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Abstract

We propose a boosting method, multivariate L2Boosting, for multivariate linear
regression based on some squared error loss for multivariate data. It can be applied to
multivariate linear regression with continuous responses, for multi-category classifica-
tion with linear class-probabilities and for vector autoregressive time series. We prove,
for i.i.d. data as well as for time series, that multivariate L2Boosting can consistently
recover sparse high-dimensional multivariate linear functions, even when the number of
predictor variables p = pn and the dimension of the response q = qn grow almost expo-
nentially with sample size n, i.e. pn = qn = O(exp(Cn1−ξ)) (0 < ξ < 1, 0 < C <∞),
but the `1-norm of the true underlying function is finite. Our theory seems to be
among the first to address the issue of large dimension of the response variable; the
relevance of such settings is briefly outlined. We also identify empirically some cases
where our multivariate L2Boosting is better than multiple application of univariate
methods to single response components, thus demonstrating that the multivariate
approach can be very useful.

1 Introduction

Boosting, originally proposed as an ensemble scheme for classification, i.e. AdaBoost
(Freund and Schapire 1996), has attracted a lot of attention both in the machine learning
and statistics literature, mainly because of its success as an excellent prediction method
in numerous examples. The pioneering work by Breiman (1998, 1999) demonstrated that
the AdaBoost ensemble method can be represented as a gradient descent approximation
in function space, see also Friedman, Hastie and Tibshirani (2000). This has opened
new possibilities for better understanding and new versions of boosting. In particular,
such gradient descent methods can be applied to different loss functions, each yielding
another boosting algorithm. L2Boosting which uses the squared error loss (L2-loss) has
been demonstrated to be a powerful method for univariate regression (Friedman 2001,
Bühlmann and Yu 2003, Bühlmann 2004).
We propose here a boosting method with some squared error loss (Gaussian negative log-
likelihood) for multivariate data, called multivariate L2Boosting. We restrict ourselves
to linear models (linear basis expansions). They can be very high-dimensional in terms
of the response or predictor dimension, and we allow for seemingly unrelated regressions
(SUR; Zellner 1962, 1963) where each response may have another design matrix (other
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predictor variables). The SUR model is more general than the multivariate setting where
each covariate has an influence on all response variables. Our multivariate L2Boosting
takes potential correlations among the components of the multivariate error-noise into
consideration: that is, we account for the fact that the responses are still exhibiting
conditional dependence given all the predictor variables. We prove that our boosting
method is able to consistently recover sparse high-dimensional multivariate functions, even
when the number of predictor variables p = pn and the dimension of the response q = qn

grow almost exponentially with sample size n, i.e. pn = qn = O(exp(Cn1−ξ)) (0 < ξ <
1, 0 < C <∞). The mathematical arguments are extending the analysis for boosting for
high-dimensional univariate regression (Bühlmann 2004). Our theory seems to be among
the first for the setting of large dimension of the response (for its practical relevance, see
the paragraph after next).
We also demonstrate the use of our multivariate L2Boosting for multivariate, qn-dimensional
time series {x(t)}t∈{1,...,n}, where qn can grow as fast as any polynomial in the sample size
n. We prove a consistency result for stationary, linear processes which are representable
as a sparse vector autoregressive model of order ∞.
From a theoretical perspective it is interesting how far we can go with dimensionality
when the true underlying structure is sparse. From a practical point of view, there are
many applications nowadays with large predictor dimension p, notably a broad variety of
data mining problems belong to this setting. There are also some applications where q
is very large. We mention multi-category classification with a huge number of categories:
in Kriegel, Kroger, Pryakhin and Schubert (2004), the categories are subsets of functions
from gene ontology (see also Remark 1 in section 4). Another application is briefly outlined
in section 4.1. In the context of time series, some of the graphical modelling for many
stochastic processes fall into our setting of q-dimensional linear time series, e.g the partial
correlation graph (cf. Dahlhaus and Eichler 2003).
Besides presenting some theory, we also identify empirically some cases where our multi-
variate L2Boosting is better than methods based on individual estimation: we compare
with individual univariate L2Boosting and with another L2Boosting method in a multi-
variate regression model where every predictor variable either influences all or none of the
response components. Some real data sets are analyzed as well.

2 Multivariate Linear Regression

We consider the multivariate linear regression model with n observations of a q-dimensional
response and a p-dimensional predictor (for more detailed information, see for example
Seber 1984 or Timm 2002). In matrix notation:

Y = XB + E, (2.1)

with Y ∈ Rn×q, X ∈ Rn×p, B ∈ Rp×q and E ∈ Rn×q. We denote with y(i) the response
of the i-th sample point (row-vector of Y) and with yk the k-th response-variable for all
sample points (column-vector of Y). For each yk (k = 1, . . . , q) we have a univariate regres-
sion model with the predictor matrix X and the coefficient vector bk. For the row-vectors
e(i) (i = 1, . . . , n) of the error matrix, we assume e(i) i.i.d., IE[e(i)] = 0 and Cov(e(i)) = Σ.
The ordinary least squares estimator (OLS) of B is given by (assuming X is of full rank
p)

B̂OLS = (XTX)−1XTY (2.2)
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and is nothing else than the OLS’s of the q univariate regressions. In particular, it is
independent of Σ.
To test whether a covariate has a significant influence on the multivariate response we
can use Wilk’s Λ, which is derived from the likelihood ratio test. For an overall test with
null-hypothesis H0 : B = 0 we compare the empirical covariance matrix of the residuals
to the one from the responses:

Λ =
|(Y −XB̂OLS)T (Y −XB̂OLS)|

|YTY|
,

where | · | denotes the determinant of a matrix. We reject the null hypothesis H0 if Λ is
smaller than a critical value.

2.1 Forward stepwise variable selection

As for univariate regression, we can define a multivariate forward stepwise variable selec-
tion algorithm in a straightforward manner: start with the intercept (or empty) model
and add in each step the most significant covariate according to Wilk’s Λ. Notice that
in each step the entries of a whole row b(j) of B are changed from zero to non-zero by
using OLS on the reduced space of all included covariates. Therefore, this approach is not
suited for the SUR model where a covariate may only have an effect on some but not all
components of the response.

3 L2Boosting for multivariate linear regression

For constructing a boosting algorithm, we define a loss function and a base procedure
(simple fitting method). The latter is usually called “weak learner” in the machine learning
community: it is an estimator which is repeatedly used in boosting.

3.1 The loss function

Regarding the loss-function, we use the negative Gaussian log-likelihood as a starting
point:

−l(B,Σ) = − log((2Π)nq/2|Σ|n/2) +
1
2

n∑
i=1

(yT
(i) − xT

(i)B)Σ−1(yT
(i) − xT

(i)B)T .

As before, | · | denotes the determinant of a matrix. The maximum likelihood estimator
of B coincides with the OLS solution in (2.2) and is therefore independent of Σ. The
covariance matrix Σ becomes only relevant in the seemingly unrelated regressions (SUR)
model when there are covariates which influence only a few components of the response.
Because Σ is usually unknown, we use the following loss function

L(B) =
1
2

n∑
i=1

(yT
(i) − xT

(i)B)Γ−1(yT
(i) − xT

(i)B)T , (3.1)

where Γ−1 is the implementing covariance matrix. We may use for it an estimate of Σ
(e.g. from another model-fit such as univariate boosting for each response separately) or
we can choose something simpler, e.g. Γ−1 = I (in particular if q is large). The choice for
Γ−1 will show up again in our Theorem 1 in section 4 (and Theorem 2 in section 5): there
it becomes clear that also Γ−1 = I can be a very reasonable choice.
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3.2 The componentwise linear least squares base procedure

Now we specify the base procedure which will be repeatedly used in boosting. Given is
the design matrix X and a pseudo-response matrix R ∈ Rn×q (which is not necessarily
equal to Y).
We focus here exclusively on what we call the componentwise linear least squares base
learner. It fits the linear least squares regression with one selected covariate (column of
X) and one selected pseudo-response (column of R) so that the loss function in (3.1),
with R instead of Y, is reduced most. Thus, the base procedure fits one selected matrix
element of B:

(ŝt̂) = arg min
1≤j≤p,1≤k≤q

{L(B);Bjk = β̂jk, Buv = 0 (uv 6= jk)}

= arg max
1≤j≤p,1≤k≤q

(∑q
v=1 rT

v xjΓ−1
vk

)2

xT
j xjΓ−1

kk

,

β̂jk =
∑q

v=1 rT
v xjΓ−1

vk

xT
j xjΓ−1

kk

,

B̂ŝt̂ = β̂ŝt̂, B̂jk = 0, (jk) 6= (ŝt̂). (3.2)

Corresponding to the parameter estimate, there is a function estimate ĝ(·) : Rp → Rq

defined as follows: for x = (x1, . . . , xp),

(ĝ)`(x) =

{
β̂ŝt̂xŝ if ` = t̂,

0 if ` 6= t̂,
` = 1, . . . , q.

From (3.2) we see that the coefficient β̂jk is not only influenced by the k-th response but
also by other response-components, depending on the partial correlations of the errors
(via Γ−1 if Γ is a reasonable estimate of Σ) and by the correlations of the other response-
components with the j-th covariate (i.e. rT

v xj).

3.3 The boosting algorithm

The base learner is fitted many times to different pseudo-responses R and the function
estimates are added up as described by the algorithm below. We build the multivariate
regression function f̂ : Rp → Rq step by step, where f̂(x) = B̂Tx.

Multivariate L2Boosting with componentwise linear least squares

We fit models having an intercept, and the design matrix X excludes a column where each
entry equals the same constant.

Step 1 (initialization): f̂
(0)
k (.) ≡ yk, k = 1, . . . , q. Set m = 1.

Step 2 : Compute the current residuals r(m)
(i) = y(i)− f̂ (m−1)(x(i)) (i = 1, . . . , n) and fit the

base learner to them as in (3.2). The fit is denoted by ĝ(m)(.).
Update f̂ (m)(·) = f̂ (m−1)(·) + ĝ(m)(·).
Step 3 (iteration): Increase the iteration index m by one and go back to Step 2 until a
stopping iteration mstop is met.
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Multivariate L2Boosting is thus iteratively fitting of residuals where in each step we change
only one entry of B. Also, every iteration m corresponds to an estimate B̂(m) with
f̂ (m)(x) = (B̂(m))Tx. The estimate f̂ (mstop)(.) is an estimator of the multivariate regression
function IE[y|x = ·].
It is often better to use some shrinkage in Step 2 : this has been first recognized by
Friedman (2001), and there are also some supporting theoretical arguments for it (Efron,
Hastie, Johnstone and Tibshirani 2004, Bühlmann and Yu 2005). We modify Step 2 to:

f̂ (m)(·) = f̂ (m−1)(·) + ν · ĝ(m)(·),

with ν < 1, for example ν = 0.1. We then need more iterations but often achieve better
out-of-sample predictions. The boosting algorithm does depend on ν, but its choice is
surprisingly insensitive as long as it is taken to be “small”. On the other hand, the
number of boosting iterations mstop is a much more crucial tuning parameter.

3.4 Stopping the boosting iterations with the corrected AIC

The number of iterations mstop can be estimated by cross validation, a separate validation
set or by an internal AIC criterion. We pursue the latter because of its computational
attractiveness.
First we recall the definition of the AIC for the multivariate linear regression model. For
d ≤ p covariates in a sub-model Md

AIC(Md) = log(|Σ̂(Md)|) +
2qd

n
,

where Σ̂(Md) is the MLE of the error covariance-matrix. Note that we have a total of q ·d
parameters. In small samples, the corrected AIC (Hurvich and Tsai 1989 and Bedrick
and Tsai 1994) is often a better model selection tool:

AICc(Md) = log(|Σ̂(Md)|) +
q(n + d)

n− d− q − 1
.

To apply the AIC or the AICc for boosting we have to determine the number of parameters
or degrees of freedom of boosting as a function of the number of iterations. Clearly, the
degrees of freedom of boosting increase as the number of iterations grow, but this increase
is heavily sub-linear (Bühlmann and Yu 2003).
We first consider the hat-operator of the base learner in (3.2), mapping Y to Ŷ = XB̂.
After having selected the j-th predictor and k-th component of the response, the fitting is
a linear operation which can be represented by a hat-matrix. In the multivariate case, we
stack the q responses y1, . . . ,yq end-to-end in a vector of length nq (written as vec(Y)).
The hat-matrix is then of dimension nq × nq and, with the j-th predictor and the k-th
response selected in the base learner, it is of the form

H(jk) =



0 0 . . . 0
...

...
...

0 0 . . . 0

Hj Γ−1
k1

Γ−1
kk

Hj Γ−1
k2

Γ−1
kk

. . . Hj Γ−1
kq

Γ−1
kk

0 0 . . . 0
...

...
...

0 0 . . . 0


←− k-th row,
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where each entry is a n × n matrix and the non-zero matrix-entries are at row k and
Hj = xjxT

j /xT
j xj is the hat-matrix of the univariate componentwise linear learner using

the j-th predictor variable.
Due to the nature of iterative fitting of residuals, the hat-matrix of multivariate L2Boosting
after m iterations is then (c.f. Bühlmann and Yu 2003, Bühlmann 2004)

Km = I− (I− νH(ŝm t̂m))(I− νH(ŝm−1 t̂m−1)) . . . (I− νH(ŝ1 t̂1)).

Here, (ŝmt̂m) denote the selected covariate and response-component from the base learner
in (3.2) in boosting iteration m.
The trace of Km gives the number of degrees of freedom. For the AICc we need the degrees
of freedom (number of equivalent parameters) per response variable: thus, we divide the
total number of degrees of freedom by q to get the average number of degrees of freedom
per response. The AIC and the AICc for multivariate L2Boosting as functions of the
number of iterations m then become:

AIC(m) = log(|Σ̂(m)|) +
2 · trace(Km)

n
,

AICc(m) = log(|Σ̂(m)|) +
q(n + trace(Km)/q)

n− trace(Km)/q − q − 1
,

where Σ̂(m) = n−1 ∑n
i=1(y(i) − f̂ (m)(x(i)))(y(i) − f̂ (m)(x(i)))T . The number of boosting

iterations is chosen to minimize the AIC or AICc, respectively:

m̂stop = arg min
0≤m<M

AICc(m),

where M is a pre-specified large, upper bound for the candidate number of boosting
iterations.

3.5 L2Boosting with whole rows of B

Multivariate L2Boosting changes in each step only one entry of B. This might be subop-
timal if we believe that a covariate has either some influence on all response-components
or no influence at all. It may then be better to update in each step a whole row of B.
This can also be done with a L2Boosting type algorithm, which we call “row-boosting”:
we select in each step the covariate which gives the best multivariate fit to the current
residuals (according to Wilk’s λ) and add it to the multivariate function estimate. This
algorithm is more closely related to multivariate forward variable selection, see section 2.1,
with the difference that we don’t adjust the coefficients of the covariates already included
in the model.

4 Consistency of multivariate L2Boosting

We present here a consistency result for multivariate L2Boosting in linear regression where
the number of predictors and the dimension of the response are allowed to grow very fast
as sample size n increases. Consider the model

y(i) = f(x(i)) + e(i), i = 1, . . . , n, y(i), e(i) ∈ Rqn , x(i) ∈ Rpn ,

f(x) = BTx, B ∈ Rpn×qn , (4.1)
x(i) i.i.d. and e(i) i.i.d., independent of {x(i); 1 ≤ i ≤ n}
with IE[e(i)] = 0 and Cov(e(i)) = Σ.
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Because pn and qn are allowed to grow with n, also the predictors and the responses
depend on n. We ignore this notationally most of the time. To identify the magnitude of
Bjk we assume IE|x(1)j |2 = 1, j = 1, . . . , pn.
We make the following assumptions:

(A1) The dimension of the predictor and the response in model (4.1) satisfies pn =
O(exp(Cn1−ξ)), qn = O(exp(Cn1−ξ)) (n→∞), for some 0 < ξ < 1, 0 < C <∞.

(A2) supn∈N
∑pn

j=1

∑q
k=1 |Bjk,n| <∞.

(A3) For the implementing Γ in 3.1:
supn∈N,1≤k≤qn

∑qn

`=1 |Γ
−1
k`,n| <∞, infn∈N,1≤k≤qn Γ−1

kk,n > 0.

(A4) sup1≤j≤pn
‖x(1)j‖∞ < ∞, where ‖x‖∞ = supω∈Ω |x(ω)| (Ω denotes the underlying

probability space).

(A5) sup1≤k≤qn
IE|e(1)k|s <∞ for some s > 2/ξ with ξ from (A1).

Assumption (A1) allows for very large predictor and response dimensions relative to the
sample size n. Assumption (A2) is a l1-norm sparseness condition for the underlying
multivariate regression function f(·). If qn grows with sample size, it seems quite restrictive.
But we describe a potential application in section 4.1 (second example), where (A2) could
be reasonable even if qn grows. Assumption (A3) is a sparseness condition on Γ−1 which
holds when choosing Γ−1 = I. Assumption (A4) and (A5) are the same as in Bühlmann
(2004); (A4) can be relaxed at the price of a polynomial growth O(nδ) (0 < δ < ∞) in
(A1) and assuming sufficiently high-order moments, cf. section 5.

Theorem 1 Consider the model (4.1) satisfying (A1)-(A5). Then, the multivariate L2Boosting
estimate f̂ (mn) with the componentwise linear learner from (3.2) satisfies: for some se-
quence (mn)n∈N with mn →∞ (n→∞) sufficiently slowly,

IEx

[(
f̂ (mn)(x)− f(x)

)T
Γ−1

(
f̂ (mn)(x)− f(x)

)]
= op(1) (n→∞),

where x denotes a new observation, independent of and with the same distribution as the
x(i), i = 1, . . . , n.

A proof is given in section 9. Theorem 1 says that multivariate L2Boosting recovers the
true sparse regression function even if the dimensions of the predictor and response grow
almost exponentially with sample size n.

Remark 1 We can also use the multivariate L2Boosting for multi-category classification
with q categories labelled by 1, . . . , q. This can be encoded with a multivariate q-dimensional
response y = (y1, . . . , yq), where

yj =

{
1 if the category-label = j,
0 if the category-label 6= j.

Assuming that the data (x(1),y(1)), . . . , (x(n),y(n)) are independent and identically dis-
tributed, the conditional probabilities πj(x) = IP[yj = 1|x] are linear in x and if (A1)-(A4)
hold, then multivariate L2Boosting is consistent: e.g. with Γ = I,

∑q
j=1 IEx[(π̂(mn)

j (x) −
πj(x))2] = oP (1).
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The proof of Remark 1 is a consequence of Theorem 1. Note that for binary classifica-
tion, we typically encode the problem by a univariate response. Multi-category problems
could also be represented with a q − 1-dimensional response. But this would require to
tag a particular label as the complement of all others; we typically want to avoid such
arbitrariness.

4.1 Two potential applications with large response dimension q

One problem is classification (see Remark 1) of biological objects such as genes or proteins
into subsets of various functional categories, e.g. in Gene Ontology (GO) (cf. Kriegel et al.
2004). Because many biological objects belong to many functional categories, the labels
for classification are subsets of functional categories, resulting in a large value of q (and p is
large here as well).
Another application occurs when screening for associations of q candidate random variables
y1, . . . ,yq with a system of p target variables x1, . . . ,xp. This occurs in Wille et al.
(2004) when screening expressions of q ≈ 1′000 genes which show some associations to the
expressions of p = 39 genes from two biosynthesis pathways in Arabidopsis Thaliana. We
would like to know whether the partial correlation Cor(yk,xj |{xu;u ∈ {1, . . . , p} \ j) is
zero or not, for all 1 ≤ k ≤ q, 1 ≤ j ≤ p. This is equivalent to check in linear regressions

yk = Bjkxj +
∑

1≤u≤p,u 6=j

Bukxu + ek,

whether Bjk = 0 or not. We could imagine that only a few of the q candidate variables
y1, . . . ,yq have something to do with the p target variables x1, . . . ,xp (i.e. there are many
k’s where Bjk ≡ 0 for all j) and that existing relations between the candidate and target
variables are sparse in terms of the corresponding regression coefficients, i.e. (A2) could
be a reasonable assumption.

5 Multivariate L2Boosting for vector AR processes

Obviously, the boosting method from section 3 can be used for vector autoregressive
processes (VAR, see for example Reinsel 1993 or Lütkepohl 1993)

x(t) =
p∑

j=1

Ajx(t−j) + e(t), t ∈ Z, (5.1)

where x(t) ∈ Rq is the q-dimensional observation at time t, Aj ∈ Rq×q and e(t) ∈ Rq i.i.d.
with IE[e(t)] = 0 and Cov(e(t)) = Σ. The model is stationary and causal if all roots of
det(I−

∑p
j=1 Ajz

j) (z ∈ C) are greater than one in absolute value.
For observations x(t) (t = 1, . . . , n), the equation in (5.1) can be written as a multivariate
regression model as in (2.1) with Y = [x(p+1), . . . ,x(n)]T ∈ R(n−p)×q, B = [A1, . . . ,Ap]T ∈
Rqp×q and X ∈ R(n−p)×qp the corresponding design matrix.
The consistency result from Theorem 1 carries over to the time series case. We assume
that the data is generated from the following q = qn-dimensional VAR(∞) model:

x(t) =
∞∑

j=1

Ajx(t−j) + e(t), t ∈ Z, (5.2)
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with e(t) ∈ Rqn i.i.d. with IE[e(t)] = 0, Cov(e(t)) = Σ and e(t) independent of {x(s); s < t}.
Again, we ignore notationally that the model and its terms depend on n due to the growing
dimension qn. Assume that:

(B1) {x(t)}t∈Z in (5.2) is strictly stationary and α-mixing with mixing coefficients αn(·).

(B2) The dimension satisfies: q = qn = O(nδ) for some 0 < δ <∞.

(B3) supn∈N
∑∞

j=1

∑qn

k,v=1 |Akv;j,n| <∞, Akv;j,n = (Aj,n)kv.

(B4) The mixing coefficients and moments satisfy: for some s ∈ N with s > 2(1 + δ)− 2
(δ as in (B2)) and γ > 0

∞∑
k=1

(k + 1)s−1αn(k)γ/(2s+γ) <∞,

sup
1≤k≤qn,n∈N

IE|x(t)k|4s+2γ <∞, sup
1≤k≤qn,n∈N

IE|e(t)k|2s+γ <∞.

Theorem 2 Assume the model (5.2), satisfying the assumptions (B1)-(B4) and require
that (A3) holds. Consider multivariate L2Boosting with componentwise linear least squares
(as in section 3) using p = pn lagged variables (as in model (5.1)) with pn → ∞, pn =
O(n1−κ) (n→∞), where 2(1 + δ)/(s + 2) < κ < 1. Then, the assertion from Theorem 1
holds with f(x) =

∑∞
j=1 Ajx(t−j), f̂ (mn)(x) =

∑pn
j=1 Â(mn)

j x(t−j) and x a new realization
from (5.2), independent from the training data.

A proof is given in section 9. Note that if in (B4) the mixing coefficients decay exponen-
tially and all moments exist, i.e. for a suitably regular Gaussian VAR(p) of finite order,
Theorem 2 holds for arbitrarily large δ in (B2) and arbitrarily small κ > 0, implying
pn = O(n1−κ) is allowed to grow almost as fast as n.

6 Simulation study

6.1 Design

In this section we compare multivariate L2Boosting (MB) to individual L2Boosting (IB,
univariate L2Boosting for each response alone; cf. Bühlmann 2004), row-boosting (RB,
see section 3.5) and multivariate forward stepwise variable selection (MFS, see section 2.1)
on simulated data sets.
The sample size is always n = 50 and the number of responses is q = 5. We take two
numbers of covariates (p = 10 and p = 30) and two proportions of non-zero entries of B
(peff = 0.2 and peff = 0.5, where peff = 0.2 means that 20% of the entries of B are
non-zero).
The covariates are generated according to a multivariate normal distribution with covari-
ance matrix V,

x(i) ∼ N (0,V) , with Vkv = 0.9|k−v|.

The value 0.9 seems to be pretty high, but when having p = 30 covariates, the average
correlation between the covariates is 0.42 only. Smaller values lead to similar results among
the boosting methods, only MFS performs then a bit better.
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For the true coefficient-matrix B we take two different types, characterized by the non-zero
entries: for the first type, we arbitrarily choose the q · p · peff non-zero entries of B with
the only constraint that each response must depend on at least one covariate. We will call
this type “B arbitrary” (this is the case of seemingly unrelated regressions). For the other
type, we randomly choose p · peff rows of B and set the entries of the whole rows unequal
to zero (“B row-complete”). The non-zero entries of B are for both types i.i.d. ∼ N (0, 1).
The errors are again generated according to a multivariate normal distribution with
covariance-matrix Σ,

e(i) ∼ N (0,Σ) .

The diagonal elements of Σ are constructed to give individual signal-to-noise ratios of
0.71, 0.84, 1.00, 1.19, 1.41. The off-diagonal elements of Σ are chosen to give the following
correlations between the errors:

Cor(ek, ev) = ρ|k−v|,

with ρ taking the values 0, 0.6, and 0.9.
All responses are standardized to unit variance to make them comparable.
The design of this simulation comprises two types of B-matrices, three values for the
correlations between the errors, two values for the number of predictors and two values
for the number of effective predictors. A complete factorial design over all these levels
gives rise to 24 settings. Each setting is replicated 100 times and the different methods
are applied.
To select the number of boosting iterations or the number of steps in MFS we use either
a validation set of size 50 or the AICc. For all boosting methods we choose the shrinkage
factor ν = 0.1.
For the implementing covariance-matrix Γ in MB we use the empirical covariance-matrix
of the residuals rIB

(i) of the IB:

Γ = Σ̂ = n−1
n∑

i=1

rIB
(i) (rIB

(i) )T .

6.2 Performance measure

In simulations we can measure how close the prediction for an additional observation comes
to the true value. For the k-th response, the mean squared prediction error is given by

MSPEk =
∫ (

xT (bk − b̂k)
)2

dP (x) = (bk − b̂k)TV(bk − b̂k).

Our performance measure is the mean of the individual MSPE’s

MSPE = q−1
q∑

k=1

MSPEk.

This is a reasonable measure, because we have standardized the responses.

6.3 Results

The results are summarized in table 1 and figure 1. We give the mean of the MSPE of
the 100 replicates (multiplied by 1000) for each method and setting. Additionally, paired

10



MSPE Wilcoxon p-value
B ρ p peff MFS RB IB MB MFS RB IB MB

arbitrary 0.0 10 0.2 84 63 50 51 0 0 1e−1
arbitrary 0.0 10 0.5 96 71 66 67 0 8e−5 9e−2
arbitrary 0.0 30 0.2 176 125 112 116 0 1e−9 5e−3
arbitrary 0.0 30 0.5 216 132 130 135 0 1e−1 1e−3
arbitrary 0.6 10 0.2 73 60 50 44 0 0 2e−6
arbitrary 0.6 10 0.5 93 71 67 62 0 8e−8 3e−4
arbitrary 0.6 30 0.2 164 116 109 100 0 0 4e−6
arbitrary 0.6 30 0.5 203 126 127 117 0 6e−6 5e−7
arbitrary 0.9 10 0.2 62 53 49 33 0 0 0
arbitrary 0.9 10 0.5 93 71 68 51 0 0 0
arbitrary 0.9 30 0.2 149 107 110 72 0 0 0
arbitrary 0.9 30 0.5 183 115 126 85 0 0 0

row-compl. 0.0 10 0.2 26 41 48 50 0 0 0
row-compl. 0.0 10 0.5 70 66 67 71 6e−2 2e−1 4e−6
row-compl. 0.0 30 0.2 123 105 118 121 1e−4 1e−9 0
row-compl. 0.0 30 0.5 203 132 136 139 0 7e−2 1e−5
row-compl. 0.6 10 0.2 25 38 49 50 1e−9 0 0
row-compl. 0.6 10 0.5 64 60 64 63 2e−2 6e−4 7e−2
row-compl. 0.6 30 0.2 109 101 120 110 3e−2 0 3e−6
row-compl. 0.6 30 0.5 186 128 137 129 0 1e−5 8e−1
row-compl. 0.9 10 0.2 31 33 50 45 6e−2 6e−9 2e−5
row-compl. 0.9 10 0.5 62 54 63 48 5e−5 2e−1 1e−9
row-compl. 0.9 30 0.2 88 88 120 89 7e−1 0 5e−1
row-compl. 0.9 30 0.5 179 120 137 102 0 4e−7 0

Table 1: Mean squared prediction error MSPE, multiplied by 1000, of multivariate for-
ward stepwise variable selection (MFS), row-boosting (RB), individual L2Boosting (IB)
and multivariate L2Boosting (MB) averaged over the 100 replicates. The best method for
each setting is in bold face. P-values of the paired sample Wilcoxon tests, which compare
for each setting the best method to the other three methods, are also given.

sample Wilcoxon tests are performed which compare for each setting the best method to
the other three methods. A p-value below 1e−9 is set to zero. The iterations are stopped
with a validation set.
For ρ = 0, multivariate L2Boosting is a few percent worse than individual L2Boosting.
But for ρ = 0.6 and ρ = 0.9 MB performs significantly better than IB and the gain can
be up to a factor of 1.5 (for less correlated predictors the gain is even bigger). Thus, MB
is able to exploit the additional information of the multivariate response.
As expected, MB and IB perform well when B is arbitrary and RB performs well when
B is row-complete. MFS gives only good results in the easier settings, especially with B
row-complete, p = 10 and peff = 0.2. It is interesting to see that MB performs best in
the case when B is row-complete, ρ = 0.9 and peff = 0.5 even tough the setting favors
methods which work with whole rows of B.
The given results come about with stopping by a validation set. Stopping methods which
only use the training data (like the AICc) lead on average to worse results because they use
much less information. Therefore we can use the validation set stopping as a benchmark
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Figure 1: Mean squared prediction error MSPE, multiplied by 1000, of multivariate for-
ward stepwise variable selection (◦), row-boosting (+), individual L2Boosting (4) and
multivariate L2Boosting (×).
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to assess the performance of the AICc stopping: MB is 6.3% worse (median over all 24
settings) when we use the AICc instead of the validation set. RB is 3.5% worse, MFS
10.2% worse and IB 25.0% worse. The AICc stopping works relatively better for the
multivariate methods (MB, RB and also MFS) than for IB. A possible explanation is that
MB and RB have to be stopped only once and not q times. This gives less variability in
the final boosting estimate and makes it easier to stop at a good point.

7 Real data

In this section we compare the different methods on three real data sets. The responses are
again standardized to unit variance to make them comparable. The predictive accuracy
of each method is estimated by leave-one-out cross-validation:

MSPECV = q−1
q∑

k=1

n−1
n∑

i=1

(y(i)k − f̂−i
k (x(i)))

2.

Note that we compare the prediction with the observation, the latter being an unbiased
rough estimate for the true unknown function f . Therefore the prediction accuracy con-
tains also the error variances which makes it harder to see clear differences between the
methods.
We have analyzed the following data sets:
Chemical reaction data (Box and Youle 1955; Rencher 2002): This is a planned ex-
periment involving a chemical reaction with 3 input (predictor) variables (temperature,
concentration, time) and 3 output (response) variables (percentage of unchanged start-
ing material, percentage converted to the desired product, percentage of unwanted by-
product). We fit a quadratic model including the first order interactions (product of the
predictor variables). This gives a total of 9 covariates.
Macroeconomic data (Klein, Ball, Hazlewood and Vandome 1961; Reinsel and Velu
1998): This is a 10 dimensional time series from the United Kingdom from 1948 - 1956
with quarterly measurements. 5 terms are taken as predictor variables (total labor force,
weekly wage rates, price index of imports, price index of exports, price index of consump-
tion) and 5 terms are taken as response variables (industrial production, consumption,
unemployment, total imports, total exports). We ignore the time-dependency of the ob-
servations and fit again a quadratic model with first order interactions.
Chemometrics data (Skagerberg, MacGregor and Kiparissides 1992; Breiman and Fried-
man 1997): This is a simulation of a low density tubular polyethylene reactor. There are
22 predictor variables (20 reactor temperatures, wall temperature of the reactor, feed rate
of the reactor) and 6 responses (number-average molecular weight, weight-average molecu-
lar weight, frequency of long chain branching, frequency of short chain branching, content
of vinyl groups, content of vinylidene groups). Because the responses are skewed, they are
all log-transformed.
The datasets are summarized in table 2 and the results are given in table 3. We use 5-fold
cross validation and the AICc to stop the iteration.
MFS performs worst, but there is no overall best boosting method. As mentioned already
in section 6.3, it seems easier to stop the iteration for MB and RB than for IB. Therefore,
the cross-validation stopping and the AICc stopping differ only slightly for MB and RB.
For IB, stopping by AICc works much better than using cross validation in two examples.
The mean squared prediction error of 0.208 for the chemometrics data is quite good com-
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Data set n p q aac

Chemical reaction 19 9 3 0.56
Macroeconomic 36 20 5 0.71
Chemometrics 56 22 6 0.48

Table 2: Summary of the analyzed data sets: sample size (n), number of predictors (p),
number of responses (q) and average absolute empirical correlation between the responses
(aac).

Data set OLS MFS RB IB MB
CV AICc CV AICc CV AICc CV AICc

Chemical reaction 1.343 1.261 0.616 0.532 0.500 0.744 0.527 0.488 0.479
Macroeconomic 0.499 0.209 0.224 0.193 0.197 0.194 0.195 0.202 0.204
Chemometrics 0.411 0.360 0.386 0.253 0.262 0.260 0.208 0.259 0.263

Table 3: Leave-one-out cross-validated mean squared prediction error MSPECV for three
data sets. Iteration stopped either by 5-fold cross validation or AICc.

pared to the numbers published in Breiman and Friedman (1997). We remark here that
we only have rounded data (taken from Skagerberg et al. (1992)) and therefore we get
slightly different prediction errors (e.g. for OLS: 0.411 instead of 0.431 in Breiman and
Friedman (1997)).

8 Conclusions

We propose a multivariate L2Boosting method for multivariate linear models. The mul-
tivariate L2Boosting inherits the good properties from its univariate counterpart: it does
variable selection and shrinkage. Our multivariate L2Boosting method is suitable for a
variety of different situations: multivariate linear regression, with or without seemingly
unrelated regressions (SUR), and with covariates which can be arbitrarily correlated;
multi-category classification with linear modeling of conditional class-probabilities; and
for multivariate vector autoregressive time series. The method is particularly powerful if
the predictor dimension p or the dimension of the response q are large relative to sample
size n.
Our multivariate L2Boosting takes potential correlations among the components of the
multivariate error-noise into account. It is therefore very different from OLS and other
methods which work on individual responses only. Correlation among the errors can arise
from various sources: for example via an unobservable covariate which influences the
responses in the same way.
We prove here, for i.i.d. data as well as for time series, that multivariate L2Boosting
can consistently recover sparse, very high-multivariate and very high-dimensional linear
functions. When having high-multivariateness, a non-trivial element arises how to control
the estimation error over all multivariate components simultaneously: our theory seems
to be among the first which actually addresses such questions.
An important question in multivariate regression is whether “jointness” pays off: is the
multivariate method better than q estimates from a univariate method? Our simulation
study shows that multivariate L2Boosting outperforms individual univariate L2Boosting
by a substantial amount when the errors are correlated and is almost as good when the
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errors are independent. On real data, we were not able to see a clear difference (which
may be masked by substantial noise variance): this has already been found in other work,
e.g. Brooks and Stone (1994).

9 Proofs

9.1 Proof of Theorem 1

The proof of Theorem 1 is similar as in Bühlmann (2004), where the univariate case is
discussed. We define an appropriate Hilbert space and dictionary of basis functions; then,
it is sufficient to prove Lemma 1 from Bühlmann (2004) for the setting of multivariate
L2Boosting.

A population version
The L2Boosting algorithm has a population version which is known as “matching pursuit”
(Mallat and Zhang 1993) or “weak greedy algorithm” (Temlyakov 2000).
Consider the Hilbert space L2(P ) = {f : Rpn → Rqn ; ‖f‖2 = 〈f , f〉 < ∞} with inner
product 〈f ,g〉 =

∫
f(x)TΓ−1g(x)dP (x). Here, the probability measure P is generating

the predictor x in model (4.1). To be precise, the probability measure P = Pn and the
function f = fn depend on n, but we often ignore this notationally (a uniform bound in
(9.4) will be a key result to deal with sequences of Hilbert spaces).
Denote the components of x = (x1, . . . , xpn) viewed as a scalar or a 1-dimensional function
from Rpn → R by

gj(x) = xj

and denote the components of x = (x1, . . . , xpn) viewed as a qn-dimensional vector or a
function from Rpn → Rqn with only component l different from zero by

(g(j,k))l(x) =

{
xj if l = k,
0 if l 6= k.

For notational simplicity, we assume that ‖g(j,k)‖ =
∫

x2
jΓ

−1
kk dP (xj) = Γ−1

kk = 1 for all k

(it simplifies e.g. the formula (9.2)); the proof for non-equal Γ−1
kk would work analogously

using the second assumption in (A3).
Define the following sequence of remainder functions, called matching pursuit or weak
greedy algorithm:

R0f = f ,

Rmf = Rm−1f −
〈
Rm−1f ,g(sm,tm)

〉
g(sm,tm), m = 1, 2, . . . (9.1)

where (sm, tm) would be ideally chosen as

(sm, tm) = arg max
1≤j≤pn;1≤k≤qn

|
〈
Rm−1f ,g(j,k)

〉
|.

The choice functions (sm, tm) are often infeasible to realize in practice, because we have
finite samples. A weaker criterion is: for every m (under consideration), choose any
(sm, tm), which satisfies

|
〈
Rm−1f ,g(sm,tm)

〉
| ≥ d · sup

1≤j≤pn;1≤k≤qn

|
〈
Rm−1f ,g(j,k)

〉
| for some 0 < d ≤ 1. (9.2)

15



Of course, the sequence Rmf = Rm,s,tf depends on (s1, t1), (s2, t2), . . . , (sm, tm) how we
actually make the choice in (9.2). Again, we will ignore this notationally.
It easily follows that

f =
m−1∑
j=0

〈
Rjf ,g(sj+1,tj+1)

〉
g(sj+1,tj+1) + Rmf .

Temlyakov (2000) gives a uniform bound for the algorithm in (9.1) with (9.2).
If the function f is representable as

f(x) =
∑
j,k

Bjkg(j,k)(x),
∑
j,k

|Bjk| ≤ D <∞, (9.3)

which is true by our assumption (A2), then

‖Rmf‖ ≤ D(1 + md2)−d/(2(2+d)), 0 < d ≤ 1 as in (9.2). (9.4)

To make the point clear, this bound holds also for sequences Rmf = Rm,s,t,nf which depend
on the choice function (s, t) in (9.2) and on the sample size n (since x ∼ P depends on n
and also the function of interest f): all we have to assume is the condition (9.3).

A sample version
The multivariate L2boosting algorithm can be represented analogously to (9.1). We in-
troduce the following notation:

〈f ,g〉(n) = n−1
n∑

i=1

fT (x(i))Γ
−1g(x(i)) and ‖f‖2(n) = 〈f , f〉(n)

for functions f ,g : Rpn → Rqn . As before, we denote by Y = (y(1), . . . ,y(n))T the matrix
of response variables.
Define

R̂1
nf = f −

〈
Y,g(ŝ1,t̂1)

〉
(n)

g(ŝ1,t̂1),

R̂m
n f = R̂m−1

n f −
〈
R̂m−1

n f ,g(ŝm,t̂m)

〉
(n)

g(ŝm,t̂m), m = 2, 3, . . . ,

where

(ŝ1, t̂1) = arg max
1≤j≤pn;1≤k≤qn

|
〈
Y,g(j,k)

〉
(n)
|,

(ŝm, t̂m) = arg max
1≤j≤pn;1≤k≤qn

|
〈
R̂m−1

n f ,g(j,k)

〉
(n)
|, m = 2, 3, . . . .

With some abuse of notation, we denote by R̂m−1
n f and g(ŝm,t̂m) either functions from

Rpn → Rqn or n×qn matrices evaluated at the observed predictors. We emphasize here the
dependence of R̂m

n on n since finite-sample estimates
〈
R̂m−1

n f ,g(j,k)

〉
(n)

are involved. We

also assume without loss of generality (but simplifying the notation) that ‖g(j,k)‖(n) ≡ 1
for all j, k and n (note that we have already assumed w.l.o.g. before that ‖g(j,k)‖ ≡ 1 for all
j, k): then, the formulae above are the same as in (3.2) (because ‖g(j,k)‖(n) = xT

j xjΓ−1
kk ).

Hence, R̂m
n f = f − f̂ (m).
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For analyzing ‖R̂m
n f‖ = IEx|(f̂ (mn)(x)− f(x))TΓ−1(f̂ (mn)(x)− f(x))|, which is the quantity

in the assertion of Theorem 1, we need some uniform laws of large numbers, as discussed
below.

Uniform laws of large numbers

Lemma 1 Under the assumptions (A1)-(A5), with 0 < ξ < 1 as in (A1),

(i) sup1≤j,u≤pn;1≤k,v≤qn

∣∣∣∣〈g(j,k),g(u,v)

〉
(n)
−

〈
g(j,k),g(u,v)

〉∣∣∣∣ = ζn,1 = OP (n−ξ/2),

(ii) sup1≤j≤pn;1≤k≤qn

∣∣∣∣〈g(j,k),E
〉

(n)

∣∣∣∣ = ζn,2 = OP (n−ξ/2),

(iii) sup1≤j≤pn;1≤k≤qn

∣∣∣∣〈g(j,k), f
〉

(n)
−

〈
g(j,k), f

〉∣∣∣∣ = ζn,3 = OP (n−ξ/2),

(iv) sup1≤j≤pn;1≤k≤qn

∣∣∣∣〈g(j,k),Y
〉

(n)
−

〈
g(j,k),Y

〉∣∣∣∣ = ζn,4 = OP (n−ξ/2).

Proof: Assertion (i):

sup
j,u,k,v

∣∣∣∣〈g(j,k),g(u,v)

〉
(n)
−

〈
g(j,k),g(u,v)

〉∣∣∣∣ =

= sup
j,u,k,v

∣∣∣∣∣n−1
n∑

i=1

gT
(j,k)(x(i))Γ

−1g(u,v)(x(i))− IE
[
gT

(j,k)(x(i))Γ
−1g(u,v)(x(i))

]∣∣∣∣∣ =

= sup
j,u,k,v

∣∣∣∣∣n−1
n∑

i=1

x(i)jΓ
−1
kv x(i)u − IE

[
x(1)jΓ

−1
kv x(1)u

]∣∣∣∣∣ =

= sup
j,u,k,v

∣∣∣Γ−1
kv

∣∣∣ ∣∣∣∣∣n−1
n∑

i=1

gj(x(i))gu(x(i))− IE
[
gj(x(1))gu(x(1))

]∣∣∣∣∣ =

≤ sup
k,v

∣∣∣Γ−1
kv

∣∣∣ ·OP (n−ξ/2) = OP ((n−ξ/2).

We have used here that supj,u |n−1 ∑n
i=1 gj(x(i))gu(x(i))−IE

[
gj(x(1))gu(x(1))

]
| = OP (n−ξ/2)

(Bühlmann 2004), and also the first assumption in (A3).

Assertion (ii): We write

〈
g(j,k),E

〉
(n)

=
qn∑

v=1

n−1
n∑

i=1

x(i)jΓ
−1
kv e(i)v = n−1

n∑
i=1

gj(x(i))Qi(k), (9.5)

where Qi(k) =
∑qn

v=1 Γ−1
kv e(i)v.

Note that Qi(k) is independent from X, IE[Qi(k)] = 0 for all i, k and

sup
k

IE|Qi(k)|s ≤ sup
k

(
qn∑

v=1

|Γ−1
kv |(IE|e(1)v|s)1/s)s <∞, (9.6)

using assumptions (A3) and (A5). The form in (9.5) with the moment property in (9.6)
is the same as in Lemma 1 (ii) from Bühlmann 2004.
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Assertions (iii): Note that

sup
j,k
|
〈
g(j,k), f

〉
(n)
−

〈
g(j,k), f

〉
| ≤

∑
u,v

|Buv,n| · ζn,1 = OP (n−ξ/2)

using assumption (A2) and the bound from assertion (i).

Assertion (iv): This follows immediately from assertions (ii) and (iii). �

The rest of the proof is the same as in Bühlmann (2004). We only have to replace the
basis functions gj by our double indexed basis functions g(j,k). �

9.2 Proof of Theorem 2

As we have seen from the proof of Theorem 1, a substantial part of the analysis can be
borrowed from Bühlmann 2004: we only need to reconsider uniform laws of large numbers,
as in Lemma 1, but for dependent data. This can be done by invoking the following result.

Lemma 2 Consider sequences {Zt,n}t∈Z, n ∈ N, which are strictly stationary and α-
mixing with mixing coefficients αZ,n(·). Assume that IE[Zt,n] = 0 for all n ∈ N, supn∈N IE|Zt,n|2s+γ <
∞ for some s ∈ N, γ > 0, and the mixing coefficients satisfy for some constants 0 <
C1, C2 <∞:

∞∑
k=0

(k + 1)s−1αZ,n(k)γ/(4s+γ) < C1p
s
n + C2,

where s ∈ N is linked to the moments of Zt,n as above. Then,

IE|n−1
n∑

t=1

Zt,n|2s = O(ps
nn−s) (n→∞).

Proof: The reasoning can be done analogously to the proof of Theorem 1 in Yokoyama
(1980). �

The only part of the proof of Theorem 1 which needs to be changed is Lemma 1. A version
of Lemma 1 also holds for stationary VAR(∞) processes; the predictor variables at time
t are the pn lagged qn-dimensional variables x(t−1), . . . ,x(t−p) and the response variable is
the current x(t).
Instead of exponential inequalities we first invoke Markov’s inequality and then Lemma 2.
For example, for the analogue of Lemma 1 (i) we bound

IP[|(n− pn)−1
n∑

t=pn+1

x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v]| > ε]

≤ ε−2s IE|(n− pn)−1
n∑

t=pn+1

x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v]|2s. (9.7)

We now observe that Zt,n = x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v] is still stationary and α-
mixing whose coefficients satisfy the requirement from Lemma 2. Due to different lags j
and u, the mixing coefficients of Zt,n usually don’t decay for the first |j−u| lags (therefore
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the special construction with C1p
s
n + C2 in Lemma 2). Invoking Lemma 2 for the right

hand side of (9.7) we get

IP[|(n− pn)−1
n∑

t=pn+1

x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v]| > ε] ≤ ε−2sO(ps
nn−s) = O(n−sκ)

since pn = O(n1−κ) by assumption. For the supremum over the different lags and compo-
nents we then get

IP[ sup
1≤j,u≤pn,1≤k,v≤qn

|(n− pn)−1
n∑

t=pn+1

x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v]| > ε]

= O(p2
nq2

nn−sκ) = O(n2(1+δ)−(s+2)κ).

Hence, since κ > 2(1 + δ)/(s + 2), we have proved that there exists a c > 0 such that

sup
1≤j,u≤pn,1≤k,v≤qn

|(n− pn)−1
n∑

t=pn+1

x(t−j)kx(t−u)v − IE[x(t−j)kx(t−u)v]| = OP (n−c).

The version of Lemma 1 (ii) follows analogously; and the versions of Lemma 1 (iii) and
(iv) can be proved exactly as in Lemma 1. �
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