x)) =

∫
P(Y ,X (1),X (3)|do(X (2) = x))dX (1)dX (3)

=

∫
P(Y |X (1),X (3))P(X (1)|X (2) = x)P(X (3)|X (2) = x)dX (1)dX (3)
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the intervention distribution P(Y |do(X (2) = x)) can be

calculated from

I observational data

; need to estimate conditional distributions

I an influence diagram

; need to estimate structure of a graph/influence diagram

intervention effect: for example

E[Y |do(X (2) = x)] =

∫
yP(y |do(X (2) = x))dy

intervention effect at x0 :
∂

∂x
E[Y |do(X (2) = x)]|x=x0

in the Gaussian case: Y ,X (1), . . . ,X (p) ∼ Np+1(µ,Σ),

∂

∂x
E[Y |do(X (2) = x)]≡ θ2 for all x



when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

otherwise: we have an intervention effect “within the system of

measured variables” which is better than considering just

association
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recap: Gaussian case

∂

∂x
E[Y |do(X (j) = x)] ≡ θj for all x

for Y /∈ pa(j):

θj is the regression parameter in

Y = θjX
(j) +

∑
k∈pa(j)

θkX (k) + error
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Y

j = 2, pa(j) = {3,4}



Intervention versus association

Example 2
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Y = X (1) + X (3) + ε,

X (2) = ε(2),

X (1) = 0.8X (2) + ε(1),

X (3) = 0.8X (2) + ε(3)

intervention effect: θ2 = 1.6
θ1 = θ3 = 1 ; X (2) has largest interventional importance

regression effect: β2 = 0

β1 = β3 = 1 ; X (2) has smallest (zero) interventional imp.



Inferring interventional effects
main problem: inferring DAG from data

; impossible: can only infer equivalence class of DAG’s

; for each variable X (j), can only estimate

set of interventional effects

the population parameters: sets of interventional effects

conceptual “procedure”:

I probability distribution P from a DAG, generating the data

; true underlying equivalence class of DAG’s

I find all DAG-members of true equivalence class: G1, . . . ,Gm

I for every DAG-member Gr , and every variable X (j):

single interventional effect θr ,j

summarize them by

Θ = {θr ,j ; r = 1, . . . ,m; j = 1, . . . ,p}︸ ︷︷ ︸
population quantity



unique values may occur:

it may happen that for some j : θ1,j = θ2,j = . . . , θm,j

i.e. the j th interventional effect is unique

but in general, the population parameter is a (multi-) set Θ
it holds that:

for every j : true intervention effect from true DAG θtrue,j ∈ Θ

typically: {θtrue,j ; j = 1, . . . ,p}
strict
⊂ Θ

Pearl:

“... a causal concept︸ ︷︷ ︸
single causal effect

cannot be defined

from the distribution alone”



If you want a single number for every variable ...

Minimal absolute value

αj = min
r
|θr ,j | (j = 1, . . . ,p),

|θtrue,j | ≥ αj

minimal absolute effect αj is a lower bound for true absolute

intervention effect



Multiplicities

the assumed values of θ1,j , . . . , θm,j are

γ1,j , . . . , γkj ,j (kj ≤ m)

γr ,j occurs n(γr ,j) times

I values |γr ,j | (j = 1,2,3,4, ...)

I multiplicities: m = 7

unique effect in red

I (weighted) mean:∑
r n(γr ,j)|γr ,j |/7 =∑7
r=1 |θr ,j |/7
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Computationally tractable algorithm:

population version

conceptually: so far, we described Θm×p by finding/searching

for all members (DAG’s) within an equivalence class of DAG’s

searching all DAG’s is computationally infeasible if p is large

(we actually can do this up to p ≈ 15)

instead of finding all m DAG’s within an equivalence class ;

compute all intervention effects without finding all DAG’s



P ⇒ CPDAG︸ ︷︷ ︸
equiv. class of DAG’s

I directed edge in CPDAG: every member (DAG) in

equivalence class has this directed edge

I undirected edge in CPDAG: some members (DAG’s) have

this edge with opposite directions

I no edge in CPDAG: no edge for every member (DAG)



Local algorithm to find all intervention effects θr ,j

(Maathuis, Kalisch & PB, 2008)

input: CPDAG (true underlying equivalence class of DAG’s)

I parents of X (j): pa(j)
I undirected neighbors of X (j): undir-neigh(j)
I consider all subsets S of undir-neigh(j)

make S a set of parental nodes of j ; new graph GS→j

check whether new graph GS→j has no new v -structure

with collider j : if yes, denote the set by S+

I for all such S+ and all j : regression

Y = θS+,jX
(j) +

∑
k∈pa(j) θS+,kX (k) +

∑
`∈S+

θS+,`X
(`) + error

I denote by Θlocal = {θS+,j ; all subsets S+}
CPDAG
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G
(1)
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Y

Y vs. X(1) + X(2)

G
(2)
S+→1

X1

X2

X3

Y

Y vs. X(1)



Theorem (Maathuis, Kalisch & PB, 2008)

Θlocal = Θ,where equality is in terms of sets

but the mutiplicities are not the same

huge computational gain if p is large, e.g. p ≈ 5′000



Estimation

difficult part: estimation of CPDAG (equivalence class of DAG’s)

; estimation of structure (model-selection)

use the PC-algorithm (Spirtes & Glymour, 1991)

underlying crucial assumption:

distribution P is faithful to the true underlying DAG

i.e. all conditional (in-)dependencies can be read-off from the

DAG (using the Markov property)



implication of faithfulness:

for the skeleton of the true DAG (directions of edges are

removed)

edge between i and j

⇔ X (i) dependent of X (j) given X (S), for all S ⊆ {1, . . . ,p}

considering all subsets is only “conceptual” ; see below

(and impossible to compute)

note: for conditional independence graph and regression

edge between i and j

⇔ X (i) dependent of X (j) given {X (k); k 6= i , j}



in the Gaussian case: need to estimate whether

Parcor(X (i),X (j)|X (S)) = 0 or 6= 0

conceptually for all subsets S; but in fact, only for ”some”

thanks to faithfulness, we can gradually move-up from marginal

to higher-order partial correlations

; key feature to deal with p � n



PC-algorithm: a rough outline

for estimating the skeleton of underlying DAG

1. start with the full graph (all edges present)

2. remove edge i − j if standard sample correlation

Ĉor(X (i),X (j)) is small

by using Fisher’s Z-transform and exact null-distribution of

zero correlation

3. move-up to partial correlations of order 1:

ρ̂i,j|k =
ρ̂i,j − ρ̂i,k ρ̂j,k√

(1− ρ̂2
i,k )(1− ρ̂2

j,k )

4. remove edge i − j if standard sample correlation

P̂arcor(X (i),X (j)|X (k)) is small for some k in the current

neighborhood of i or j (thanks to faithfulness)



5. move-up to partial correlations of order 2 via recursive

formula

6. remove edge i − j if standard sample correlation

P̂arcor(X (i),X (j)|X (k),X (`)) is small for some k , ` in the

current neighborhood of i or j (thanks to faithfulness)

7. until removal of edges is not possible anymore,

i.e. stop at minimal order of partial correlation where

edge-removal becomes impossible

one tuning parameter (cut-off parameter) α for truncation of

estimated Z -transofrmed partial correlations

if the graph is “sparse” (few neighbors) ; few iterations only

and only low-order partial correlations play a role

and thus: the estimation algorithm works for p � n problems



modification of the above algorithm (for estimation of some

separating sets) yields an estimate of the CPDAG (equivalence

class of DAG’s)

Theorem (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2008)

I X (1), . . . ,X (p) ∼ Np(µ,Σ) faithful to a DAG

I p = pn = O(nα) (0 ≤ α <∞) (high-dimensional)

I maxj |ne(j)| = o(n) (sparsity)

I non-zero (partial) correlations� n−1/2

maximal (partial) correlation ≤ C < 1

Then: for some suitable α = αn

P[ ̂skeleton(α) = true skeleton] = 1−O(exp(Cn1−δ))

P[ĈPDAG(α) = true CPDAG] = 1−O(exp(Cn1−δ))

P[Θ̂local(α)
as set

= Θ] = 1−O(exp(Cn1−δ))



computational complexity:

crudely bounded to be polynomial in p

sparser underlying structure ; faster algorithm

we can easily do the computations for

sparse cases with p ≈ 104 ≈ 2-5 hrs CPU time
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How well can we do?

two methods:

I local algorithm: as described

I global algorithm:

searching for all DAG’s within an equivalence class

and computing intervention effects from all these DAG’s

for our simulation models:

could compute with global method up to p = 14

whereas local algorithm can handle large p ≈ 104



n = 1000,p = 8, E[neighborhood− size] = 3

densities of intervention effects θ̂, including multiplicties

local (black) and global (red) method; true values (blue)
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n = 2000 (left); n = 20 (right); p = 10;

E[neighborhood− size] = 4

MSE for lower bound: E[(minr |θ̂r ,j | −minr |θr ,j |)2]
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; for small n: global algorithm slightly better

but computationally infeasible for p > 15



Riboflavin production with Bacillus Subtilis
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Y : riboflavin production rate

covariates X ∈ Rp: expressions from p = 4088 genes

sample size n = 71 from a “homogeneous” population of

genetically engineered mutants of Bacillus Subtilis

goal: estimate intervention effects of the p = 4088 genes



we use regularization parameter α = 0.01

(a more principled choice via sub-sampling/bootstraping is

possible)

multiplicities of θ̂:
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degree of uniqueness is high ; minr |θ̂r ,j | is “tight” lower bound



bootstrap analysis (10 replicates)

median of bootstrapped minr |θ̂∗r ,j |, for all j = 1,2, . . . ,p
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bootstrapped minr |θ̂∗r ,j | (top 10),

ranked by median of bootstrapped values
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median of bootstrapped minimal intervention effects ≥ 0.85

; log-productivity of riboflavin changes by ≥ 0.85 under 1-fold

change of gene expression



one interesting gene aomng the “top10” which

I is biologically “plausible”

I has not been modified so far – but DSM plans to do so



if you do not trust asymptotics...

we have a scoring wich is built upon intervention calculus

; use local FDR (Efron, 2001-2006) to quantify “high”
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CME: delta: 0.123 sigma: 0.091 p0: 0.981
MLE: delta: 0.156 sigma: 0.088 p0: 0.962

cut-off at 0.4 yields local FDR ≤ 0.2
(for bootstrapped median of minr |θ̂r ,j |)



Conclusions

I intervention analysis using observational data only:

in absence of an influence diagram (graph)

; can infer bounds on intervention/causal effects

the bounds are tight (for some variables) if multiplicity of Θ
is 1 (for some variables)

I even in the sparse high-dimensional context:

intervention analysis is computationally feasible and

statistically “reasonable” and consistent

I variability and uncertainty:

in absence of anything better so far, we use the bootstrap...

I unmeasured confounders:

conceptually, we can make use of

ancestral graphs (Drton & Richardson) and

e.g. the FCI algorithm (Spirtes, Glymour & Scheines, 2000)


