High-dimensional variable selection: from association to intervention

Peter Bühlmann

Seminar für Statistik, ETH Zürich

July 2008

・ロト・日本・モト・モー ショー ショー

An example: Riboflavin production in Bacillus Subtilis in collaboration with DSM (former Roche Vitamines)

response variables $Y \in \mathbb{R}$: riboflavin production rate covariates $X \in \mathbb{R}^p$: expressions from p = 4088 genes sample size n = 71 from a "homogeneous" population of genetically engineered mutants of Bacillus Subtilis

goal: improve riboflavin production rate of Bacillus Subtilis

more refined question:

what is the effect of knocking-down a single gene on the riboflavin production rate?

 \rightarrow this is a question of interventional type; not association

outline:

we will use intervention calculus (e.g. Pearl) \approx causal analysis

(日) (日) (日) (日) (日) (日) (日)

- in the high-dimensional framework
- based on observational data only ~> we will infeer minimal bounds for interventional/causal effects

(high-dimensional) regression:

$$Y = \sum_{j=1}^{p} \beta_j X^{(j)} + \varepsilon,$$
$$Var(X^{(j)}) \equiv 1 \text{ for all } j$$

 $|\beta_j|$ measures the importance of variable $X^{(j)}$ in terms of "association"

i.e. change of Y as a function of $X^{(j)}$ when keeping all other variables $X^{(k)}$ fixed

→ not very realistsic for our problem if we change one gene, some others will also change and these are not (cannot be) kept fixed

Intervention calculus

"dynamic" notion of importance:

if we set a variable $X^{(j)}$ to a value x (intervention)

 \sim some other variables $X^{(k)}$ ($k \neq j$) and maybe Y will change

we want to quantify the total effect of $X^{(j)}$ on Y plus "all changed" $X^{(k)}$ on Y

a graph or influence diagram will be very useful

for simplicity in this talk: just consider DAG's (for ancestral graphs with hidden variables: work in progress)

for DAG's: recursive factorization of joint distribution

$$P(Y, X^{(1)}, \dots, X^{(p)}) = P(Y|X^{(\text{pa}(Y))}) \prod_{j=1}^{p} P(X^{(j)}|X^{(\text{pa}(j))})$$

for intervention calculus: use truncated factorization (e.g. Pearl)

(日) (日) (日) (日) (日) (日) (日)

- $P(Y, X^{(1)}, X^{(3)} | do(X^{(2)} = x))$ $= P(Y|X^{(1)}, X^{(3)})P(X^{(1)}|X^{(2)} = x)P(X^{(3)}|X^{(2)} = x) \cdot 1$
- truncated factorization for $do(X^{(2)} = x)$, i.e. intervention at $X^{(2)}$ by setting it to the value x:
- $P(Y, X^{(1)}, X^{(2)}, X^{(3)})$ $= P(Y|X^{(1)}, X^{(3)})P(X^{(1)}|X^{(2)})P(X^{(3)}|X^{(2)})P(X^{(2)})$

Example

Example 2

$$= P(Y|X^{(1)}, X^{(3)})P(X^{(1)}|X^{(2)} = x)P(X^{(3)}|X^{(2)} = x) \cdot 1$$

$$P(Y|do(X^{(2)} = x)) = \int P(Y, X^{(1)}, X^{(3)}|do(X^{(2)} = x))dX^{(1)}dX^{(3)}$$

$$= \int P(Y|X^{(1)}, X^{(3)})P(X^{(1)}|X^{(2)} = x)P(X^{(3)}|X^{(2)} = x)dX^{(1)}dX^{(3)}$$

truncated factorization for
$$do(X^{(2)} = x)$$
,
i.e. intervention at $X^{(2)}$ by setting it to the value x :

 $P(Y, X^{(1)}, X^{(3)} | do(X^{(2)} = x))$ $-(x_{1}, x_{2}, x_{3}) - (x_{2}, x_{3}) - (x_{2}, x_{3})$

$$P(Y, X^{(1)}, X^{(2)}, X^{(3)}) = P(Y|X^{(1)}, X^{(3)})P(X^{(1)}|X^{(2)})P(X^{(3)}|X^{(2)})P(X^{(2)})$$

(2)

Example

the intervention distribution $P(Y|do(X^{(2)} = x))$ can be calculated from

observational data

 \rightsquigarrow need to estimate conditional distributions

an influence diagram

 \rightsquigarrow need to estimate structure of a graph/influence diagram

intervention effect: for example

$$\mathbb{E}[Y|\operatorname{do}(X^{(2)}=x)] = \int y P(y|\operatorname{do}(X^{(2)}=x)) dy$$

intervention effect at x_0 : $\frac{\partial}{\partial x} \mathbb{E}[Y|\operatorname{do}(X^{(2)}=x)]|_{x=x_0}$

in the Gaussian case: $Y, X^{(1)}, \dots, X^{(p)} \sim \mathcal{N}_{p+1}(\mu, \Sigma)$,

$$\frac{\partial}{\partial x} \mathbb{E}[Y| \operatorname{do}(X^{(2)} = x)] \equiv \theta_2 \text{ for all } x$$

when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

otherwise: we have an intervention effect "within the system of measured variables" which is better than considering just association

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

when having no unmeasured confounder (variable):

intervention effect (as defined) = causal effect

otherwise: we have an intervention effect "within the system of measured variables" which is better than considering just association

recap: Gaussian case

$$\frac{\partial}{\partial x} \mathbb{E}[\mathsf{Y} | \mathrm{do}(\mathsf{X}^{(j)} = \mathsf{x})] \equiv \theta_j \text{ for all } \mathsf{x}$$

for $Y \notin pa(j)$:

$$j = 2, pa(j) = \{3, 4\}$$

Example 2

intervention effect: $\theta_2 = 1.6$ $\theta_1 = \theta_3 = 1 \rightsquigarrow X^{(2)}$ has largest interventional importance regression effect: $\beta_2 = 0$ $\beta_1 = \beta_3 = 1 \rightsquigarrow X^{(2)}$ has smallest (zero) interventional imp.

Inferring interventional effects

main problem: inferring DAG from data

- \rightsquigarrow impossible: can only infer equivalence class of DAG's
- \rightsquigarrow for each variable $X^{(j)}$, can only estimate

set of interventional effects

the population parameters: sets of interventional effects

conceptual "procedure":

- ▶ find all DAG-members of true equivalence class: G_1, \ldots, G_m
- for every DAG-member G_r, and every variable X^(j): single interventional effect θ_{r,j} summarize them by

$$\underbrace{\Theta = \{\theta_{r,j}; r = 1, \dots, m; j = 1, \dots, p\}}_{\text{population quantity}}$$

unique values may occur:

it may happen that for some *j*: $\theta_{1,j} = \theta_{2,j} = \dots, \theta_{m,j}$ i.e. the *j*th interventional effect is unique

but in general, the population parameter is a (multi-) set Θ it holds that:

for every *j*: true intervention effect from true DAG $\theta_{\text{true},j} \in \Theta$ typically: { $\theta_{\text{true},j}$; j = 1, ..., p} $\stackrel{\text{strict}}{\subset} \Theta$

Pearl:

"... a causal concept cannot be defined single causal effect from the distribution alone" If you want a single number for every variable ...

Minimal absolute value

$$\alpha_j = \min_r |\theta_{r,j}| \quad (j = 1, \dots, p),$$
$$|\theta_{\text{true},j}| \ge \alpha_j$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

minimal absolute effect α_j is a lower bound for true absolute intervention effect

Multiplicities the assumed values of $\theta_{1,i}, \ldots, \theta_{m,i}$ are

 $\gamma_{1,j}, \dots, \gamma_{k_j,j} \ (k_j \le m)$ $\gamma_{r,j} \text{ occurs } n(\gamma_{r,j}) \text{ times}$

• values
$$|\gamma_{r,j}| (j = 1, 2, 3, 4, ...)$$

- multiplicities: m = 7 unique effect in red
- ► (weighted) mean: $\sum_{r} n(\gamma_{r,j}) |\gamma_{r,j}|/7 = \sum_{r=1}^{7} |\theta_{r,j}|/7$

using the additional concept of multiplicities we can define an average interventional effect

Computationally tractable algorithm: population version

conceptually: so far, we described $\Theta_{m \times p}$ by finding/searching for all members (DAG's) within an equivalence class of DAG's

searching all DAG's is computationally infeasible if *p* is large (we actually can do this up to $p \approx 15$)

instead of finding all *m* DAG's within an equivalence class \sim compute all intervention effects without finding all DAG's

(日) (日) (日) (日) (日) (日) (日)

- directed edge in CPDAG: every member (DAG) in equivalence class has this directed edge
- undirected edge in CPDAG: some members (DAG's) have this edge with opposite directions

no edge in CPDAG: no edge for every member (DAG)

Local algorithm to find all intervention effects $\theta_{r,j}$ (Maathuis, Kalisch & PB, 2008)

input: CPDAG (true underlying equivalence class of DAG's)

- parents of X^(j): pa(j)
- undirected neighbors of X^(j): undir-neigh(j)
- ► consider all subsets S of undir-neigh(j) make S a set of parental nodes of j → new graph G_{S→j} check whether new graph G_{S→j} has no new v-structure with collider j: if yes, denote the set by S₊
- for all such S₊ and all *j*: regression
 Y = θ_{S+,j}X^(j) + Σ_{k∈pa(j)} θ_{S+,k}X^(k) + Σ_{ℓ∈S+} θ_{S+,ℓ}X^(ℓ) + error

 denote by Θ_{local} = {θ_{S+,j}; all subsets S₊}

Theorem (Maathuis, Kalisch & PB, 2008)

 $\Theta_{local} = \Theta$, where equality is in terms of sets but the mutiplicities are not the same

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

huge computational gain if p is large, e.g. $p \approx 5'000$

Estimation

difficult part: estimation of CPDAG (equivalence class of DAG's) \sim estimation of structure (model-selection)

use the PC-algorithm (Spirtes & Glymour, 1991)

underlying crucial assumption: distribution *P* is faithful to the true underlying DAG i.e. all conditional (in-)dependencies can be read-off from the DAG (using the Markov property)

(日) (日) (日) (日) (日) (日) (日)

implication of faithfulness:

for the skeleton of the true DAG (directions of edges are removed)

edge between *i* and *j*

 $\Leftrightarrow X^{(i)} \text{ dependent of } X^{(j)} \text{ given } X^{(\mathcal{S})}, \text{ for all } \mathcal{S} \subseteq \{1, \dots, p\}$

considering all subsets is only "conceptual" \rightsquigarrow see below (and impossible to compute)

note: for conditional independence graph and regression

edge between *i* and *j* $\Leftrightarrow X^{(i)}$ dependent of $X^{(j)}$ given $\{X^{(k)}; k \neq i, j\}$

in the Gaussian case: need to estimate whether

$$Parcor(X^{(i)}, X^{(j)} | X^{(S)}) = 0 \text{ or } \neq 0$$

conceptually for all subsets S; but in fact, only for "some"

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

thanks to faithfulness, we can gradually move-up from marginal to higher-order partial correlations \sim key feature to deal with $p \gg n$

PC-algorithm: a rough outline

for estimating the skeleton of underlying DAG

- 1. start with the full graph (all edges present)
- remove edge *i j* if standard sample correlation
 Cor(X⁽ⁱ⁾, X^(j)) is small
 by using Fisher's Z-transform and exact null-distribution of zero correlation
- 3. move-up to partial correlations of order 1:

$$\hat{
ho}_{i,j|k} = rac{\hat{
ho}_{i,j} - \hat{
ho}_{i,k}\hat{
ho}_{j,k}}{\sqrt{(1 - \hat{
ho}_{i,k}^2)(1 - \hat{
ho}_{j,k}^2)}}$$

4. remove edge i - j if standard sample correlation $\widehat{Parcor}(X^{(i)}, X^{(j)}|X^{(k)})$ is small for some k in the current neighborhood of i or j (thanks to faithfulness)

- 5. move-up to partial correlations of order 2 via recursive formula
- 6. remove edge i j if standard sample correlation $\widehat{Parcor}(X^{(i)}, X^{(j)}|X^{(k)}, X^{(\ell)})$ is small for some k, ℓ in the current neighborhood of i or j (thanks to faithfulness)
- until removal of edges is not possible anymore, i.e. stop at minimal order of partial correlation where edge-removal becomes impossible

one tuning parameter (cut-off parameter) α for truncation of estimated *Z*-transofrmed partial correlations

if the graph is "sparse" (few neighbors) \sim few iterations only and only low-order partial correlations play a role

and thus: the estimation algorithm works for $p \gg n$ problems

modification of the above algorithm (for estimation of some separating sets) yields an estimate of the CPDAG (equivalence class of DAG's)

Theorem (Kalisch & PB, 2007; Maathuis, Kalisch & PB, 2008)

• $X^{(1)}, \ldots, X^{(p)} \sim \mathcal{N}_p(\mu, \Sigma)$ faithful to a DAG

▶ $p = p_n = O(n^{\alpha})$ (0 ≤ $\alpha < \infty$) (high-dimensional)

• $\max_{j} |\operatorname{ne}(j)| = o(n)$ (sparsity)

► non-zero (partial) correlations ≫ n^{-1/2} maximal (partial) correlation ≤ C < 1</p>

Then: for some suitable $\alpha = \alpha_n$

$$\mathbb{P}[\widehat{\mathsf{skeleton}}(\alpha) = \text{ true skeleton}] = 1 - O(\exp(Cn^{1-\delta}))$$
$$\mathbb{P}[\widehat{\mathsf{CPDAG}}(\alpha) = \text{ true CPDAG}] = 1 - O(\exp(Cn^{1-\delta}))$$
$$\mathbb{P}[\widehat{\Theta}_{\text{local}}(\alpha) \stackrel{\text{as set}}{=} \Theta] = 1 - O(\exp(Cn^{1-\delta}))$$

computational complexity:

crudely bounded to be polynomial in psparser underlying structure \sim faster algorithm

we can easily do the computations for sparse cases with $p \approx 10^4 \approx 2-5$ hrs CPU time

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

How well can we do?

two methods:

- local algorithm: as described
- global algorithm: searching for all DAG's within an equivalence class and computing intervention effects from all these DAG's

(日) (日) (日) (日) (日) (日) (日)

for our simulation models:

could compute with global method up to p=14 whereas local algorithm can handle large $p\approx 10^4$

 $n = 1000, p = 8, \mathbb{E}[neighborhood - size] = 3$

densities of intervention effects $\hat{\theta}$, including multiplicties local (black) and global (red) method; true values (blue)

ъ

n = 2000 (left); n = 20 (right); p = 10; $\mathbb{E}[\text{neighborhood} - \text{size}] = 4$

MSE for lower bound: $\mathbb{E}[(\min_{r} |\hat{\theta}_{r,j}| - \min_{r} |\theta_{r,j}|)^2]$

 \sim for small *n*: global algorithm slightly better but computationally infeasible for *p* > 15

Riboflavin production with Bacillus Subtilis

Y: riboflavin production rate

covariates $X \in \mathbb{R}^p$: expressions from p = 4088 genes sample size n = 71 from a "homogeneous" population of genetically engineered mutants of Bacillus Subtilis goal: estimate intervention effects of the p = 4088 genes we use regularization parameter $\alpha = 0.01$ (a more principled choice via sub-sampling/bootstraping is possible)

multiplicities of $\hat{\theta}$:

degree of uniqueness is high $\rightsquigarrow \min_r |\hat{\theta}_{r,j}|$ is "tight" lower bound

bootstrap analysis (10 replicates)

median of bootstrapped min_r $|\hat{\theta}_{r,j}^*|$, for all j = 1, 2, ..., p

(日) (日) (日) (日) (日) (日) (日)

top 10 genes (variables) indicated by vertical line

bootstrapped min_{*r*} $|\hat{\theta}^*_{r,j}|$ (top 10), ranked by median of bootstrapped values

median of bootstrapped minimal intervention effects ≥ 0.85 \rightsquigarrow log-productivity of riboflavin changes by ≥ 0.85 under 1-fold change of gene expression

one interesting gene aomng the "top10" which

- is biologically "plausible"
- has not been modified so far but DSM plans to do so

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

if you do not trust asymptotics...

we have a scoring wich is built upon intervention calculus \sim use local FDR (Efron, 2001-2006) to quantify "high"

cut-off at 0.4 yields local FDR \leq 0.2 (for bootstrapped median of min_r $|\hat{\theta}_{r,j}|$)

Conclusions

- intervention analysis using observational data only: in absence of an influence diagram (graph)
 → can infer bounds on intervention/causal effects the bounds are tight (for some variables) if multiplicity of Θ is 1 (for some variables)
- even in the sparse high-dimensional context: intervention analysis is computationally feasible and statistically "reasonable" and consistent
- variability and uncertainty:

in absence of anything better so far, we use the bootstrap...

unmeasured confounders:

conceptually, we can make use of ancestral graphs (Drton & Richardson) and e.g. the FCI algorithm (Spirtes, Glymour & Scheines, 2000)