
Robustified L2Boosting

Roman Werner Lutz and Peter Bühlmann

December 20, 2006

Abstract

We consider five robustifications of L2Boosting for linear regression with various
robustness properties. The first two use the Huber loss as implementing loss function
for boosting and the second two use robust simple linear regression for the fitting in
L2Boosting (i.e. robust base learners). Both concepts can be applied with or without
down-weighting of leverage points. Our last method uses robust correlation estimates
and appears to be most robust. Crucial advantages of all methods are that they don’t
compute covariance matrices of all covariates and that they don’t have to identify
multivariate leverage points. When there are no outliers, the robust methods are only
slightly worse than L2Boosting. In the contaminated case though, the robust meth-
ods outperform L2Boosting by a large margin. Some of the robustifications are also
computationally highly efficient and therefore well suited for truly high dimensional
problems.

1 Introduction

Freund and Schapire’s AdaBoost algorithm for classification (Freund and Schapire 1996)
has attracted much attention in the machine learning community and related fields, mainly
because of its good empirical performance. Some boosting algorithms for regression were
also proposed, but the first practical algorithm was not possible until Breiman (1999)
showed, that boosting can be viewed as a functional gradient descent algorithm. Friedman
(2001) then proposed LS Boost (least squares boosting, we will call it L2Boosting) and
also more robust boosting methods in conjunction with regression trees.
Boosting with the L2-loss (L2Boosting) and componentwise linear fitting was worked out
in detail in Bühlmann (2006). It is essentially the same as Mallat and Zhang’s (1993)
matching pursuit algorithm in signal processing and very similar to stagewise linear model
fitting (see for example Efron, Hastie, Johnstone and Tibshirani 2004). Boosting is then
not just a black box tool, but fits sound linear models. It does variable selection and
coefficient shrinkage and for high dimensional problems, it is clearly superior to the classical
model selection methods.
The usage of the L2-loss is dangerous when there are outliers. Friedman (2001) discussed
some robust boosting algorithms with regression trees. In this paper we develop some
robust boosting algorithms for linear models by using either robust implementing loss
functions in boosting or robust estimators as base (weak) learners. They all do variable
selection and estimation of regression coefficients. Some of our methods are also well suited
for very high dimensional problems with many covariates and/or large sample size. Besides
more classical work in robust fitting and variable selection for linear models (Ronchetti
and Staudte 1994, Ronchetti, Field and Blanchard 1997, Morgenthaler, Welsch and Zenide

1

2003), our approaches are closest to “robust LARS” (Van Aelst, Khan and Zamar 2004).
However, the concepts of robust loss functions and robust base learners are much more
general.

2 L2Boosting with componentwise linear least squares

We consider the linear model y = Xβ + ε with y ∈ Rn and X = (x1,x2, . . . ,xp) ∈ Rn×p

and will use boosting methods for fitting it. For a boosting algorithm we need a loss
function L : R × R → R+

0 , that measures how close a fitted value F̂ (xi) comes to the
observation yi and a base learner (simple fitting method), that yields a function estimate
f̂ : Rp → R. L2Boosting uses the L2-loss L(y, F) = (y − F)2/2 and as base learner we
take componentwise linear least squares, which works as follows: a response r ∈ Rn with
r̄ = 0 is fitted against x1, . . . ,xp:

Componentwise linear least squares learner

f̂(x) = α̂ŝ + β̂ŝxŝ, x ∈ Rp

β̂j =
(xj − x̄j)T r

(xj − x̄j)T (xj − x̄j)
, α̂j = −β̂jx̄j , 1 ≤ j ≤ p,

ŝ = arg min
1≤j≤p

||r− α̂j − β̂jxj ||2 = arg max
1≤j≤p

|β̂j | · sd(xj) = arg max
1≤j≤p

| corr(r,xj)|.

In words: we fit a simple linear regression with one selected covariate. The selected
covariate is the one which gives the smallest residual sum of squares. This is equivalent
to the variable that gives the “largest contribution to the fit” or has the highest absolute
correlation with the response r. The requirement r̄ = 0 is without loss of generality for
boosting since we always center the response variable before, see the algorithm below. The
learner can be simplified if all covariates are centered (mean subtracted). Then we can fit
simple linear regressions through the origin.
A boosting algorithm constructs iteratively a function F̂ : Rp → R by considering the
empirical risk n−1 ∑n

i=1 L(yi, F (xi)), xi ∈ Rp and pursuing iterative approximate steepest
descent in function space. This means that in each iteration, the negative gradient of
the loss function is fitted by the base learner. L2Boosting is especially simple, because
the negative gradient becomes the current residual vector and the algorithm amounts to
iteratively fitting of residuals:

L2Boosting with componentwise linear least squares

1. Initialize F̂ (0) ≡ arg min
a∈R

∑n
i=1 L(yi, a) ≡ ȳ. Set m = 0.

2. Increase m by 1. Compute the negative gradient (also called pseudo response), which
is the current residual vector

ri = − ∂

∂F
L(y, F)|F=F̂ (m−1)(xi)

= yi − F̂ (m−1)(xi), i = 1, . . . , n.

3. Fit the residual vector (r1, . . . , rn) to x1, . . . ,xp by the componentwise linear least
squares base procedure

(xi, ri)n
i=1 −→ f̂ (m)(·).

2

4. Update F̂ (m)(·) = F̂ (m−1)(·) + ν · f̂ (m)(·), where 0 < ν ≤ 1 is a step length factor.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

The number of iterations m = mstop is usually estimated using a validation set or with
cross validation. The step-length factor ν is also called shrinkage factor and is typically
less crucial than mstop. The natural value is 1, but smaller values have empirically proven
to be a better choice. We will always use ν = 0.3. Since the base learner yields a linear
model fit in one covariate and because of the linear up-date in step 4, L2Boosting with
componentwise linear least squares yields a linear model fit (with estimated coefficient
vector β̂(m)). Since least squares fitting is used, the method is not robust to outliers.

3 Robustifications

There are several ways to robustify L2Boosting with componentwise linear least squares
as described next. Whenever we need a robust location estimate we will use the Huber es-
timator with MAD scale (see Huber 1964, Huber 1981 and Hampel, Ronchetti, Rousseeuw
and Stahel 1986). The Huber Ψ-function is given by

Ψc(x) = min{c,max{x,−c}} = x ·min{1,
c

|x|
}.

As robust scale estimator we use the Qn estimator of Rousseeuw and Croux (1993). It is
defined as

Qn(x1, . . . , xn) = 2.2219 · {|xi − xj |; i < j}(k),

where k =
(bn/2c+1

2

)
. That is, we take the k-th order statistic of the

(n
2

)
inter-point

distances. The Qn estimator has a breakdown point of 50% and an efficiency of 82% at
the Gaussian distribution (Rousseeuw and Croux 1993).

3.1 Boosting with a robust implementing loss function

The easiest robustification is to use a robust loss function, e.g. the Huber loss function
(the derivation yields the Huber Ψ-function):

Lc(y, F) =

{
(y − F)2/2, |y − F | ≤ c,
c ∗ (|y − F | − c/2), |y − F | > c.

The parameter c should be chosen in dependence of the scale of y − F . We choose it
adaptively in each iteration as c = 1.345·MAD({yi−F̂ (m−1)(xi), i = 1, . . . , n}) as proposed
in Friedman (2001). The negative gradient in step 2 of the boosting algorithm then
becomes the huberized residual vector. As learner we can take componentwise linear least
squares as described above. This means we look in each iteration for the covariate that
best fits the huberized residuals (the criterion is the huberized residual sum of squares).
We found that it is better to also estimate an intercept in each iteration than robust
centering the covariates and estimate the intercept only at the beginning. We shall call
this version RobLoss boosting.

Remark 1 If we want to exactly apply the Gradient Boost algorithm of Friedman (2001)
we have to do an additional line search between step 3 and 4. This means each f̂ (m)

3

must be multiplied by a constant to minimize the Lc-loss. This would yield factors slightly
greater than 1. Since we are going to use shrinkage ν = 0.3 it is not important to know
the optimal (greedy) step size exactly and we can omit the additional line search.

It is obvious that RobLoss boosting is only robust in “Y-direction” but not in “X-
direction”. But it is not possible to incorporate “X-direction-robustness” in the loss func-
tion and therefore, we do it in the base procedure when fitting the negative gradient in
step 3. The idea is to down-weight the leverage points and to use weighted least squares
for fitting (a Mallows type estimator). Since every covariate is fitted alone, the weight of
an observation is solely determined by the value of the one covariate. Therefore, the same
observation can have different weights for the p candidate fits with the p covariates in one
iteration, according to its outlyingness of the corresponding coordinate. For the weights
we use (wposition

ij is the weight of observation i when fitting the j-th covariate)

wposition
ij = min{1,

1.345
|(xij −Huber(xj))/ MAD(xj)|

}.

We can go one step further and down-weight only the leverage points that have also a
large residual (a Schweppe type estimator). The weights we use in iteration m are

wij =
Ψ

1.345·wposition
ij

(
(yi − F̂ (m−1)(xi))/ MAD({yi − F̂ (m−1)(xi), i = 1, . . . , n})

)
Ψ1.345

(
(yi − F̂ (m−1)(xi))/ MAD({yi − F̂ (m−1)(xi), i = 1, . . . , n})

) .

So far, we only discussed how to fit the pseudo response to a covariate, but the selection
of the “best” covariate is equally important. It seems quite natural to select the covariate
that gives the smallest weighted residual sum of squares. But since the p simple linear
fits in each iteration use different weights for the same observation, this can lead to bad
choices. It is better to use the estimated β̂j ’s and to select the variable that has highest
|β̂j | · Qn(xj): note that this is of the form as used in the classical componentwise linear
least squares base procedure in section 2. Roughly speaking we choose the covariate that
contributes the most to the fit. We shall call this version RobLossW boosting. Here is the
formal description of the learner (wij as described above with ri instead of yi−F̂ (m−1)(xi)):

Componentwise linear weighted least squares learner

f̂(x) = α̂ŝ + β̂ŝxŝ,

(α̂j , β̂j) = arg min
α,β

n∑
i=1

wij(ri − α̂j − β̂jxij)2,

ŝ = arg max
1≤j≤p

|β̂j | ·Qn(xj).

3.2 Boosting with robust regression learner

Here we use the idea of iteratively fitting of residuals. Instead of fitting the ordinary
residuals by least squares, we use a robust linear regression:

Componentwise robust linear regression learner

4

f̂(x) = α̂ŝ + β̂ŝxŝ,

(α̂j , β̂j) = robust linear fit of r against xj ,

ŝ = arg max
1≤j≤p

|β̂j | · scale(xj).

In each iteration of the boosting algorithm we calculate a robust linear regression with
each covariate alone (and an intercept). This needs more computation than the RobLoss
methods, since the robust fits are usually calculated iteratively itself (the RobLoss methods
do in some sense only the first iteration of the iteration). As criterion for the variable
selection we use again arg maxj |β̂j | · scale(xj), where scale(xj) is a scale estimate that
will be specified below. This is much better than using a robust estimation of residual
standard error.
For the robust linear fit of the base procedure we use two different types: M-regression with
Huber’s Ψ-function (and rescaled MAD of the residuals) and a Schweppe type bounded
influence (BI) regression (see for example Hampel et al. 1986) with Huber’s Ψ-function
and position weights as described in section 3.1. We chose these types of robust regression
to have a direct comparison to the RobLoss methods. One could even use MM-regression,
but this would be computationally very expensive. The proposed algorithms will be called
RobRegM boosting and RobRegBI boosting. For the former method, which is robust in
“Y-direction” but not in “X-direction”, we use the standard deviation as scale estimate
for the variable selection and for the latter, which is robust in “Y- and X-direction”, we
use the Qn estimator.
We expect that RobLoss and RobRegM boosting perform similar and likewise for RobLossW
and RobRegBI boosting. The former methods first huberize the residuals and then use
(weighted) least squares and the latter methods use robust methods with the same hu-
berization and weighting. As already mentioned, the RobLoss methods do in some sense
the first iteration of the robust fitting of the RobReg methods. The great advantage of
the former methods is that they are much faster. Thus, the latter methods must achieve
better performance to be worthwhile.

3.3 Boosting with robust correlation learner

It is also possible to use robust correlation estimators to construct a base procedure. The
idea is the following: in each iteration, the covariate with the highest robust correlation
with the residuals is chosen, see also the selection in classical componentwise least squares
described in section 2. We shall call this version RobCor boosting:

Robust correlation learner

f̂(x) = α̂ŝ + β̂ŝxŝ,

β̂j = RobCor(xj , r) ·Qn(r)/Qn(xj), α̂j = Huber(r)− β̂j ·Huber(xj),
ŝ = arg max

1≤j≤p
|RobCor(xj , r)|.

Recall that it is not important to have very accurate β̂j ’s because we use shrinkage ν = 0.3.
As robust correlation estimate we use a proposal from Huber (1981) with the Qn estimator
as module:

RobCor(x,y) =
Qn

(
x

Qn(x) + y
Qn(y)

)2
−Qn

(
x

Qn(x) −
y

Qn(y)

)2

Qn

(
x

Qn(x) + y
Qn(y)

)2
+ Qn

(
x

Qn(x) −
y

Qn(y)

)2 .

5

3.4 Stopping the boosting iteration

To stop the boosting iteration, we propose to use cross validation or a separate validation
set. After each iteration we use the actual model to predict on the validation sample and
we measure the quality of the fit. For L2Boosting we use the mean squared prediction error
on the validation set and for the robust methods, we use a robust measure of prediction
error. Ronchetti et al. (1997) propose to use the Huber loss of the errors of the validation
set. We found that using the Qn-estimator of the errors on the validation set gives better
results and therefore, we tune all robust boosting methods with the Qn-estimator.

3.5 Properties of the robust boosting methods

An unaesthetic property of RobCor boosting with ν = 1 is that the same covariate can
be chosen consecutively. This is because the robust correlation between the residuals and
a covariate is usually not equal to zero after fitting the covariate in the iteration before.
This is in contrast to L2Boosting and the RobReg methods, where, with ν = 1, we cannot
improve the fit by selecting and fitting the same covariate as in the iteration before. For
the RobLoss methods it can also happen that they choose the same covariate consecutively
(even with ν = 1).
RobCor boosting empirically shows the following behavior: after running for a large num-
ber of iterations, it always selects the same variable and gets stuck. Then the estimated
coefficients are all of approximately equal size and successive coefficients are of opposite
sign. This means that RobCor boosting estimates the coefficient of the selected variable
to high and in the next iteration it undoes the previous step. The good thing is that this
doesn’t happen until over-fitting occurs, so we would stop the iteration before anyway.
We can also delay the getting stuck by choosing a smaller ν.
Regarding the break down point we can state the following simple proposition:

Proposition 1 The boosting method inherits the breakdown point of the base procedure.

Since we are performing only a finite number of iterations, the whole boosting algorithm
can only break down when the base learner breaks down in one iteration. RobCor boosting
has therefore a breakdown point of 0.5.

4 Simulation study

In this section we compare the different boosting methods on simulated data sets from a
linear model y = Xβ + ε as described at the beginning of section 2.

4.1 Design

The sample size of the training set (and also the validation set, used to stop the it-
eration) is n = 100 and the number of covariates is p = 10 in the first example and
p = 100 in the second example. The true coefficient vector β is an arbitrary permutation
of (8, 7, 6, 5, 4, 0, 0, 0, 0, 0)T for p = 10 and (18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 0, . . . , 0)T for
p = 100. Thus, we have 5 effective and 5 noise variables for p = 10 or 10 and 90 for
p = 100, respectively. We use two design matrices for the covariates and two error dis-
tributions. For the first design (normal design), the covariates are generated according to

6

a multivariate normal distribution with mean zero and Cov(xi,xj) = Σij = 0.5|i−j|. The
second design (leverage design) is the same, except that 10% of the data-points are multi-
plied by 5. This is done after the true y-values have been determined. Therefore we have
bad leverage points. The error distributions are standard normal (N) and 90% standard
normal and 10% from N

(
0, 52

)
(10%N5). The errors are multiplied by a constant to give

a signal-to-noise ratio of 4 in the first example and 9 in the second example for normal
errors. Each setting is replicated 100 times.

4.2 Performance measure

Our main performance measure is the mean squared prediction error, which can be calcu-
lated as

̂intercept
2
+ (β̂ − β)TΣ(β̂ − β).

We use paired sample Wilcoxon tests to examine whether a method is significantly better
than another. Additionally, as a measure of variable selection accuracy, we count how
many variables have been chosen until the 5 (respectively 10) effective covariates have
been selected (optimal would be 5 or 10, respectively).

4.3 Results for p = 10

Normal design Leverage design
N 10%N5 N 10%N5

L2 7.7 (4.1) 25.5 (13.9) 138.4 (24.5) 148.4 (27.9)
RobLoss 8.9 (5.0) 11.4 (5.8) 87.2 (41.3) 102.8 (47.5)
RobRegM 8.8 (5.3) 11.4 (5.9) 86.1 (41.0) 99.9 (44.4)
RobLossW 9.1 (5.2) 11.5 (6.0) 19.7 (8.8) 25.4 (11.8)
RobRegBI 9.1 (4.8) 11.8 (6.0) 19.3 (8.8) 25.4 (12.2)
RobCor 11.3 (6.8) 13.8 (7.7) 15.5 (9.5) 18.8 (9.4)

Table 1: Mean squared prediction error of the different boosting methods when stopping
with a validation set, averaged over 100 replicates for p = 10. The standard deviations
are given in parentheses.

Table 1 gives the average of the mean squared prediction error when stopping with the
validation set. The results are as expected. For the normal design with normal errors,
L2Boosting performs significantly best. The robust methods are only slightly worse, except
perhaps RobCor boosting which is significantly worse than the other robust methods. For
the normal design with error 10%N5, L2Boosting performs much (and significantly) worse
than the robust methods, and RobCor boosting is still significantly worse than the other
robust methods.
The leverage design shows the biggest differences. L2Boosting performs really bad and
RobLoss and RobRegM boosting are not much better. RobCor boosting performs best and
all differences are highly significant (except the pairs RobLoss-RobRegM and RobLossW-
RobRegBI).
In table 2, we examine whether we can stop the boosting iteration at a good point. Given
is the percentage loss when using a validation set (of same size as the training set) to stop
the iteration compared to optimal stopping (stopping at the iteration which gives smallest

7

Normal design Leverage design
N 10%N5 N 10%N5

L2 13 10 48 45
RobLoss 25 22 14 19
RobRegM 25 21 13 16
RobLossW 24 21 19 16
RobRegBI 23 24 19 19
RobCor 27 26 33 25

Table 2: Percentage loss of stopping with a validation set compared to optimal stopping
for p = 10.

mean squared prediction error, also called “oracle” stopping). The stopping works quite
satisfyingly for L2Boosting for the normal design, but not so well for the robust methods.
They lose about 20% in performance compared to optimal (oracle) stopping.

Normal design Leverage design
N 10%N5 N 10%N5

L2 5.2 5.7 6.7 7.1
RobLoss 5.2 5.3 6.6 6.7
RobRegM 5.1 5.2 6.6 6.9
RobLossW 5.2 5.2 5.9 6.1
RobRegBI 5.2 5.2 5.4 5.7
RobCor 5.3 5.4 5.4 5.6

Table 3: Average number of covariates that have been chosen until all 5 effective variables
have been selected for p = 10.

In table 3 we state how many variables have been chosen (on average) until all 5 effective
covariates have been selected. The outcomes confirm more or less the results of table 1, in
the sense that the methods with bad prediction performance usually also select too many
variables. The big difference is that RobRegBI boosting selects the variables better than
RobLossW boosting, although they have comparable predictive power. This indicates that
some noise variables in the fitted model with small coefficients don’t hurt for prediction.

4.4 Results for p = 100

The results for p = 100 are contained in tables 4, 5 and 6. This setting is much harder. The
methods not only have to cope with outliers but also with high dimensional observations.
The results are qualitatively more or less the same as for p = 10. The main differences are:
for the normal design, RobCor performs much worse than the other robust methods. For
the leverage design, the differences between the methods are less pronounced but there is
now a significant difference between RobLossW and RobRegBI boosting.
The stopping of the boosting iteration is relatively easier in this high dimensional setting.
The robust methods lose only about 10% compared to optimal stopping.

8

Normal design Leverage design
N 10%N5 N 10%N5

L2 112 (41) 371 (166) 1060 (231) 1203 (220)
RobLoss 124 (45) 186 (81) 538 (210) 668 (252)
RobRegM 125 (45) 189 (77) 560 (242) 665 (245)
RobLossW 138 (49) 196 (87) 417 (170) 569 (221)
RobRegBI 134 (48) 200 (84) 389 (148) 525 (196)
RobCor 187 (77) 268 (129) 326 (149) 472 (231)

Table 4: Mean squared prediction error of the different boosting methods when stopping
with a validation set, averaged over 100 replicates for p = 100. The standard deviations
are given in parentheses.

Normal design Leverage design
N 10%N5 N 10%N5

L2 4 6 126 68
RobLoss 9 8 8 13
RobRegM 10 8 12 11
RobLossW 9 9 6 9
RobRegBI 8 9 8 10
RobCor 8 7 8 13

Table 5: Percentage loss of stopping with a validation set compared to optimal stopping
for p = 100.

Normal design Leverage design
N 10%N5 N 10%N5

L2 10.9 16.8 26.3 48.5
RobLoss 11.0 12.2 27.3 33.1
RobRegM 10.9 12.0 27.7 34.3
RobLossW 11.4 12.4 25.5 34.8
RobRegBI 11.1 12.2 20.9 26.9
RobCor 12.1 13.9 16.9 20.3

Table 6: Average number of covariates that have been chosen until all 10 effective variables
have been selected for p = 100.

9

5 Real data

As a real data set we analyze the measurements of Maguna, Núñez, Okulik and Castro
(2003) (see also Maronna, Martin and Yohai 2006). There are 38 observations (17 mono-
carboxylic, 9 dicarboxylic and 12 unsaturated carboxylic acids) and the goal is to predict
the logarithm of the aquatic toxicity (y) from nine molecular descriptors (x1, . . . , x9). The
scatterplot matrix of the data (not included) shows a quite good linear dependence be-
tween y and x1 except for some outliers. The other covariates have no clear “univariate”
influence on y.
We applied the boosting methods with shrinkage factor ν = 0.3 and used 5-fold cross-
validation to stop the boosting iterations. The results are as follows: L2-, RobLoss and
RobRegM boosting select several times x1 and x3 at the beginning and then also some other
covariates. The residual plots (not included) show no outliers. RobLossW, RobRegBI and
RobCor boosting select only several times x1 and then stop. The residual plots (not
included) indicate some clear outliers, which are leverage points.
A closer look at the data shows that all the clear outliers are unsaturated carboxylic
acids. RobLossW, RobRegBI and RobCor boosting lead to the insight that there is no
linear model which fits all the data well. L2-, RobLoss and RobRegM boosting find a
second variable (x3) that seems to explain also the unsaturated carboxylic acids, but this
is doubtful.

6 Conclusions

We compared several robust boosting methods to L2Boosting. For the ideal normal case,
the robust methods are only slightly worse than L2Boosting. In the contaminated case
though, the robust methods outperform L2Boosting by a large margin. An advantage of
the boosting methods (for example over robust LARS) is that they don’t have to compute
covariance matrices of the covariates or to identify multivariate leverage points.
RobLoss, RobLossW and RobCor boosting are computationally efficient and hence well
suited also for truly high dimensional problems. In the high dimensional setting, the
differences between the methods are less pronounced, because the methods not only have
to cope with outliers but also with high dimensional observations.
The additional computation of RobRegM boosting does not pay off. It has no advantages
over RobLoss boosting. The case is different for RobRegBI boosting. It is better than
RobLossW boosting in variable selection and the predictions are more accurate in high
dimensions. The prediction and variable selection performance of RobCor boosting are
surprisingly good in the contaminated case.
It seems quite natural that it is harder to stop the robust boosting methods than L2Boosting
in the normal case, since they use a robust measure of prediction error. In the leverage
case though, the stopping works quite well for the robust methods and disastrously for
L2Boosting. The stopping works also well in the high dimensional setting, for which the
boosting methods are mainly designed.
In practice, it is always a good advice to employ more than one method and to compare
the results. Our robustified versions of L2Boosting offer additional possibilities for good,
advanced data analysis.

10

References

Breiman, L. (1999). Prediction games and arcing algorithms, Neural Computation
11: 1493–1517.

Bühlmann, P. (2006). Boosting for high-dimensional linear models, Annals of Statistics
34: 559–583.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression,
Annals of Statistics 32(2): 407–451.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm, Pro-
ceedings of the Thirteenth International Conference on Machine Learning, pp. 148–
156.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.,
The Annals of Statistics 29(5): 1189–1232.

Hampel, F., Ronchetti, E., Rousseeuw, P. and Stahel, W. (1986). Robust Statistics:
The Approach Based on Influence Functions, Wiley Series in Probability and Math.
Statistics, Wiley, New York.

Huber, P. J. (1964). Robust estimation of a location parameter, Annals of mathematical
statistics 35: 73–101.

Huber, P. J. (1981). Robust Statistics, Wiley, N. Y.

Maguna, F. P., Núñez, M. B., Okulik, N. B. and Castro, E. A. (2003). Improved QSAR
analysis of the toxicity of aliphatic carboxylic acids, Russian Journal of General
Chemistry 73: 1792–1798.

Mallat, S. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries,
IEEE Transactions on Signal Processing 41(12): 3397–3415.

Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics, Theory and
Methods, Wiley Series in Probility and Statistics, John Wiley & Sons, Ltd, The
Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

Morgenthaler, S., Welsch, R. E. and Zenide, A. (2003). Theory and Applications of
Recent Robust Methods, Birkhäuser, chapter Algorithms for Robust Model Selection
in Linear Regression.

Ronchetti, E. and Staudte, R. G. (1994). A robust version of Mallow’s cp, Journal of the
American Statistical Association 89: 550–559.

Ronchetti, E., Field, C. and Blanchard, W. (1997). Robust linear model selection by
cross-validation, Journal of the American Statistical Association 92: 1017–1023.

Rousseeuw, P. J. and Croux, C. (1993). Alternatives to the median absolute deviation,
Journal of the American Statistical Association 88(424): 1273–1283.

Van Aelst, S., Khan, J. A. and Zamar, R. H. (2004). Robust linear model selection based
on least angle regression. http://hajek.stat.ubc.ca/˜ruben/website/cv/RobLARS.pdf

11

	Introduction
	L2Boosting with componentwise linear least squares
	Robustifications
	Boosting with a robust implementing loss function
	Boosting with robust regression learner
	Boosting with robust correlation learner
	Stopping the boosting iteration
	Properties of the robust boosting methods

	Simulation study
	Design
	Performance measure
	Results for p=10
	Results for p=100

	Real data
	Conclusions

