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Abstract

We review variable selection and variable screening in high-dimen-
sional linear models. Thereby, a major focus is an empirical comparison
of various estimation methods with respect to true and false positive
selection rates based on 128 different sparse scenarios from semi-real
data (real data covariables but synthetic regression coefficients and
noise). Furthermore, we present some theoretical bounds for the bias
in subsequent least squares estimation, using the selected variables
from the first stage, which have direct implications for construction of
p-values for regression coefficients.

Keywords and phrases: Elastic Net, Lasso, Linear model, P-value,
Ridge regression, Sparsity, Sure Independence Screening, Variable selection.

1 Introduction

Many applications nowadays involve high-dimensional data where the num-
ber of (co-)variables p may be much larger than sample size n. In such
p � n settings, classical statistical methods cannot be applied directly.
There are essentially two alternative approaches which can be used: ei-
ther some regularization is employed, including complexity penalization or
Bayesian inference; or one can reduce dimensionality first and then work
with reduced dimension subsequently. We focus here on the latter with di-
mension reduction in the original variables, e.g., excluding techniques such
as principal component analysis or sufficient dimension reduction (Adragni
and Cook, 2009). The motivation to do dimensionality reduction in terms
of original variables is often given by the context of the application: for ex-
ample, we typically want to work with a reduced set of genes or proteins in
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bio-molecular applications rather than linear combinations of such entities
which typically do not have a concrete biological interpretation.

We consider the simplest, yet often useful high-dimensional setting of a
linear model

Y = Xβ0 + ε, (1)

with n× p design matrix X, true underlying p× 1 regression vector β0 and
n× 1 response and noise vector Y and ε, respectively. We denote the active
set of variables by

S0 = {j; β0j 6= 0, j = 1, . . . p}. (2)

The idealistic goal is to do dimensionality reduction with an estimated set
of variables Ŝ ⊆ {1, . . . , p} such that

P[Ŝ ⊇ S0] is very large,

|Ŝ| < n. (3)

Of course, these properties can only hold if S0 is sparse in the sense that
|S0| is smaller than n: this is a natural requirement since high-dimensional
statistical inference is typically only possible if |S0| < n. If (3) holds, one
can do a subsequent analysis using the data with variables from Ŝ only:
since this is not high-dimensional anymore, one can rely on more classical
techniques such as least squares estimation. Such a route of data analysis is
then rather straightforward and often very useful. As an example, discussed
in more details in Section 4.3, the lower-dimensional estimation is equipped
with measures of uncertainty including p-values, except for the issue that Ŝ
is random. To make proper use of these uncertainty measures, the issue of
randomness of Ŝ can be addressed using (repeated) sampling splitting where
the first half of the data is used for screening the relevant variables, and p-
values can then be inferred using classical low-dimensional methods based
on the second half which is independent from the first half (Meinshausen
et al., 2009), see also Section 4. The success of such a strategy hinges on
the variable screening property in (3).

Various theoretical results are known which ensure the variable screen-
ing property in (3), see also Section 2.3. While they are certainly useful
to describe a method’s ability, these results are not revealing more fine de-
tails whether a method works well or better than a competitor for a given
finite-sample data set. We complement here the available mathematical re-
sults by a an empirical analysis comparing five popular methods for variable
selection or screening in a linear model. We measure performance on sev-
eral semi-real data where the design matrix X is from real high-dimensional
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datasets and the regression and noise vectors are synthetic (so that we can
validate the methods by knowing the true active set S0). We believe that
such an empirical comparison is closest to real data, and our results should
provide an unbiased evaluation of methods and shed light about usefulness
and absolute and comparative performance of variable screening for high-
dimensional real data analysis. Although our study is for linear models only,
we believe that the empirical results also indicate how such methods would
work for high-dimensional generalized linear models.

2 A brief review of high-dimensional inference

We briefly review in this section some of the main issues for high-dimensional
statistical inference. For simplicity, we focus on linear models as in (1) while
extensions to generalized linear and other models are “roughly” following the
same conceptual ideas and facts.

Consider first prediction of the response Y by Ŷ (x) = xT β̂: the mean
squared prediction error, averaged over the observed deterministic Xi’s is

E[n−1
n∑
i=1

(Ŷ (Xi)− Yi)2] = σ2 + n−1
n∑
i=1

E[(XT
i (β̂ − β0))2]

= σ2 + E[n−1‖X(β̂ − β0)‖22] = σ2 + E[(β̂ − β0)T Σ̂(β̂ − β0)],

where Σ̂ = n−1XTX. For prediction, we only need good performance of
Xβ̂ −Xβ0, averaged over all components: and this is often relatively easy
to achieve as we do not necessarily need some assumptions on the design
matrix X.

In contrast, estimation of the parameter vector β0 and hence also esti-
mation of the active set S0 require identifiability assumptions on the design
matrix X. This is related to the basic fact that for fixed design X with
rank(X) < p:

Xβ = X(β + ξ)

for all β ∈ Rp any ξ in the null-space of X, and the null-space is non-empty
due to non-full rank of X which is necessarily true if p > n.

2.1 The Lasso

Consider the Lasso (Tibshirani, 1996) as a prime example to discuss some
potential and limitations what can be achieved.

The parameter vector β0 in model (1) is estimated using a regularization
with the `1-norm penalty:

β̂Lasso(λ) = argminβ
(
‖Y −Xβ‖22/n+ λ‖β‖1

)
, (4)
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where λ ≥ 0 is a regularization parameter. The Lasso, described in Section is
consistent for prediction without any conditions on the (fixed) design X but
assuming sparsity of β0 with respect to the `1-norm: with high probability,

‖X(β̂Lasso(λ)− β0)‖22/n ≤
3

2
λ‖β0‖1,

λ � σ
√

log(p)

n
, (5)

see Bühlmann and van de Geer (2011, Cor.6.1). Thereby, we assume Gaus-
sian errors but such an assumption can be relaxed (Bühlmann and van de
Geer, 2011, formula (6.5)). A version of this result has been first derived
by Greenshtein and Ritov (2004). The convergence rate in (5) is at best
OP (σ

√
log(p)/n).

Such a slow rate of convergence can be improved under additional as-
sumptions on the design matrix X. The ill-posedness of the design matrix
can be quantified using the concept of “restricted” eigenvalues, see Section
2.4. Assuming that the smallest “restricted” eigenvalue is larger than zero,
one can derive an oracle inequality of the following prototype: with high
probability:

‖X(β̂Lasso(λ)− β0)‖22/n+ λ‖β̂Lasso − β0‖1 ≤ 4λ2s0/φ
2
X, (6)

where φX is the compatibility constant (smallest “restricted” eigenvalue)
of the fixed design matrix X (Bühlmann and van de Geer, 2011, Cor.6.2).
Again, this holds by assuming Gaussian errors but the result can be ex-
tended to non-Gaussian distributions. From (6), we have two immediate
implications:

‖X(β̂Lasso(λ)− β0)‖22/n = OP (σ2s0 log(p)/(nφ2X)), (7)

‖β̂Lasso(λ)− β0‖1 = OP (σs0
√

log(p)/n/φ2X), (8)

i.e., a fast convergence rate for prediction as in (7) and an `1-norm bound
for the estimation error. We note that the oracle convergence rate, where
an oracle would know the active set S0, is OP (σ2s0/n): the log(p)-factor is
the price to pay by not knowing the active set S0. An `2-norm bound can
be derived as well:

‖β̂Lasso(λ)− β0‖2 = OP (σ
√
s0 log(p)/n/κ2X) (9)

assuming a slightly stronger restricted eigenvalue condition with correspond-
ing value κ2X, see Section 2.4. Results along these lines have been established
by Bunea et al. (2007), van de Geer (2008) who covers generalized linear
models as well, Zhang and Huang (2008), Meinshausen and Yu (2009), and
Bickel et al. (2009) among others.
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2.2 Other methods

We will consider in our empirical study in Section 3 other methods, namely
the Elastic Net (Zou and Hastie, 2005), Ridge regression and Sure Indepen-
dence Screening (SIS) (Fan and Lv, 2008). A description of these estimators
is given in Section 3.1.

An oracle inequality as in (6), of analogous form, has been derived for
the Elastic Net by Hebiri and van de Geer (2011). From their analysis, one
cannot easily draw a general conclusion under what circumstances Elastic
Net is better or worse than the Lasso. For Sure Independence Screening
(SIS), a crucial condition to ensure the screening property, see (12), is a beta-
min condition and an assumption saying that minj∈S0 |Cov(Y,X(j))|/|β0j | is
larger than a constant (Fan and Lv, 2008, Cond.3). The latter says that the
signal is in the marginal correlation between the variables and the response, a
condition which is in line with the marginal nature of the method. Recently,
Genovese et al. (2012) provided further theoretical and empirical results
for SIS. For Ridge regression, recent results in high-dimensional inference
for prediction and variable selection after thresholding are given in Shao
and Deng (2012), and for assigning statistical significance for regression
coefficients (and hence variable selection) in Bühlmann (2012).

Of course, there are many other methods for variable selection and
screening in high-dimensional setting, including the adaptive Lasso (Zou,
2006), penalization with SCAD (Fan and Li, 2001) or the Dantzig selector
(Candès and Tao, 2007).

2.3 Variable screening

Consider here an estimator which is sparse in the sense that some of the
components are exactly zero, i.e., β̂j = 0 for some j. A prime example is the
Lasso, and other examples include the Elastic Net (see Section 3.1) or any
estimator combined with hard-thresholding where some of the components
are thresholded to zero. A simple estimator of the active set S0 is Ŝ =
{j; β̂j 6= 0}.

Any estimator which has a reasonable accuracy in terms of

‖β̂ − β0‖q (1 ≤ q ≤ ∞)

implies a variable screening property as in (12). Clearly,

‖β̂ − β0‖q ≥ ‖β̂ − β0‖∞ (1 ≤ q <∞). (10)

We only have a chance to correctly infer the active set S0 if the corresponding
regression coefficients are sufficiently large. We make a “beta-min” assump-
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tion of the following type:

min
j∈S0

|β0j | > a(n, p, s0,X, σ). (11)

The value of a(n, p, s0,X, σ) is chosen as a(n, p, s0,X, σ) = ‖β̂ − β0‖∞ for
the estimator under consideration. We then have the following trivial im-
plication.

Proposition 1. Consider an estimator β̂ with ‖β̂−β0‖∞ ≤ a(n, p, s0,X, σ)
on an event T , and assume that (11) holds. Then, on T ,

Ŝ ⊇ S0. (12)

Proof: Suppose that there is a j ∈ S0 with j /∈ Ŝ. Then |β̂j − β0j | =

|β0j | > a(n, p, s0,X, σ), using the beta-min assumption. On the other hand

|β̂j − β0j | ≤ ‖β̂ − β0‖∞ ≤ a(n, p, s0,X, σ) which leads to a contradiction. 2

Typically, the event τ has large probability (by choosing a(n, p, s0,X, σ)
appropriately), see the example below. The beta-min assumption is un-
avoidable: variables in S0 with corresponding β0j being too small in absolute
value cannot be detected.

Example: Lasso. For the Lasso, when choosing the regularization param-
eter λ � σ

√
log(p)/n, with either choice of

a(n, p, s0,X, σ) = Cσmin(s0
√

log(p)/n/φ2X,
√
s0 log(p)/n/κ2X), (13)

where C = C(λ) > 0 is sufficiently large, leads to the fact that the event τ
in Proposition 1 has large probability. This follows by invoking either the
`1 or `2-norm result in (8) or(9), respectively, and using the norm property
in (10). It is a-priori not clear which of the two terms in (13) leads to
the minimum because φ2X ≥ κ2X (van de Geer and Bühlmann, 2009), and
hence, there is a trade-off between sparsity and ill-posedness of the design.
Applying Proposition 1 with the beta-min condition in (13) then yields:
with high probability,

ŜLasso(λ) ⊇ S0,

where λ is as above.

Exact recovery of the active set S0 typically requires more restrictive
assumptions. For the Lasso, when making in addition to a beta-min condi-
tion (with a(n, p, s0,X, σ) ≥ Cσ

√
s0 log(p)/n) a restrictive assumption on
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the design X (called neighborhood stability or assuming the equivalent ir-
representable condition), we have when choosing a suitable regularization
parameter λ�

√
log(p)/n: with high probability,

ŜLasso(λ) = S0,

see Meinshausen and Bühlmann (2006), Zhao and Yu (2006), and Wain-
wright (2009) establishes exact scaling results. The “beta-min” assump-
tion in (11) as well as the irrepresentable condition are essentially necessary
(Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006) for exact recovery
of S0 with the Lasso. In view of this restrictive design condition, variable
selection might be a too ambitious goal with the Lasso. That is why the
original translation of Lasso (Least Absolute Shrinkage and Selection Oper-
ator) may be better re-translated as Least Absolute Shrinkage and Screening
Operator. We refer to Bühlmann and van de Geer (2011) for an extensive
treatment of the properties of the Lasso.

2.4 Conditions on the design

The ill-posedness of the design matrix can be quantified using the concept of
“restricted” eigenvalues. Consider the matrix Σ̂ = n−1XTX. The smallest
eigenvalue of Σ̂ is

λmin(Σ̂) = min
β
βT Σ̂β.

Of course, λmin(Σ̂) equals zero if p > n. Instead of taking the minimum on
the right-hand-side over all p × 1 vectors β, we replace it by a constrained
minimum, typically over a cone. This leads to the concept of restricted
eigenvalues (Bickel et al., 2009; Koltchinskii, 2009a,b; Raskutti et al., 2010)
or weaker forms such as the compatibility constants (van de Geer, 2007) or
further slight weakening of the latter (Sun and Zhang, 2011).

We give here the definition of the compatibility constant φ2X and of the
restricted eigenvalue κ2X. We use the following notation: for a subset S ⊆
{1, . . . , p}, denote by βS the p×1 vector with (βS)j = βjI(j ∈ S)+0I(j /∈ S).
Regarding the compatibility constant:

φ2X = max{φ2 ≥ 0;

‖βS0‖21 ≤
(
βT Σ̂β

)
s0/φ

2 for all β such that ‖βSc
0
‖1 ≤ 3‖βS0‖1}.

If φ2X > 0, we say that the compatibility condition holds. The restricted
eigenvalue is defined by replacing ‖βS0‖1 by the larger quantity ‖βS0‖1 ≤
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‖βS0‖2s0 and requiring the restriction for all ‖βSc‖1 ≤ 3‖βS‖1 for all sets
S ⊂ {1, . . . , p} with |S| ≤ s0. We then get to the following:

κ2X = max{κ2 ≥ 0;

‖βS0‖22 ≤
(
βT Σ̂β

)
/κ2 for all β such that ‖βSc‖1 ≤ 3‖βS‖1

and for all S with |S| ≤ s0}.

By definition, φ2X ≥ κX, and if κ2X > 0, we say that the restricted eigen-
value condition holds. Relations among the different conditions and “re-
stricted” eigenvalues are discussed in van de Geer and Bühlmann (2009)
and Bühlmann and van de Geer (2011, Ch.6.13).

3 An empirical analysis for variable screening

We consider five different methods where each of them yields an estimated
set of active variables Ŝ ⊆ {1, . . . , p}. We assess in Section 3.2 the true
positive (TPR) and false positive rate (FPR) of such Ŝ in terms of full and
partial ROC curves. This will enable us to draw some conclusions about
variable selection and variable screening performance of the methods.

3.1 Description of the methods

One method is the Lasso, defined in (4), yielding the parameter estimator
β̂Lasso(λ). We denote by

ŜLasso = ŜLasso(λ) = {j; β̂Lasso,j(λ) 6= 0, j = 1, . . . , p}

the estimated active set of relevant variables when using the Lasso. We
study empirically in Section 3.2 the true positive and false positive rate of
ŜLasso(λ) as a function of λ.

When two or more covariables are strongly correlated, the Lasso typically
selects one and not all of them. Although we often aim for sparsity, this is a
problem in terms of interpretation since we might miss a true variable from
S0 and select instead a false variable from Sc0 which is highly correlated with
the true one. This is the motivation for the Elastic Net (Zou and Hastie,
2005). It uses uses a combination of `1- and `2-norm penalties:

β̂naiveEN(λ1, λ2) = argminβ
(
‖Y −Xβ‖22/n+ λ1‖β‖1 + λ2‖β‖22

)
.

The Elastic Net estimator is then given by a rescaling of the naive Elastic
Net:

β̂EN(λ1, λ2) = (1 + λ2)β̂naiveEN(λ1, λ2).
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We consider two versions of the Elastic Net, which we call “light” Elastic
Net (short LENet) and “heavy elastic net” (short HENet). In the R-package
glmnet implemented by Friedman et al. (2010) the Elastic Net estimator is
given by

β̂ = argminβ

{
‖Y −Xβ‖

2n
+ λ

(
(1− α)‖β‖22

2
+ α‖β‖1

)}
.

We note that for variable selection, there is no need for rescaling (if the
regularization parameters are varied over a large range; a cross-validation
choice of these parameters would depend on whether rescaling is done or
not). The parameter 0 ≤ α ≤ 1 is a weight between the `1- and the `2-
penalties, with α = 1 being the Lasso estimator and α = 0 being the Ridge
regression estimator. The methods we apply in this paper are given by α = 1
(Lasso), α = 0.6 (LENet) and α = 0.3 (HENet). The estimated active sets
are given by

ŜEN(λ) = {j; β̂EN,j(λ) 6= 0, j = 1, . . . , p},

where β̂EN(λ) is the corresponding estimator from LENet or HENet, respec-
tively. The true positive and false positive rates of ŜEN(λ) are empirically
analyzed in Section 3.2 for varying parameter λ.

As briefly mentioned above, the Ridge regression estimator is using a
quadratic `2-norm penalty:

β̂Ridge(λ) = argminβ
(
‖Y −Xβ‖22/n+ λ‖β‖22

)
.

Ridge regression does not perform variable selection in the sense that es-
timated components are nonzero. Nevertheless, we can easily do variable
selection by thresholding, namely choosing the m variables with biggest ab-
solute value of the corresponding regression estimate and setting all others
zero. The value m is then a tuning parameter of the method while we pro-
pose to choose λ fixed, equal to the smallest nonzero eigenvalue of XTX/n
which seems to give reasonable empirical performance. We call this method
“Minimal (non-zero) Eigenvalue Ridge estimator”, shortly MER. In sum-
mary, we order

|β̂Ridge,(1)(λ
∗)| ≥ |β̂Ridge,(2)(λ

∗)| ≥ . . . ≥ |β̂Ridge,(p)(λ
∗)|,

where λ∗ is the smallest non-zero eigenvalue of XTX/n. Then,

ŜMER(m) = {j; |β̂Ridge,j(λ
∗)| ≥ |β̂Ridge,(m)(λ

∗)|}.

The true and false positive rates of MER are given in Section 3.2 when
varying the parameter m.
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Finally, we consider the Sure Independence Screening method (shortly
SIS) proposed by Fan and Lv (2008). It selects the m variables which have
largest absolute correlation with the response Y . We order

|ρ̂(1)| ≥ |ρ̂(2)| ≥ . . . ≥ |ρ̂(p)|,

where ρ̂j denotes the sample (marginal) correlation between Y and X(j).
Then,

ŜSIS(m) = {j; |ρ̂j | ≥ |ρ̂(m)|}.

As for MER, we consider in Section 3.2 for each m the number of false
positives and false negatives. One evident advantage of SIS is its simplicity
and its fast computational implementation.

We refer to Section 2 for different mathematical properties of some of
the methods. As discussed in Section 2.3, the variable screening property
Ŝ ⊇ S0, which is closest to our performance measure in the empirical study,
is mainly driven by the beta-min condition (11):

min
j∈S0

|β0j | ≥ a(n, p, s0,X),

for some expression a(n, p, s0,X) depending on the quantities in parenthe-
ses. As indicated in Section 2.2, the Lasso and Elastic Net are not easily
comparable in terms of a smaller (weaker) quantity a(n, p, s0,X).

3.2 Empirical results

3.2.1 Datasets and settings

For the comparison of the five methods we consider 8 different semi-real
datasets and 16 different settings (hence a total of 128 scenarios). We ana-
lyze partial ROC curves for each scenario, with each curve being determined
by averaging true positives and false positives over 200 runs. We show 16
plots for one representative semi-real dataset and summarize all other results
in Tables 3 and 4.

The semi-real data are generated as

Y = Xβ0 + ε

where X is a n× p matrix from real data, β0 is a p× 1 synthetic regression
vector and ε ∼ Nn(0, σ2In) is a synthetic noise term. The real data are
standardized such that X has columns with mean zero and variance one. A
list of the datasets used is given in Table 1.

For each dataset, we consider 16 settings by varying four parameters as
illustrated in Table 2. The dimension, or number of variables in the model,
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Dataset n no. variables

Riboflavin 71 4088

Breast 49 7129

Leukemia 72 3571

Colon 62 2000

Prostate 102 6033

Lymphoma 62 4026

SRBCT 63 2308

Brain 42 5597

Table 1: The datasets.

Setting parameter

number p of variables 250 1000

signal to noise ratio (SNR) 2 8

sparsity s0 5 20

correlation among active predictors normal high

Table 2: The setting parameters.

is denoted by p. In each simulation run, p covariables are chosen randomly
from the totality of all covariables in the given dataset. The signal to noise
ratio (SNR) is defined as

SNR =

√
(β0)TXTXβ0

nσ2
.

Furthermore, the sparsity is

s0 = | supp(β0)|

which equals the number of non-zero components of β0, and these non-zero
components are set randomly as β0j = 1 or β0j = −1 for j ∈ supp(β0). Fi-

nally, the active variables (the non-zero components of β0) are either defined
according to a “normal” or “high correlation” scenario. For “normal”, the
active variables are chosen randomly among the p covariables, while when
it is set as “high”, one predictor is chosen randomly and then the s0 − 1
variables with the highest absolute correlation to the first one are chosen as
active predictors.

3.2.2 Qualitative results

For a description of the qualitative results we use the 16 graphs correspond-
ing to all settings of the representative Leukemia dataset (see Figures 1, 2,
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3 and 4). The choice of the dataset is not really relevant since all of them
exhibit similar results (which will be confirmed by the quantitative results
in Section 3.2.3).
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Figure 1: Partial ROC-curves for Leukemia dataset with p = 250,SNR = 2:
Lasso (violet), LENet (red), HENet (orange), MER (green) and SIS (cyan).
The oblique black lines represent the points in the TPR to FPR graphs
where 0.5n (left line) and 0.9n (right line) variables are selected.
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Figure 2: Partial ROC-curves for Leukemia dataset with p = 250,SNR = 8:
Lasso (violet), LENet (red), HENet (orange), MER (green) and SIS (cyan).
The oblique black lines represent the points in the TPR to FPR graphs
where 0.5n (left line) and 0.9n (right line) variables are selected.
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Figure 3: Partial ROC-curves for Leukemia dataset with p = 1000,SNR = 2:
Lasso (violet), LENet (red), HENet (orange), MER (green) and SIS (cyan).
The oblique black lines represent the points in the TPR to FPR graphs
where 0.5n (left line) and 0.9n (right line) variables are selected.
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Figure 4: Partial ROC-curves for Leukemia dataset with p = 1000,SNR = 8:
Lasso (violet), LENet (red), HENet (orange), MER (green) and SIS (cyan).
The oblique black lines represent the points in the TPR to FPR graphs
where 0.5n (left line) and 0.9n (right line) variables are selected.
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We note that each method has at least one setting where it performs
best. Thus, there is no overall best method.

The Lasso benefits from sparsity s0 being small and has in all settings
with s0 = 5 the best performance among the 5 methods. It is also remarkable
that in all settings where all true positive variables are selected within false
positive ratio (FPR) of 0.1 for p = 250 or 0.025 for p = 1000, respectively,
the Lasso is the method reaching selection of all true positives first. In short,
the Lasso performs best for “easy” settings. There are scenarios where the
Lasso has the worst performance, although often the difference to the other
methods is then rather small.

The LENet shows, as one could expect, results close to the Lasso. It
benefits less than the Lasso from sparsity s0 being small but is less harmed
from s0 being large. In general, the LENet seems to be able to reach a larger
true positive ratio (TPR) than the Lasso only for FPR bigger than 0.2 for
p = 250 and 0.05 for p = 1000, respectively.

These characteristics of the LENet are confirmed by the performance
of the HENet where the same features present themselves in a more evi-
dent way. Inspired by Zou and Hastie (2005), we expected the LENet and
HENet to benefit from the high correlation among the active predictor. We
find evidence of this in our plots for sparsity s0 = 20: for example in the
p = 1000, s0 = 20 settings, under high correlation among the active vari-
ables the LENet and HENet dominate the Lasso while under normal correla-
tion among the active variables, the Lasso performs better than LENet and
HENet in the low FPR range. For small sparsity, the change from normal
to high correlation has no particular qualitative effect on the performance
of LENet and HENet.

The best settings for the MER are those with sparsity s0 = 20 and large
SNR = 8: there the MER has the best performance in the low FPR range,
with the difference to the other methods being considerable, in particular
for p = 250. In general it can be seen that the MER performs very well
in the low FPR range, however for s0 = 5 the FPR range where the MER
is best is very small. When one is looking for variable screening and ready
to accept high FPR, then it is not advisable to use the MER. The MER
performs slightly worse when the correlation among the active predictors is
taken from normal to high.

The SIS is the simplest and computationally fastest method. Although it
benefits from high correlation among the active predictors, and even domi-
nates in the settings with p = 1000, s0 = 20 and high correlation, it performs
poorly in almost all other cases compared to the other methods.
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3.2.3 Quantitative results

In order to make a quantitative comparison of the five methods, we trans-
late the graphical information of the plots into numerical results. First, we
consider the oblique black lines in the plots: they represent the points in
the TPR to FPR graphs where exactly 0.5n (line left) and 0.9n (line right)
variables are selected, respectively. These seem to be reasonable boundaries
as one usually does not want to have too many variables selected. We then
consider the area of the surface enclosed by the x–axis, the curve of the
given method and its 0.5n (0.9n, respectively) boundary; we call this the
0.5–area (0.9–area, respectively) of the method. Consider moreover the area
of the surface enclosed by the x–axis, the line TPR = 1 and the 0.5n (0.9n,
respectively) boundary; we call this the 0.5–maximal-area (0.9–maximal-
area,, respectively). Finally, the 0.5–performance is defined as the ratio of
the 0.5–area of the method over the 0.5–maximal-area. The 0.9–performance
is defined analogously.

The 0.5– and 0.9–performances of the methods, averaged over the 8
datasets for each setting are reported in Table 3, while in Table 4 the 0.5–
and 0.9–performances of the methods, averaged over the 16 settings for each
dataset are considered. The best and second best methods are marked in
dark-gray and light-gray.

Inspecting the 0.5– and 0.9–performances, it is possible to quantify how
much the LENet and the HENet benefit from the high correlation among
the active predictors. Averaging over the settings with normal or high cor-
relation among the active predictors, we can see that the 0.5–performance
of the Lasso lowers a bit, namely from 54.8% to 52.6% when the correlation
gets high, while the one from the LENet improves from 51.6% to 54.3% and
the one from the HENet improves even more from 45.8% to 54.8%. Similar
results can be found for the 0.9–performance.

With the averaged performances over the 8 datasets for each setting we
refine the qualitative results as follows. The Lasso has the largest number
of settings where the 0.5– and 0.9–performances are best (in both cases six).
Moreover in all settings where a high performance is reached (80% or more)
the Lasso exhibits the highest performance. The MER has in five settings
the best 0.5– and the best 0.9–performance, i.e., the second largest number
of best performances (while the Lasso is best). All of the best performances
of the MER are given by settings with sparsity s0 = 20. Moreover the MER
does well in the s0 = 5,SNR = 8, normal correlation settings, where it
has the second best 0.5–performance (after the Lasso) and even reaches a
0.5–performance of 90% for p = 250. The performance of the MER lowers
when the correlation among the active predictors is increased. The SIS is
the method which benefits most from high correlation among the active
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Table 3: 0.5– and 0.9–performances of the methods, averaged over the 8
datasets for each setting. The best and second best methods are marked in
dark-gray and light-gray.
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Table 4: 0.5– and 0.9–performances of the methods, averaged over the 16
settings for each dataset. The best and second best methods are marked in
dark-gray and light-gray.

predictors. In four of these setting it has the best 0.5– and the best 0.9–
performance. However the SIS has difficulties reaching high performances
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of 70% or above and in the majority of the settings has the worst 0.5– and
the worst 0.9–performance.

Regarding analysis of the averaged performances over the 16 settings
for each dataset, the first remarkable result is that the performances of
Lasso, LENet, HENet and MER are very close: the maximal 0.5– or 0.9–
performance gap between these four methods is 5% for the colon dataset
and 2.4% for the breast dataset. The Lasso has the best 0.5–performance
in six of the eight datasets, the best 0.9–performance in four datasets and
the best overall 0.5–performance. The LENet and HENet perform better in
the range of high FPR and this is confirmed in particular by the fact that
the LENet has the best overall 0.9–performance. The LENet has in each
dataset better performances than the HENet. The MER has the best 0.5–
performance for the colon dataset and its overall performance is close to the
one of Lasso and LENet. Furthermore, in comparison to other methods, the
MER performs better in the range of low FPR. Finally, the SIS has lower
performance in each dataset.

3.3 Conclusions of the empirical analysis

We have studied the screening property of five methods over 128 sparse
scenarios based on semi-real high-dimensional data settings. The difference
of the performances among the four best methods (Lasso, LENet, MER and
HENet) is small with the Lasso being slightly preferable; SIS is generally
found to be worse. We should emphasize that our analysis and findings are
exclusively for (various) sparse settings with many regression coefficients
being exactly equal to zero.

4 Failure of variable screening

In view of the empirical results from Section 3.2, it seems not so unlikely
that for a real application, the variable screening (and even more so exact
selection of S0) do not hold in good approximation. Assuming that the data
is from the model (1) with Gaussian errors, the cause for failure is that
‖β̂ − β0‖∞ is larger than what we hope it is for the bound in (11).

For example with the Lasso, we use the bound in (13):

‖β̂Lasso(λ)− β0‖∞ ≤ Cσmin(s0
√

log(p)/n/φ2X,
√
s0 log(p)/n/κ2X)

for some C = C(λ) > 0. The right-hand side can be large if the design is very
ill-posed with very small values of φ2X ≥ κ2X, and the constant C = C(λ)
is also substantial, depending on the choice of λ (C(λ) is increasing with
λ, and a small λ does not guarantee a large probability for the event T
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on which the inequality above holds); in our empirical study, the true s0
was chosen as rather small. Of course, the Lasso would perform well when
enforcing (11) with (13) in a simulation model: the issue is, that this results
in a large signal to noise ratio which is typically believed to be unrealistic
in an application.

On the positive side, we can immediately adapt Proposition 1 to the
situation where we have substantial active variables from a set S0,subst(a) =
{j; |β0j | > a} with a “large” and other active variables in S0 \ S0,subst(a) =

{j; 0 < |β0j | ≤ a}. Using the same proof as for Proposition 1 we ob-
tain: on an event T (whose probability is typically large) we have: for
a = a(n, p, s0,X, σ) = ‖β̂ − β0‖∞:

Ŝ ⊇ S0,subst(a). (14)

This means in practice, that even when a = ‖β̂ − β0‖∞ is large, we will
at least detect the substantial variables (if they exist, i.e., S0,subst(a) 6= ∅),
while many other active variables in S0 \ S0,subst(a) will not be consistently
selected. As long as one simply tries to screen for substantial variables as
in (14), no further complications arise. Often though, one continues with
a subsequent analysis using only the variables from Ŝ: when the variable
screening property as in (12) fails to hold, we face a bias problem as discussed
next.

4.1 Sample splitting and analysis of bias

Consider the case where we pursue ordinary least squares estimation with
the variables from Ŝ in a subsequent analysis. To have a valid inference in
the second stage, say in terms of p-values or confidence intervals, we need
to address the post-model selection bias. One plausible solution is based on
sample splitting (Wasserman and Roeder, 2009) or repeated sample splitting
(Meinshausen et al., 2009).

Consider the former, where we use one half of the sample I1 ⊂ {1, . . . , n}
with |I1| = bn/2c to estimate Ŝ = Ŝ(I1), and then the other half I2 =
{1, . . . , n}\I1 for the subsequent ordinary least squares estimation β̂OLS,Ŝ(I2)

based on the variables from Ŝ. In the following, Ŝ = Ŝ(I1) is always depend-

ing on I1 only. We introduce the following notation: X
(S)
I is the |I| × |S|

design sub-matrix of X with rows corresponding to I ⊆ {1, . . . , n} and
columns corresponding to S ⊆ {1, . . . , p}. We assume in the sequel that

rank((X
(Ŝ)
I2

)TX
(Ŝ)
I2

) = |Ŝ| ≤ |I2| = n− bn/2c. (15)

The condition (15) holds if the minimal eigenvalues of all s× s sub-matrices
of XT

I2
XI2 are positive definite, for all s ≤ n − bn/2c; the condition that
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|Ŝ| ≤ |I2| = n− bn/2c is fulfilled for many estimators Ŝ, including e.g. the
Lasso, or it can be enforced by using it in the definition of an estimator Ŝ.

For a linear model in (1) with fixed design, assuming (15), the bias of
β̂OLS,Ŝ(I2) can be immediately calculated: for the components in Ŝ we have,

EI2 [β̂OLS,Ŝ(I2)] = β0
Ŝ

+
(
(X

(Ŝ)
I2

)TX
(Ŝ)
I2

)−1
(X

(Ŝ)
I2

)TX
(Ŝc)
I2

β0
Ŝc . (16)

The expectation is only taken over the sample I2 used for the second-stage
analysis. Clearly, if Ŝ ⊇ S0, then β0

Ŝc
= 0 and we have an unbiased estimator

for the variables in Ŝ; but we want to analyze here the situation where the
screening property fails to hold. Unbiasedness would also be true when
all variables from Ŝ would be pairwise orthogonal to all variables from Ŝc,
which is a rather unrealistic scenario. In general, the bias can be quantified
as follows.

Proposition 2. Consider model (1) with fixed design and an estimator
β̂ with ‖β̂(I1) − β0‖∞ ≤ a(bn/2c, p, s0,XI1 , σ) on an event T (where the
probability of T , with respect to I1 is large). Here, I1 and I2 are split samples
with |I1| = bn/2c, |I2| = n − bn/2c, and β̂(I1) with its corresponding Ŝ =
Ŝ(I1) depends on I1 only. Assume that (15) holds. Then, on T :

max
j∈Ŝ
|EI2 [β̂OLS,Ŝ(I1);j

(I2)]− β0j |

≤ max
j∈Ŝ(I1)

∑
k∈Ŝc∩C;|C|≤s0−s0,subst

|Ajk|a(bn/2c, p, s0,XI1 , σ),

A =
(
(X

(Ŝ)
I2

)TX
(Ŝ)
I2

)−1
(X

(Ŝ)
I2

)TX
(Ŝc)
I2

,

s0,subst = |{j; |β0j | > a(bn/2c, p, s0,XI1 , σ)}|.

A proof is given in Section 6. We discuss now the bound of the bias.
Proposition 2 implies the following: on T ,

max
j∈Ŝ
|EI2 [β̂OLS,Ŝ(I1);j

(I2)]− β0j |

≤ max
j,k
|Ajk|(s0 − s0,subst)a(bn/2c, p, s0,XI1 , σ). (17)

Assuming, for all j = 1, . . . , p:

(|I2|−1XT
I2XI2)jj ≤ C <∞, (18)

we have maxj,k |Ajk| ≤ C2|Ŝ(I1)|.

Example: Lasso. For the Lasso, with regularization parameter λ �
σ
√

log(p)/n, assuming the restricted eigenvalue condition (see Section 2.4),
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we can invoke the bound in (9) leading to the value a(n, p, s0,X, σ) �
σ
√
s0 log(p)/n/κ2X. Assuming that (18) holds, which implies maxj,k |Ajk| ≤

C2|Ŝ(I1)|, and a more restrictive sparse eigenvalue condition (instead of the
restricted eigenvalue condition) on the design X, we have that |Ŝ(I1)| ≤ Ds0
for some constant 0 < D <∞ (Zhang and Huang, 2008; van de Geer et al.,
2011). Thus, maxj,k |Ajk| ≤ C2Ds0 and using (17), the bias can be bounded
by: with high probability (with respect to I1),

max
j∈ŜLasso(I1)

|EI2 [β̂OLS,ŜLasso;j
(I2)]− β0j |

≤ O(σs0(s0 − s0,subst)
√
s0 log(p)/bn/2c/κ2XI1

). (19)

Here, s0,subst = |{j; |β0j | > a(n, p, s0,X, σ) with a(n, p, s0,X, σ) � σ×√
s0 log(p)/n/κ2X.

The upper bound from Proposition 2, or from (17), or also the one in (19)
for the Lasso may be too crude. But the bias can be easily (with positive
probability) of the order n−1/2, already for low-dimensional settings. To see
this, consider p = 2 covariables where |β01 | is large and β02 = C/

√
n, and thus

S0 = {1, 2}. Clearly, for C > 0 sufficiently small, P[2 /∈ Ŝ(I1)] ≥ 1 − δ for

some 0 < δ < 1. Assuming scaled variables with ‖X(1)
I2
‖22/n = ‖X(2)

I2
‖22/n =

1, the bias is (see (16)):

EI2 [β̂OLS,1(I2)] = β01 + |I2|−1(X(1)
I2

)TX
(2)
I2
Cn−1/2.

Thus, with probability at least 1 − δ (w.r.t. I1), the bias is ρ̂1,2Cn
−1/2,

where ρ̂1,2 is the inner product, based on I2, between the first and the
second covariable.

Having a bias of at least the order n−1/2 is too large when it comes to
construction of p-values or confidence intervals based on β̂OLS,Ŝ(I2). Assum-
ing Gaussian errors in the model (1), we have for the normalized version:(

(X
(Ŝ)
I2

)T (X
(Ŝ)
I2

)
)−1/2

β̂OLS,Ŝ(I2) ∼ N|Ŝ|(β
0
Ŝ

+B, σ2I),

B =
(
(X

(Ŝ)
I2

)T (X
(Ŝ)
I2

)
)−1/2

(EI2 [β̂OLS,Ŝ(I2)]− β0Ŝ). (20)

With the argument above, the bias B can be of the order |I2|1/2n−1/2 � 1
which does not converge to zero. We can ensure a negligible bias by making
additional “zonal” assumptions about the non-zero coefficients of β0, as
discussed next.
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4.2 Zonal assumptions for regression coefficients

We consider the scenario where S0 is structured into two zones as follows:

S0 = S0,subst(a) ∪ S0,small(u),

S0,subst(a) = {j; |β0j | > a}, S0,small(u) = {j; 0 < |β0j | ≤ u}, (21)

where 0 < u < a, and we will exclusively focus on the value a = a(n, p, s0,
X, σ) = ‖β̂ − β0‖∞ for an estimator β̂ under consideration. We can then
improve the bias bound in Proposition 2.

Proposition 3. Consider model (1) with fixed design and an estimator
β̂ with ‖β̂(I1) − β0‖∞ ≤ a(bn/2c, p, s0,XI1 , σ) on an event T (where the
probability of T , with respect to I1, is large). Assume that (21) holds for
a = a(bn/2c, p, s0,XI1 , σ), and suppose that (15) is true. Then, on T :

max
j∈Ŝ(I1)

|EI2 [β̂OLS,Ŝ;j(I2)]− β
0
j | ≤ max

j

∑
k∈Ŝc∩C;|C|≤s0;small

|Ajk|u,

where A is as in Proposition 2 and s0,small(u) = |S0,small(u)|.

Proof: We follow exactly the proof of Proposition 2, invoking that

|β0k| ≤ u for k ∈ Ŝc = Ŝc(I1),

instead of (25), and

‖β0
Ŝc‖0 ≤ s0 − s0,subst = s0,small(u),

instead of (26). 2

Example: Lasso. For the Lasso, we can obtain the analogue of (19)
but invoking zonal assumptions (and assuming a sparse eigenvalue con-
dition for the design X, as in the derivation of (19)). Assuming (21)
with a = Cσ

√
log(p)/n for some sufficiently large 0 < C < ∞, a sparse

eigenvalue condition for the design X, and (15) and (18), the Lasso with
λ � σ

√
log(p)/n satisfies: with high probability (with respect to I1),

max
j∈ŜLasso(I1)

|EI2 [β̂OLS,ŜLasso;j
(I2)]− β0j | ≤ O(s0s0,small(u)u) (22)

with u as in (21). Hence, the bias B in (20) is negligible if u satisfies

u = o(s0s0,small(u)n−1/2). (23)

This is an implicit relation since u appears also on the right-hand side via
the term s0,small(u).
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4.3 Revisiting multi sample splitting for p-values in high-
dimensional linear models

P-values in high-dimensional linear models have been proposed using sam-
ple splitting (Wasserman and Roeder, 2009) or with a more reliable multi
(or repeated) sample splitting scheme (Meinshausen et al., 2009). Both
approaches use the distributional property given in (20), and they assume
the screening property that Ŝ ⊇ S0 with probability converging to one (as
sample size n and dimension p = pn � n→∞).

We focus now on the methodology in Meinshausen et al. (2009). There,
among other issues, a Bonferroni-style p-value correction is made with the
factor

|Ŝ(I1)| · Pj (j ∈ Ŝ(I1))

where Pj = Pj(I2) is an ordinary p-value for H0,j : β0j = 0 versus HA,j :

β0j 6= 0 based on the t-test from the second sample using the variables in

Ŝ(I1). When relaxing the screening property and using the zonal assumption
in (21), we need to make sure that the incurred bias is negligible.

Example: Lasso. For the Lasso, we have |Ŝ(I1)| = O(s0) assuming a
sparse eigenvalue condition, and thus, using (22) the bias in |Ŝ(I1)| · Pj
is of the order O(n1/2s20s0,small(u)u). This bias is negligible if u satis-
fies u � n−1/2s−20 s0,small(u)−1; since s0,small(u) ≤ s0, this is fulfilled if
u = o(n−1/2s−30 ). Using this leads to the following: the multi sample split-
ting method of Meinshausen et al. (2009), using the Lasso as estimator Ŝ,
leads to asymptotic strong error control of the familywise error rate in mul-
tiple testing, assuming the conditions stated in Meinshausen et al. (2009),
assuming a sparse eigenvalue condition on the design X and replacing the
screening property by the zonal assumption:

S0,subst = {j; |β0j | > Cσ
√
s0 log(p)/n/κ2X} for C > 0 sufficiently large,

S0,small = {j; 0 < |β0j | ≤ Dn−1/2s−20 s−10,small} for D > 0 sufficiently small.

(Note that the definition for S0,small is implicit since its cardinality s0,small =
|S0,small| appears on the right-hand side). Thus, even if the screening prop-
erty does not hold, the p-value method of Meinshausen et al. (2009) is jus-
tified when making sufficiently strong zonal assumptions as above.

5 Conclusions

We have reviewed some of the aspects of variable selection and variable
screening in high-dimensional linear models. The main novelty of our expo-
sition is an empirical comparison of estimation methods with respect to true
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and false positive selection rates: the methods we consider are Lasso, two
versions of Elastic Net, Ridge estimation (with thresholding coefficients) and
Sure Independence Screening. To make the empirical comparison as fair and
realistic as possible, we consider 128 different scenarios where the covariables
are from real data (eight different datasets) and the response is constructed
using synthetic sparse regression coefficients and Gaussian noise. Overall,
for the sparse settings we considered, the Lasso was found to be slightly
better than the other methods, but the differences between methods seem
rather small, except for SIS which overall is found to be worse. However, SIS’
computational advantage, in particular for huge datasets, may compensate
its somewhat inferior performance.

Our empirical results also indicate that we cannot realistically expect to
have exact recovery of the active variables or the exact screening property
saying that all active variables are selected by the estimator (unless the
estimator selects a much too large set of variables). In view of this, we also
discuss the issue of bias when doing subsequent least squares estimation
using the selected variables only. Our analysis justifies previous approaches
for constructing p-values (Wasserman and Roeder, 2009; Meinshausen et al.,
2009) under weaker “zonal assumptions” which require that the non-zero
regression coefficients are either sufficiently large or sufficiently small.

6 Proof of Proposition 2

We use formula (16): for j ∈ Ŝ we have

|EI2 [β̂OLS,Ŝ;j(I2)]− β
0
j | = |

∑
k∈Ŝc

Ajkβ
0
k|. (24)

Observe that on T :

|β0k| ≤ a(bn/2c, p, s0,XI1 , σ) for k ∈ Ŝc (25)

since the variables corresponding to coefficients with larger value are neces-
sarily in Ŝ. Furthermore, on T ,

‖β0
Ŝc‖0 ≤ s0 − s0,subst (26)

because ‖β0‖0 = s0 and |Ŝ| ≥ s0,subst (since on T , variables with large

coefficients must be in Ŝ). Using (24)-(26) completes the proof. 2
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