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8092 Zürich, Switzerland

Editor: David Maxwell Chickering

Abstract

We consider the PC-algorithm (Spirtes et al., 2000) for estimating the skeleton and equiv-

alence class of a very high-dimensional directed acyclic graph (DAG) with corresponding

Gaussian distribution. The PC-algorithm is computationally feasible and often very fast

for sparse problems with many nodes (variables), and it has the attractive property to

automatically achieve high computational efficiency as a function of sparseness of the true

underlying DAG. We prove uniform consistency of the algorithm for very high-dimensional,

sparse DAGs where the number of nodes is allowed to quickly grow with sample size n, as

fast as O(na) for any 0 < a < ∞. The sparseness assumption is rather minimal requiring

only that the neighborhoods in the DAG are of lower order than sample size n. We also

demonstrate the PC-algorithm for simulated data.

Keywords: Asymptotic Consistency, DAG, Graphical Model, PC-Algorithm, Skeleton

1. Introduction

Graphical models are a popular probabilistic tool to analyze and visualize conditional in-

dependence relationships between random variables (see Edwards, 2000; Lauritzen, 1996;

Neapolitan, 2004). Major building blocks of the models are nodes, which represent ran-

dom variables and edges, which encode conditional dependence relations of the enclosing

vertices. The structure of conditional independence among the random variables can be

explored using the Markov properties.

Of particular current interest are directed acyclic graphs (DAGs), containing directed

rather than undirected edges, which restrict in a sense the conditional dependence relations.

These graphs can be interpreted by applying the directed Markov property (see Lauritzen,
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1996). When ignoring the directions of a DAG, we get the skeleton of a DAG. In general,

it is different from the conditional independence graph (CIG), see Section 2.1. (Thus,

estimation methods for directed graphs cannot be easily borrowed from approaches for

undirected CIGs.) As we will see in Section 2.1, the skeleton can be interpreted easily and

thus yields interesting insights into the dependence structure of the data.

Estimation of a DAG from data is difficult and computationally non-trivial due to the

enormous size of the space of DAGs: the number of possible DAGs is super-exponential

in the number of nodes (see Robinson, 1973). Nevertheless, there are quite successful

search-and-score methods for problems where the number of nodes is small or moderate.

For example, the search space may be restricted to trees as in MWST (Maximum Weight

Spanning Trees; see Chow and Liu, 1968; Heckerman et al., 1995), or a greedy search is

employed. The greedy DAG search can be improved by exploiting probabilistic equivalence

relations, and the search space can be reduced from individual DAGs to equivalence classes,

as proposed in GES (Greedy Equivalent Search, see Chickering, 2002a). Although this

method seems quite promising when having few or a moderate number of nodes, it is limited

by the fact that the space of equivalence classes is conjectured to grow super-exponentially

in the nodes as well (Gillispie and Perlman, 2001). Bayesian approaches for DAGs, which

are computationally very intensive, include Spiegelhalter et al. (1993) and Heckerman et al.

(1995).

An interesting alternative to greedy or structurally restricted approaches is the PC-

algorithm (after its authors, Peter and Clark) from Spirtes et al. (2000). It starts from a

complete, undirected graph and deletes recursively edges based on conditional independence

decisions. This yields an undirected graph which can then be partially directed and further

extended to represent the underlying DAG (see later). The PC-algorithm runs in the worst

case in exponential time (as a function of the number of nodes), but if the true underlying

DAG is sparse, which is often a reasonable assumption, this reduces to a polynomial runtime.

In the past, interesting hybrid methods have been developed. Very recently, Tsamardi-

nos et al. (2006) proposed a computationally very competitive algorithm. We also refer

to their paper for a quite exhaustive numerical comparison study among a wide range of

algorithms.

We focus in this paper on estimating the equivalence class and the skeleton of DAGs

(corresponding to multivariate Gaussian distributions) in the high-dimensional context, that

is, the number of nodes p may be much larger than sample size n. We prove that the PC-

algorithm consistently estimates the equivalence class and the skeleton of an underlying

sparse DAG, as sample size n→∞, even if p = pn = O(na) (0 ≤ a <∞) is allowed to grow

very quickly as a function of n.

Our implementation of the PC-algorithm is surprisingly fast, as illustrated in section

4.5, and it allows us to estimate a sparse DAG even if p is in the thousands. For the high-

dimensional setting with p � n, sparsity of the underlying DAG is crucial for statistical
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consistency and computational feasibility. Our analysis seems to be the first establishing

a provable correct algorithm (in an asymptotic sense) for high-dimensional DAGs which is

computationally feasible.

The question of consistency of a class of methods including the PC algorithm has been

treated in Spirtes et al. (2000) and Robins et al. (2003) in the context of causal inference.

They show that, assuming only faithfulness (explained in section 2), uniform consistency

cannot be achieved, but pointwise consistency can. In this paper, we extend this in two

ways: We provide a set of assumptions which renders the PC-algorithm to be uniformly

consistent. More importantly, we show that consistency holds even as the number of nodes

and neighbors increases and the size of the smallest non-zero partial correlations decrease

as a function of the sample size. Stricter assumptions than the faithfulness condition that

render uniform consistency possible have been also proposed in Zhang and Spirtes (2003).

A rather general discussion on how many samples are needed to learn the correct structure

of a Bayesian Network can be found in Zuk et al. (2006).

The problem of finding the equivalence class of a DAG has a substantial overlap with

the problem of feature selection: If the equivalence class is found, the Markov Blanket of

any variable (node) can be read of easily. Given a set of nodes V and suppose that M is the

Markov Blanket of node X, then X is conditionally independent of V \M given M . Thus,

M contains all and only the relevant features for X. In recent years, many other approaches

to feature selection have been developed for high dimensions. See for example Goldenberg

and Moore (2004) for an approach dealing with very high dimensions or Ng (1998) for a

rather general approach dealing with bounds for generalization errors.

2. Finding the Equivalence Class of a DAG

2.1 Definitions and Preliminaries

A graph G = (V,E) consists of a set of nodes or vertices V = {1, . . . , p} and a set of edges

E ⊆ V × V , that is, the edge set is a subset of ordered pairs of distinct nodes. In our

setting, the set of nodes corresponds to the components of a random vector X ∈ R
p. An

edge (i, j) ∈ E is called directed if (i, j) ∈ E but (j, i) /∈ E; we then use the notation i→ j.

If both (i, j) ∈ E and (j, i) ∈ E, the edge is called undirected; we then use the notation

i − j. A directed acyclic graph (DAG) is a graph G where all edges are directed and not

containing any cycle.

If there is a directed edge i → j, node i is said to be a parent of node j. The set of

parents of node j is denoted by pa(j). The adjacency set of a node j in graph G, denoted

by adj(G, j), are all nodes i which are directly connected to j by an edge (directed or

undirected). The elements of adj(G, j) are also called neighbors of or adjacent to j.

A probability distribution P on R
p is said to be faithful with respect to a graph G if

conditional independencies of the distribution can be inferred from so-called d-separation in
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the graph G and vice-versa. More precisely: consider a random vector X ∼ P . Faithfulness

of P with respect to G means: for any i, j ∈ V with i 6= j and any set s ⊆ V ,

X(i) and X(j) are conditionally independent given {X(r); r ∈ s}
⇔ node i and node j are d-separated by the set s.

The notion of d-separation can be defined via moral graphs; details are described in Lau-

ritzen (1996, Prop. 3.25). We remark here that faithfulness is ruling out some classes of

probability distributions. An example of a non-faithful distribution is given in Spirtes et al.

(2000, Chapter 3.5.2). On the other hand, non-faithful distributions of the multivariate

normal family (which we will limit ourselves to) form a Lebesgue null-set in the space of

distributions associated with a DAG G, see Meek (1995a).

The skeleton of a DAG G is the undirected graph obtained from G by substituting

undirected edges for directed edges. A v-structure in a DAG G is an ordered triple of nodes

(i, j, k) such that G contains the directed edges i → j and k → j, and i and k are not

adjacent in G.

It is well known that for a probability distribution P which is generated from a DAG G,

there is a whole equivalence class of DAGs with corresponding distribution P (see Chick-

ering, 2002a, Section 2.2 ). Even when having infinitely many observations, we cannot

distinguish among the different DAGs of an equivalence class. Using a result from Verma

and Pearl (1990), we can characterize equivalent classes more precisely: Two DAGs are

equivalent if and only if they have the same skeleton and the same v-structures.

A common tool for visualizing equivalence classes of DAGs are completed partially di-

rected acyclic graphs (CPDAG). A partially directed acyclic graph (PDAG) is a graph where

some edges are directed and some are undirected and one cannot trace a cycle by following

the direction of directed edges and any direction for undirected edges. Equivalence among

PDAGs or of PDAGs and DAGs can be decided as for DAGs by inspecting the skeletons

and v-structures. A PDAG is completed, if (1) every directed edge exists also in every DAG

belonging to the equivalence class of the DAG and (2) for every undirected edge i− j there

exists a DAG with i→ j and a DAG with i← j in the equivalence class.

CPDAGs encode all independence informations contained in the corresponding equiv-

alence class. It was shown in Chickering (2002b) that two CPDAGs are identical if and

only if they represent the same equivalence class, that is, they represent a equivalence class

uniquely.

Although the main goal is to identify the CPDAG, the skeleton itself already contains

interesting information. In particular, if P is faithful with respect to a DAG G,

there is an edge between nodes i and j in the skeleton of DAG G

⇔ for all s ⊆ V \ {i, j}, X(i) and X(j) are conditionally dependent

given {X(r); r ∈ s}, (1)
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(Spirtes et al., 2000, Th. 3.4). This implies that if P is faithful with respect to a DAG G,

the skeleton of the DAG G is a subset (or equal) to the conditional independence graph

(CIG) corresponding to P . (The reason is that an edge in a CIG requires only conditional

dependence given the set V \{i, j}). More importantly, every edge in the skeleton indicates

some strong dependence which cannot be explained away by accounting for other variables.

We think, that this property is of value for exploratory analysis.

As we will see later in more detail, estimating the CPDAG consists of two main parts

(which will naturally structure our analysis): (1) Estimation of the skeleton and (2) partial

orientation of edges. All statistical inference is done in the first part, while the second is

just application of deterministic rules on the results of the first part. Therefore, we will put

much more emphasis on the analysis of the first part. If the first part is done correctly, the

second will never fail. If, however, there occur errors in the first part, the second part will be

more sensitive to it, since it depends on the inferential results of part (1) in greater detail.

Therefore, when dealing with a high-dimensional setting (large p, small n), the CPDAG is

harder to recover than the skeleton. Moreover, the interpretation of the CPDAG depends

much more on the global correctness of the graph. The interpretation of the skeleton, on

the other hand, depends only on a local region and is thus more reliable.

We conclude that, if the true underlying probability mechanisms are generated from a

DAG, finding the CPDAG is the main goal. The skeleton itself oftentimes already provides

interesting insights, and in a high-dimensional setting it might be interesting to use the undi-

rected skeleton as an alternative target to the CPDAG when finding a useful approximation

of the CPDAG seems hopeless.

As mentioned before, we will in the following describe two main steps. First, we will

discuss the part of the PC-algorithm that leads to the skeleton. Afterwards we will complete

the algorithm by discussing the extensions for finding the CPDAG. We will use the same

format when discussing theoretical properties of the PC-algorithm.

2.2 The PC-algorithm for Finding the Skeleton

A naive strategy for finding the skeleton would be to check conditional independencies given

all subsets s ⊆ V \ {i, j} (see formula (1)), that is, all partial correlations in the case of

multivariate normal distributions as first suggested by Verma and J.Pearl (1991). This

would become computationally infeasible and statistically ill-posed for p larger than sample

size. A much better approach is used by the PC-algorithm which is able to exploit sparseness

of the graph. More precisely, we apply the part of the PC-algorithm that identifies the

undirected edges of the DAG.

2.2.1 Population Version for the Skeleton

In the population version of the PC-algorithm, we assume that perfect knowledge about all

necessary conditional independence relations is available. We refer here to the PC-algorithm
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what others call the first part of the PC-algorithm; the other part is described in Algorithm

2 in Section 2.3.

Algorithm 1 The PCpop-algorithm

1: INPUT: Vertex Set V , Conditional Independence Information

2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the

skeleton afterwards)

3: Form the complete undirected graph C̃ on the vertex set V.

4: ` = −1; C = C̃

5: repeat

6: ` = ` + 1

7: repeat

8: Select a (new) ordered pair of nodes i,j that are adjacent in C such that |adj(C, i)\
{j}| ≥ `

9: repeat

10: Choose (new) k ⊆ adj(C, i) \ {j} with |k| = `.

11: if i and j are conditionally independent given k then

12: Delete edge i, j

13: Denote this new graph by C

14: Save k in S(i, j) and S(j, i)

15: end if

16: until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ` have been chosen

17: until all ordered pairs of adjacent variables i and j such that |adj(C, i)\{j}| ≥ ` and

k ⊆ adj(C, i) \ {j} with |k| = ` have been tested for conditional independence

18: until for each ordered pair of adjacent nodes i,j: |adj(C, i) \ {j}| < `.

The (first part of the) PC-algorithm is given in Algorithm 1. The maximal value of ` in

Algorithm 1 is denoted by

mreach = maximal reached value of `. (2)

The value of mreach depends on the underlying distribution.

A proof that this algorithm produces the correct skeleton can be easily deduced from

Theorem 5.1 in Spirtes et al. (2000). We summarize the result as follows.

Proposition 1 Consider a DAG G and assume that the distribution P is faithful to G.

Denote the maximal number of neighbors by q = max1≤j≤p |adj(G, j)|. Then, the PCpop-

algorithm constructs the true skeleton of the DAG. Moreover, for the reached level: mreach ∈
{q − 1, q}.

A proof is given in Section 7.

6



High-dimensional DAGs and the PC-algorithm

2.2.2 Sample Version for the Skeleton

For finite samples, we need to estimate conditional independencies. We limit ourselves to the

Gaussian case, where all nodes correspond to random variables with a multivariate normal

distribution. Furthermore, we assume faithful models, which means that the conditional

independence relations correspond to d-separations (and so can be read off the graph) and

vice versa; see Section 2.1.

In the Gaussian case, conditional independencies can be inferred from partial correla-

tions.

Proposition 2 Assume that the distribution P of the random vector X is multivariate

normal. For i 6= j ∈ {1, . . . , p}, k ⊆ {1, . . . , p}\{i, j}, denote by ρi,j|k the partial correlation

between X(i) and X(j) given {X(r); r ∈ k}. Then, ρi,j|k = 0 if and only if X(i) and X(j)

are conditionally independent given {X(r); r ∈ k}.

Proof: The claim is an elementary property of the multivariate normal distribution, see

Lauritzen (1996, Prop. 5.2.). �

We can thus estimate partial correlations to obtain estimates of conditional indepen-

dencies. The sample partial correlation ρ̂i,j|k can be calculated via regression, inversion of

parts of the covariance matrix or recursively by using the following identity: for some h ∈ k,

ρi,j|k =
ρi,j|k\h − ρi,h|k\hρj,h|k\h

√

(1− ρ2
i,h|k\h)(1− ρ2

j,h|k\h)
.

In the following, we will concentrate on the recursive approach. For testing whether a

partial correlation is zero or not, we apply Fisher’s z-transform

Z(i, j|k) =
1

2
log

(

1 + ρ̂i,j|k
1− ρ̂i,j|k

)

. (3)

Classical decision theory yields then the following rule when using the significance level

α. Reject the null-hypothesis H0(i, j|k) : ρi,j|k = 0 against the two-sided alternative

HA(i, j|k) : ρi,j|k 6= 0 if
√

n− |k| − 3|Z(i, j|k)| > Φ−1(1 − α/2), where Φ(·) denotes the

cdf of N (0, 1).

The sample version of the PC-algorithm is almost identical to the population version in

Section 2.2.1.

The PC-algorithm

Run the PCpop(m)-algorithm as described in Section 2.2.1 but replace in line 11 of

Algorithm 1 the if-statement by

if
√

n− |k| − 3|Z(i, j|k)| ≤ Φ−1(1− α/2) then.
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The algorithm yields a data-dependent value m̂reach,n which is the sample version of (2).

The only tuning parameter of the PC-algorithm is α, which is the significance level for

testing partial correlations. See Section 4 for further discussion.

As we will see below in Section 3, the algorithm is asymptotically consistent even if p is

much larger than n but the DAG is sparse.

2.3 Extending the Skeleton to the Equivalence Class

While finding the skeleton as in Algorithm 1, we recorded the separation sets that made

edges drop out in the variable denoted by S. This was not necessary for finding the skeleton

itself, but will be essential for extending the skeleton to the equivalence class. In Algorithm

2 we describe the work of Pearl (2000, p.50f) to extend the skeleton to a CPDAG belonging

to the equivalence class of the underlying DAG.

Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton Gskel, separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do

if k /∈ S(i, j) then

Replace i− k − j in Gskel by i→ k ← j

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated

application of the following three rules:

R1 Orient j − k into j → k whenever there is an arrow i → j such that i and k are

nonadjacent.

R2 Orient i− j into i→ j whenever there is a chain i→ k → j.

R3 Orient i− j into i → j whenever there are two chains i− k → j and i− l → j such

that k and l are nonadjacent.

R4 Orient i− j into i→ j whenever there are two chains i− k → l and k → l → j such

that k and l are nonadjacent.

The output of Algorithm 2 is a CPDAG, which was first proved by Meek (1995b).

3. Consistency for High-Dimensional Data

As in Section 2, we will first deal with the problem of finding the skeleton. Consecutively,

we will extend the result to finding the CPDAG.
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3.1 Finding the Skeleton

We will show that the PC-algorithm from Section 2.2.2 is asymptotically consistent for the

skeleton of a DAG, even if p is much larger than n but the DAG is sparse. We assume that

the data are realizations of i.i.d. random vectors X1, . . . ,Xn with Xi ∈ R
p from a DAG G

with corresponding distribution P . To capture high-dimensional behavior, we will let the

dimension grow as a function of sample size: thus, p = pn and also the DAG G = Gn and

the distribution P = Pn. Our assumptions are as follows.

(A1) The distribution Pn is multivariate Gaussian and faithful to the DAG Gn for all n.

(A2) The dimension pn = O(na) for some 0 ≤ a <∞.

(A3) The maximal number of neighbors in the DAG Gn is denoted by

qn = max1≤j≤pn |adj(G, j)|, with qn = O(n1−b) for some 0 < b ≤ 1.

(A4) The partial correlations between X(i) and X(j) given {X(r); r ∈ k} for some set k ⊆
{1, . . . , pn} \ {i, j} are denoted by ρn;i,j|k. Their absolute values are bounded from

below and above:

inf{|ρi,j|k|; i, j,k with ρi,j|k 6= 0} ≥ cn, c−1
n = O(nd),

for some 0 < d < b/2,

sup
n;i,j,k

|ρi,j|k| ≤M < 1,

where 0 < b ≤ 1 is as in (A3).

Assumption (A1) is an often used assumption in graphical modeling, although it does

restrict the class of possible probability distributions (see also third paragraph of Section

2.1); (A2) allows for an arbitrary polynomial growth of dimension as a function of sample

size, that is, high-dimensionality; (A3) is a sparseness assumption and (A4) is a regularity

condition. Assumptions (A3) and (A4) are rather minimal: note that with b = 1 in (A3), for

example fixed qn = q <∞, the partial correlations can decay as n−1/2+ε for any 0 < ε ≤ 1/2.

If the dimension p is fixed (with fixed DAG G and fixed distribution P ), (A2) and (A3) hold

and (A1) and the second part of (A4) remain as the only conditions. Recently, for undirected

graphs the Lasso has been proposed as a computationally efficient algorithm for estimating

high-dimensional conditional independence graphs where the growth in dimensionality is

as in (A2) (see Meinshausen and Bühlmann, 2006). However, the Lasso approach can be

inconsistent, even with fixed dimension p, as discussed in detail in Zhao and Yu (2006).

Theorem 1 Assume (A1)-(A4). Denote by Ĝskel,n(αn) the estimate from the (first part

of the) PC-algorithm in Section 2.2.2 and by Gskel,n the true skeleton from the DAG Gn.
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Then, there exists αn → 0 (n→∞), see below, such that

IP[Ĝskel,n(αn) = Gskel,n]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞,

where d > 0 is as in (A4).

A proof is given in the Section 7. A choice for the value of the significance level is

αn = 2(1−Φ(n1/2cn/2)) which depends on the unknown lower bound of partial correlations

in (A4).

3.2 Extending the Skeleton to the Equivalence Class

As mentioned before, all inference is done while finding the skeleton. If this part is completed

perfectly, that is, if there was no error while testing conditional independencies (it is not

enough to assume that the skeleton was estimated correctly), the second part will never fail

(see Meek, 1995b). Therefore, we easily obtain:

Theorem 2 Assume (A1)-(A4). Denote by ĜCPDAG(αn) the estimate from the entire

PC-algorithm in section 2.2.2 and 2.3 and by GCPDAG the true CPDAG from the DAG G.

Then, there exists αn → 0 (n→∞), see below, such that

IP[ĜCPDAG(αn) = GCPDAG]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞,

where d > 0 is as in (A4).

A proof, consisting of one short argument, is given in the Section 7. As for Theorem 1, we

can choose αn = 2(1 − Φ(n1/2cn/2)).

By inspecting the proofs of Theorem 1 and Theorem 2, one can derive explicit error

bounds for the error probabilities. Roughly speaking, this bounding function is the product

of a linearly increasing and an exponentially decreasing term (in n). The bound is loose

but for completeness, we present it in the Appendix.

4. Numerical Examples

We analyze the PC-algorithm for finding the skeleton and the CPDAG using various simu-

lated data sets. The numerical results have been obtained using the R-package pcalg. For

an extensive numerical comparison study of different algorithms, we refer to Tsamardinos

et al. (2006).
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4.1 Simulating Data

In this section, we analyze the PC-algorithm for the skeleton using simulated data. In order

to simulate data, we first construct an adjacency matrix A as follows:

1. Fix an ordering of the variables.

2. Fill the adjacency matrix A with zeros.

3. Replace every matrix entry in the lower triangle (below the diagonal) by independent

realizations of Bernoulli(s) random variables with success probability s where 0 < s <

1. We will call s the sparseness of the model.

4. Replace each entry with a 1 in the adjacency matrix by independent realizations of a

Uniform([0.1, 1]) random variable.

This then yields a matrix A whose entries are zero or in the range [0.1, 1]. The corresponding

DAG draws a directed edge from node i to node j if i < j and Aji 6= 0. The DAGs (and

skeletons thereof) that are created in this way have the following property: IE[Ni] = s(p−1),

where Ni is the number of neighbors of a node i.

Thus, a low sparseness parameter s implies few neighbors and vice-versa. The matrix

A will be used to generate the data as follows. The value of the random variable X (1),

corresponding to the first node, is given by

ε(1) ∼ N(0, 1)

X(1) = ε(1)

and the values of the next random variables (corresponding to the next nodes) can be

computed recursively as

ε(i) ∼ N(0, 1)

X(i) =

i−1
∑

k=1

AikX
(k) + ε(i) (i = 2, . . . , p),

where all ε(1), . . . , ε(p) are independent.

4.2 Choice of significance level

In section 3 we provided a value of the significance level αn = 2(1 − Φ(n1/2cn/2)). Unfor-

tunately, this value is not constructive, since it depends on the unknown lower bound of

partial correlations in (A4). To get a feeling for good values of the significance level in the

domain of realistic parameter settings, we fitted a wide range of parameter settings and

compared the quality of fit for different significance levels.
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Assessing the quality of fit is not quite straightforward, since one has to examine simul-

taneously both the true positive rate (TPR) and false positive rate (FPR) for a meaningful

comparison. We follow an approach suggested by Tsamardinos et al. (2006) and use the

Structural Hamming Distance (SHD). Roughly speaking, this counts the number of edge

insertions, deletions and flips in order to transfer the estimated CPDAG into the correct

CPDAG. Thus, a large SHD indicates a poor fit, while a small SHD indicates a good fit.

We fitted 40 replicates to all combinations of

• α ∈ {0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}

• p ∈ {7, 15, 40, 70, 100}

• n ∈ {30, 100, 300, 1000, 3000, 10000, 30000}

• E[N ] ∈ {2, 5}

(where E[N ] is the average neighborhood size) and evaluated the SHD. Each value of α

was used 40 times on each of the 70 possible parameter settings, and we then computed the

average SHD over the 70 parameter settings.

The result is shown in Figure 1. One can see that the average SHD achieves a minimum

in the region around α = 0.005 and α = 0.01. For higher or lower significance levels, the

average SHD increases; the increase for bigger significance levels is much more pronounced.

We analyzed the results of the simulation (see Figure 1) using pairwise Wilcoxon-Tests

and Bonferroni correction. It turns out that α = 0.005 and α = 0.01 yield significantly

lower average SHD than the other values of α. In contrast, there is no significant difference

between α = 0.005 and α = 0.001 (without Bonferroni correction). Of course, if n was

of different order of magnitude, a reasonable α should be a function of n with α = αn →
0 (n→∞).

4.3 Performance for different parameter settings

In this section, we give an overview over the performance in terms of the true positive rate

(TPR) and false positive rate (FPR) for the skeleton and the SHD for the CPDAG. In order

to keep the overview at a manageable size, we restrict the significance level to α = 0.01.

This was one of the two settings minimizing the average SHD as described in the previous

section. The remaining parameters will be chosen as follows:

• p ∈ {7, 40, 100}

• n ∈ {30, 100, 300, 1000, 3000, 10000, 30000}

• E[N ] ∈ {2, 5}

12
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Figure 1: Average Structural Hamming Distance (ave SHD) with 95% confidence intervals.

For each value of α, the average SHD was averaged over 70 parameter settings

using 40 replicates each. One can see that the average SHD is minimized for

significance levels between α = 0.005 and α = 0.01.

The overview is given in Figure 2. As expected, the fit for a dense graph (triangles;

E[N ] = 5) is worse than the fit for a sparse graph (circles; E[N ] = 2). While the TPR and

the SHD show a clear tendency with increasing sample size, the behavior of FPR is not so

clear. The latter seems surprising at first sight but is due to the fact that we used the same

α = 0.01 for all n.

4.4 Properties in high-dimensional setting

In this section, we study the behaviour of the error rates in a high-dimensional setting. The

number of variables increases exponentially, the number of samples increases linearly and

the expected neighborhood size increases sub-linearly. By inspecting the theory, we would

expect the error rates to stay constant or even decrease. Table 4.1 shows the parameter

setting of a small numerical study addressing this question. Note that p increases expo-

nentially, n increases linearly and the expected neighborhood size E[N ] = 0.2
√

n increases

sub-linearly. We used α = 0.05 and the results are based on 20 simulation runs.

Figure 3 shows boxplots of the TPR and the FPR over 20 replicates of this study. One

can easily see that the TPR increases and the FPR decreases with sample size, although

the number of p = pn grows fast and E[N ] grows slowly with n. This confirms our theory

very clearly.

We should note, that while the number of neighbors to a given variable may be growing

almost as fast as n, so that the number of neighbors is increasing with sample size, the

13
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Figure 2: Performance of the PC-algorithm for different parameter settings, showing the

mean of TPR, FPR and SHD together with 95% confidence intervals. The tri-

angles represent parameter settings where E[N ] = 5, while the circles represent

parameter settings where E[N ] = 2.

p n E[N ] TPR FPR

9 50 1.4 0.61 (0.03) 0.023 (0.005)

27 100 2.0 0.70 (0.02) 0.011 (0.001)

81 150 2.4 0.753 (0.007) 0.0065 (0.0003)

243 200 2.8 0.774 (0.004) 0.0040 (0.0001)

729 250 3.2 0.794 (0.004) 0.0022 (0.00004)

2187 300 3.5 0.805 (0.002) 0.0012 (0.00002)

Table 4.1: The number of variables p increases exponentially, the sample size n increases

linearly and the expected neighborhood size E[N ] increases sub-linearly. As

supported by theory, the TPR increases and the FPR decreases in this setting.

The results are based on using α = 0.05, 20 simulation runs, and standard

deviations are given in brackets.
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Figure 3: While the number of variables p increases exponentially, the sample size n in-

creases linearly and the expected neighborhood size E[N ] increases sub-linearly,

the TPR increases and the FPR decreases. See Table 4.1 for a more detailed

specification of the parameters.

percentage of true among all possible edges is going down with n. So in one sense, the

sparsity in terms of percentage of true edges of the DAGs is decreasing, and in another

sense the sparsity in terms of the neighborhood size is increasing with n.

4.5 Computational Complexity

Our theoretical framework in section 3 allows for large values of p. The computational

complexity of the PC-algorithm is difficult to evaluate exactly, but the worst case is bounded

by

O(pm̂reach) which is with high probability bounded by O(pq) (4)

as a function of dimensionality p; here, q is the maximal size of the neighborhoods as

described in assumption (A3) in Section 3. We note that the bound may be very loose for

many distributions. Thus, for the worst case where the complexity bound is achieved, the

algorithm is computationally feasible if q is small, say q ≤ 3, even if p is large. For non-worst

cases, however, we can still do the computations for much larger values of q and fairly dense

graphs, for example some nodes j having neighborhoods of size up to |adj(G, j)| = 30.

We provide a small example of the processor time for estimating a CPDAG by using

the PC-algorithm. The runtime analysis was done on an AMD Athlon 64 X2 Dual Core

Processor 5000+ with 2.6 GHz and 4 GB RAM running on Linux and using R 2.4.1. The

number of variables varied between p = 10 and p = 1000 while the number of samples

was fixed at n = 1000. The sparseness was either E[N ] = 2 or E[N ] = 8. For each

parameter setting, 10 replicates were used. In each case, the significance level used in
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the PC-algorithm was α = 0.01. The average processor time together with its standard

deviation for estimating both the skeleton and the CPDAG is given in Table 4.2. Graphs of

p = 1000 nodes and 8 neighbors on average could be estimated in about 25 minutes, while

networks with up to p = 100 nodes could be estimated in about a second. The additional

time spent for finding the CPDAG from the skeleton is comparable for both neighborhood

sizes and varies between a couple to almost 100 percent of the time needed to estimate the

skeleton. The percentage tends to decrease with increasing number of variables.

Figure 4 gives a graphical impression of the results of this example. The sparse graphs

(solid line with circles) were estimated faster than the dense graphs. While the line for

the dense graph is very straight, the line for the sparse graphs has a positive curvature.

Note, that this is a log-log plot; therefore, the slope of the lines indicates the exponent

of polynomial growth. In this case, both curves follow very roughly a line with slope

two indicating quadratic growth. The positive curvature of the solid line would indicate

exponential growth; theory tells us, that this is not possible. One possible explanation for

the positive curvature is the fact, that with increasing p, the maximal neighborhood size

(which was not controlled in the simulation) is likely to increase. This would gradually

increase the exponent in the polynomial growth of the upper bound in (4), thus yielding a

positive curvature.

p E[N ] Ĝskel ĜCPDAG

10 2 0.037 (0.004) 0.072 (0.005)

10 8 0.093 (0.005) 0.124 (0.006)

30 2 0.15 (0.02) 0.23 (0.02)

30 8 0.84 (0.05) 0.93 (0.05)

50 2 0.33 (0.01) 0.48 (0.02)

50 8 2.2 (0.06) 2.4 (0.06)

100 2 1.03 (0.05) 1.49 (0.05)

100 8 8.9 (0.3) 9.4 (0.27)

300 2 8.3 (0.1) 13.8 (0.13)

300 8 89 (3) 95 (3)

1000 2 116 (0.5) 262 (0.8)

1000 8 1300 (60) 1445 (59)

Table 4.2: The average processor time (Athl. 64, 2.6 GHz, 4 GB) for estimating the skeleton

(Ĝskel) or the CPDAG (ĜCPDAG) for different DAGs in seconds, with standard

errors in brackets. We used α = 0.01 and sample size n = 1000.
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Figure 4: Average processor time over 10 runs together with 95% confidence intervals. Tri-

angles correspond to dense (E[N ] = 8), circles to sparse (E[N ] = 2) underlying

DAGs. We used α = 0.01 and sample size n = 1000.

5. R-Package pcalg

The R-package pcalg can be used to estimate from data the underlying skeleton or equiva-

lence class of a DAG. To use this package, the statistics software R needs to be installed. Both

R and the R-package pcalg are available free of charge at http://www.r-project.org. For

low-dimensional problems (but not for p in the hundreds or thousands), there are a number

of other implementations of the PC-algorithm that are also worth mentioning:

• Hugin at http://www.hugin.com

• Murphy’s Bayes Network toolbox at http://bnt.sourceforge.net

• Tetrad IV at http://www.phil.cmu.edu/projects/tetrad

In the following, we show an example of how to generate a random DAG, draw samples

and infer from data the skeleton and the equivalence class of the original DAG using the

R-package pcalg. The line width of the edges in the resulting skeleton and CPDAG can

be adjusted to correspond to the reliability of the estimated dependencies. (The line width

is proportional to the smallest value of
√

n− |k| − 3 Z(i, j,k) causing an edge, see also 3.

Therefore, thick lines are reliable).

library(pcalg)

## define parameters

p <- 10 # number of random variables
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n <- 10000 # number of samples

s <- 0.4 # sparsness of the graph

For simulating data as described in Section 4.1:

## generate random data

set.seed(42)

g <- randomDAG(p,s) # generate a random DAG

d <- rmvDAG(n,g) # generate random samples

Then we estimate the underlying skeleton by using the function pcAlgo and extend the

skeleton to the CPDAG by using the function udag2cpdag.

gSkel <-

pcAlgo(d,alpha=0.05) # estimate of the skeleton

gCPDAG <-

udag2cpdag(gSkel)

The CPDAG can also be estimated directly using

gCPDAG <-

pcAlgo(d,alpha=0.05, directed=TRUE) # estimate of the CPDAG

The results can be easily plotted using the following commands:

plot(g)

plot(gSkel,zvalue.lwd=TRUE)

plot(gCPDAG,zvalue.lwd=TRUE)

The original DAG is shown in Figure 5(a). The estimated skeleton and the estimated

CPDAG are shown in Figure 5(b) and Figure 5(c), respectively. Note the differing line

width, which indicates the reliability (z-values as in (3)) of the involved statistical tests

(thick lines are reliable).

6. Conclusions

We show that the PC-algorithm is asymptotically consistent for the equivalence class of

the DAG (represented by the CPDAG) and its skeleton with corresponding very high-

dimensional, sparse Gaussian distribution. Moreover, the PC-algorithm is computationally

feasible for such high-dimensional, sparse problems. Putting these two facts together, the

PC-algorithm is established as a method (so far the only one) which is computationally

feasible and provably correct, in the sense of uniform consistency, for high-dimensional

DAGs. Sparsity, in terms of the maximal size of the neighborhoods of the true underlying

DAG, is crucial for statistical consistency (assumption (A3) and Theorems 1 and 2) and
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Figure 5: Plots generated using the R-package pcalg as described in section 5. (a) The true

DAG. (b) The estimated skeleton using the R-function pcAlgo with α = 0.05 and

n = 10000. Line width encodes the reliability (z-values) of the dependence esti-

mates (thick lines are reliable). (c) The estimated CPDAG using the R-function

udag2cpdag. Double-headed arrows indicate undirected edges.

for computational feasibility with at most a polynomial complexity (see formula (4)) as a

function of dimensionality.

We emphasize that the skeleton of a DAG oftentimes provides interesting insights, and

in a high-dimensional setting it is quite sensible to use the undirected skeleton as a simpler

but more realistic target rather than the entire CPDAG. Software for the PC-algorithm is

available as explained in Section 5.
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7. Proofs and Appendix

7.1 Proof of Proposition 1

Consider X with distribution P . Since P is faithful to the DAG G, conditional independence

of X(i) and X(j) given {X(r); r ∈ k} (k ⊆ V \ {i, j}) is equivalent to d-separation of nodes

i and j given the set k (see Spirtes et al., 2000, Th. 3.3). Thus, the population PCpop-

algorithm as formulated in Section 2.2.1 coincides with the one from Spirtes et al. (2000)
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which is using the concept of d-separation, and the first claim about correctness of the

skeleton follows from Spirtes et al. (2000, Th. 5.1., Ch. 13).

The second claim about the value of mreach can be proved as follows. First, due to

the definition of the PCpop-algorithm and the fact that it constructs the correct skeleton,

mreach ≤ q. We now argue that mreach ≥ q−1. Suppose the contrary. Then, mreach ≤ q−2:

we could then continue with a further iteration in the algorithm since mreach + 1 ≤ q − 1

and there is at least one node j with neighborhood-size |adj(G, j)| = q: that is, the reached

stopping level would be at least q − 1 which is a contradiction to mreach ≤ q − 2. �

7.2 Analysis of the PC-Algorithm

7.2.1 Analysis of Partial Correlations

We first establish uniform consistency of estimated partial correlations. Denote by ρ̂i,j

and ρi,j the sample and population correlation between X(i) and X(j). Likewise, ρ̂i,j|k and

ρi,j|k denote the sample and population partial correlation between X(i) and X(j) given

{X(r); r ∈ k}, where k ⊆ {1, . . . , pn} \ {i, j}.
Many partial correlations (and non-partial correlations) are tested for being zero during

the run of the PC(mn)-algorithm. For a fixed ordered pair of nodes i, j, the conditioning

sets are elements of

Kmn
i,j = {k ⊆ {1, . . . , pn} \ {i, j} : |k| ≤ mn}

whose cardinality is bounded by

|Kmn
i,j | ≤ Bpmn

n for some 0 < B <∞. (5)

Lemma 1 Assume (A1) (without requiring faithfulness) and supn,i 6=j |ρn;i,j| ≤ M < 1

(compare with (A4)). Then, for any 0 < γ ≤ 2,

sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j − ρn;i,j| > γ] ≤ C1(n− 2) exp

(

(n− 4) log(
4− γ2

4 + γ2
)

)

,

for some constant 0 < C1 <∞ depending on M only.

Proof: We make substantial use of Hotelling (1953)’s work. Denote by fn(ρ̂, ρ) the proba-

bility density function of the sample correlation ρ̂ = ρ̂n+1;i,j based on n+1 observations and

by ρ = ρn+1;i,j the population correlation. (It is notationally easier to work with sample

size n + 1; and we just use the abbreviated notations with ρ̂ and ρ). For 0 < γ ≤ 2,

IP[|ρ̂− ρ| > γ] = IP[ρ̂ < ρ− γ] + IP[ρ̂ > ρ + γ].

It can be shown, that fn(r, ρ) = fn(−r,−ρ), see Hotelling (1953, p.201). This symmetry

implies,

IPρ[ρ̂ < ρ− γ] = IPρ̃[ρ̂ > ρ̃ + γ] with ρ̃ = −ρ. (6)
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Thus, it suffices to show that IP[ρ̂ > ρ + γ] = IPρ[ρ̂ > ρ + γ] decays exponentially in n,

uniformly for all ρ.

It has been shown (Hotelling, 1953, p.201, formula (29)), that for −1 < ρ < 1,

IP[ρ̂ > ρ + γ] ≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)
M0(ρ + γ)(1 +

2

1− |ρ|) (7)

with

M0(ρ + γ) =

∫ 1

ρ+γ
(1− ρ2)

n
2 (1− x2)

n−3

2 (1− ρx)−n+ 1

2 dx

=

∫ 1

ρ+γ
(1− ρ2)

ñ+3

2 (1− x2)
ñ
2 (1− ρx)−ñ− 5

2 dx (using ñ = n− 3)

≤ (1− ρ2)
3

2

(1− |ρ|) 5

2

∫ 1

ρ+γ
(

√

1− ρ2
√

1− x2

1− ρx
)ñdx

≤ (1− ρ2)
3

2

(1− |ρ|) 5

2

2 max
ρ+γ≤x≤1

(

√

1− ρ2
√

1− x2

1− ρx
)ñ. (8)

We will show now that gρ(x) =

√
1−ρ2

√
1−x2

1−ρx < 1 for all ρ + γ ≤ x ≤ 1 and −1 < ρ < 1 (in

fact, ρ ≤ 1− γ due to the first restriction). Consider

sup
−1<ρ<1;ρ+γ≤x≤1

gρ(x) = sup
−1<ρ≤1−γ

√

1− ρ2
√

1− (ρ + γ)2

1− ρ(ρ + γ)

=

√

1− γ2

4

√

1− γ2

4

1− (−γ
2 )(γ

2 )
=

4− γ2

4 + γ2
< 1 for all 0 < γ ≤ 2. (9)

Therefore, for −1 < −M ≤ ρ ≤M < 1 (see assumption (A4)) and using (7)-(9) together

with the fact that Γ(n)

Γ(n+ 1

2
)
≤ const. with respect to n, we have

IP[ρ̂ > ρ + γ]

≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)

(1− ρ2)
3

2

(1− |ρ|) 5

2

2(
4 − γ2

4 + γ2
)ñ(1 +

2

1− |ρ|)

≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)

1

(1−M)
5

2

2(
4− γ2

4 + γ2
)ñ(1 +

2

1−M
) ≤

≤ C1(n− 1)(
4 − γ2

4 + γ2
)ñ = C1(n− 1) exp((n− 3) log(

4− γ2

4 + γ2
)),

where 0 < C1 < ∞ depends on M only, but not on ρ or γ. By invoking (6), the proof is

complete (note that the proof assumed sample size n + 1). �

Lemma 1 can be easily extended to partial correlations, as shown by Fisher (1924), using

projections for Gaussian distributions.
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Lemma 2 (Fisher, 1924)

Assume (A1) (without requiring faithfulness). If the cumulative distribution function of

ρ̂n;i,j is denoted by F (·|n, ρn;i,j), then the cdf of the sample partial correlation ρ̂n;i,j|k with

|k| = m < n− 1 is F [·|n−m, ρn;i,j|k]. That is, the effective sample size is reduced by m.

A proof can be found in Fisher (1924); see also Anderson (1984). �

Lemma 1 and 2 yield then the following.

Corollary 1 Assume (the first part of) (A1) and (the upper bound in) (A4). Then, for

any γ > 0,

sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j|k − ρn;i,j|k| > γ]

≤ C1(n− 2−mn) exp

(

(n− 4−mn) log(
4− γ2

4 + γ2
)

)

,

for some constant 0 < C1 <∞ depending on M from (A4) only.

The PC-algorithm is testing partial correlations after the z-transform g(ρ) = 0.5 log((1+

ρ)/(1 − ρ)). Denote by Zn;i,j|k = g(ρ̂n;i,j|k) and by zn;i,j|k = g(ρn;i,j|k).

Lemma 3 Assume the conditions from Corollary 1. Then, for any γ > 0,

sup
i,j,k∈Kmn

i,j

IP[|Zn;i,j|k − zn;i,j|k| > γ]

≤ O(n−mn)

(

exp((n− 4−mn) log(
4− (γ/L)2

4 + (γ/L)2
)) + exp(−C2(n−mn))

)

for some constant 0 < C2 <∞ and L = 1/(1 − (1 + M)2/4).

Proof: A Taylor expansion of the z-transform g(ρ) = 0.5 log((1 + ρ)/(1 − ρ)) yields:

Zn;i,j|k − zn;i,j|k = g′(ρ̃n;i,j|k)(ρ̂n;i,j|k − ρn;i,j|k), (10)

where |ρ̃n;i,j|k − ρn;i,j|k| ≤ |ρ̂n;i,j|k − ρn;i,j|k|. Moreover, g′(ρ) = 1/(1 − ρ2). By applying

Corollary 1 with γ = κ = (1−M)/2 we have

sup
i,j,k∈Kmn

i,j

IP[|ρ̃n;i,j|k − ρn;i,j|k| ≤ κ]

> 1−C1(n− 2−mn) exp(−C2(n−mn)). (11)

Since

g′(ρ̃n;i,j|k) =
1

1− ρ̃2
n;i,j|k

=
1

1− (ρn;i,j|k + (ρ̃n;i,j|k − ρn;i,j|k))2

≤ 1

1− (M + κ)2
if |ρ̃n;i,j|k − ρn;i,j|k| ≤ κ,
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where we also invoke (the second part of) assumption (A4) for the last inequality. Therefore,

since κ = (1−M)/2 yielding 1/(1 − (M + κ)2) = L, and using (11), we get

sup
i,j,k∈Kmn

i,j

IP[|g′(ρ̃n;i,j|k)| ≤ L]

≥ 1−C1(n− 2−mn) exp(−C2(n−mn)). (12)

Since |g′(ρ)| ≥ 1 for all ρ, we obtain with (10):

sup
i,j,k∈Kmn

i,j

IP[|Zn;i,j|k − zn;i,j|k| > γ] (13)

≤ sup
i,j,k∈Kmn

i,j

IP[|g′(ρ̃n;i,j|k)| > L] + sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j|k − ρn;i,j|k| > γ/L].

Formula (13) follows from elementary probability calculations: for two random variables

U, V with |U | ≥ 1 (|U | corresponding to |g ′(ρ̃)| and |V | to the difference |ρ̂− ρ|),

IP[|UV | > γ] = IP[|UV | > γ, |U | > L] + IP[|UV | > γ, 1 ≤ |U | ≤ L]

≤ IP[|U | > L] + IP[|V | > γ/L].

The statement then follows from (13), (12) and Corollary 1. �

7.2.2 Proof of Theorem 1

For the analysis of the PC-algorithm, it is useful to consider a more general version as shown

in Algorithm 3.

The PC-algorithm in Section 2.2.1 equals the PCpop(mreach)-algorithm . There is the

obvious sample version, the PC(m)-algorithm, and the PC-algorithm in Section 2.2.2 is

then same as the PC(m̂reach)-algorithm, where m̂reach is the sample version of (2).

The population version PCpop(mn)-algorithm when stopped at level mn = mreach,n

constructs the true skeleton according to Proposition 1. Moreover, the PCpop(m)-algorithm

remains to be correct when using m ≥ mreach,n. The following Lemma extends this result

to the sample PC(m)-algorithm.

Lemma 4 Assume (A1), (A2), (A3) where 0 < b ≤ 1 and (A4) where 0 < d < b/2. Denote

by Ĝskel,n(αn,mn) the estimate from the PC(mn)-algorithm in Section 2.2.2 and by Gskel,n

the true skeleton from the DAG Gn. Moreover, denote by mreach,n the value described in

(2). Then, for mn ≥ mreach,n, mn = O(n1−b) (n→∞), there exists αn → 0 (n→∞) such

that

IP[Ĝskel,n(αn,mn) = Gskel,n]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞.
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Algorithm 3 The PCpop(m)-algorithm

INPUT: Stopping level m, Vertex Set V , Conditional Independence Information

OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the

skeleton afterwards)

Form the complete undirected graph C̃ on the vertex set V.

` = −1; C = C̃

repeat

` = ` + 1

repeat

Select a (new) ordered pair of nodes i,j that are adjacent in C such that |adj(C, i) \
{j}| ≥ `

repeat

Choose (new) k ⊆ adj(C, i) \ {j} with |k| = `.

if i and j are conditionally independent given k then

Delete edge i, j

Denote this new graph by C.

Save k in S(i, j) and S(j, i)

end if

until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ` have been chosen

until all ordered pairs of adjacent variables i and j such that |adj(C, i) \ {j}| ≥ ` and

k ⊆ adj(C, i) \ {j} with |k| = ` have been tested for conditional independence

until ` = m or for each ordered pair of adjacent nodes i,j: |adj(C, i) \ {j}| < `.
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Proof: An error occurs in the sample PC-algorithm if there is a pair of nodes i, j and a

conditioning set k ∈ Kmn
i,j (although the algorithm is typically only going through a random

subset of Kmn
i,j ) where an error event Ei,j|k occurs; Ei,j,k denotes that “an error occurred

when testing partial correlation for zero at nodes i, j with conditioning set k”. Thus,

IP[an error occurs in the PC(mn)-algorithm]

≤ P [
⋃

i,j,k∈Kmn
ij

Ei,j|k] ≤ O(pmn+2
n ) sup

i,j,k∈Kmn
ij

IP[Ei,j|k], (14)

using that the cardinality of the set |{i, j,k ∈ Kmn
ij }| = O(pmn+2

n ), see also formula (5).

Now

Ei,j|k = EI
i,j|k ∪EII

i,j|k, (15)

where

type I error EI
i,j|k :

√

n− |k| − 3|Zi,j|k| > Φ−1(1− α/2) and zi,j|k = 0,

type II error EII
i,j|k :

√

n− |k| − 3|Zi,j|k| ≤ Φ−1(1− α/2) and zi,j|k 6= 0.

Choose α = αn = 2(1 − Φ(n1/2cn/2)), where cn is from (A4). Then,

sup
i,j,k∈Kmn

i,j

IP[EI
i,j|k] = sup

i,j,k∈Kmn
i,j

IP[|Zi,j|k − zi,j|k| > (n/(n− |k| − 3))1/2cn/2]

≤ O(n−mn) exp(−C3(n−mn)c2
n), (16)

for some 0 < C3 < ∞ using Lemma 3 and the fact that log( 4−δ2

4+δ2 ) ∼ −δ2/2 as δ → 0.

Furthermore, with the choice of α = αn above,

sup
i,j,k∈Kmn

i,j

IP[EII
i,j|k] = sup

i,j,k∈Kmn
i,j

IP[|Zi,j|k| ≤
√

n/(n− |k| − 3)cn/2]

≤ sup
i,j,k∈Kmn

i,j

IP[|Zi,j|k − zi,j|k| > cn(1−
√

n/(n− |k| − 3)/2)],

because infi,j;k∈Kmn
i,j
|zi,j|k| ≥ cn since |g(ρ)| ≥ |ρ| for all ρ and using assumption (A4). By

invoking Lemma 3 we then obtain:

sup
i,j,k∈Kmn

i,j

IP[EII
i,j|k] ≤ O(n−mn) exp(−C4(n−mn)c2

n) (17)

for some 0 < C4 <∞. Now, by (14)-(17) we get

IP[an error occurs in the PC(mn)-algorithm]

≤ O(pmn+2
n (n−mm) exp(−C5(n−mn)c2

n))

≤ O(na(mn+2)+1 exp(−C5(n−mn)n−2d))

= O
(

exp
(

a(mn + 2) log(n) + log(n)− C5(n
1−2d −mnn−2d)

))

= o(1),
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because n1−2d dominates all other terms in the argument of the exp-function due to the

assumption in (A4) that d < b/2. This completes the proof. �

Lemma 4 leaves some flexibility for choosing mn. The PC-algorithm yields a data-

dependent reached stopping level m̂reach,n, that is, the sample version of (2).

Lemma 5 Assume (A1)-(A4). Then,

IP[m̂reach,n = mreach,n] = 1−O(exp(−Cn1−2d))→ 1 (n→∞)

for some 0 < C <∞,

where d > 0 is as in (A4).

Proof: Consider the population algorithm PCpop(m): the reached stopping level satisfies

mreach ∈ {qn−1, qn}, see Proposition 1. The sample PC(mn)-algorithm with stopping level

in the range of mreach ≤ mn = O(n1−b), coincides with the population version on a set

A having probability P [A] = 1 − O(exp(−Cn1−2d)), see the last formula in the proof of

Lemma 4. Hence, on the set A, m̂reach,n = mreach ∈ {qn − 1, qn}. The claim then follows

from Lemma 4. �

Lemma 4 and 5 together complete the proof of Theorem 1.

Because there are faithful distributions which require mn = mreach,n ∈ {qn − 1, qn} for

consistent estimation with the PC(m)-algorithm, Lemma 5 indicates that the PC-algorithm,

stopping at m̂reach,n, yields with high probability the smallest m = mn which is universally

consistent for all faithful distributions.

7.2.3 Proof of Theorem 2

As mentioned in section 2.3, due to the result of Meek (1995b), it is sufficient to estimate

the correct skeleton and separation sets. The proof of Theorem 1 also covers the issue of

choosing the correct separation sets S, that is, the probability of estimating the correct sets

S goes to one as n→∞. Hence, the proof of Theorem 2 is completed.

Appendix A. Bound for error probability of PC-algorithm

M and c are the upper and lower bounds for partial correlations, as defined in section

3.1. p is the number of variables, q is the maximal size of neighbors, n is the sample size.

The significance level is chosen as suggested in the proofs, that is, α = 2(1 − Φ(n1/2c/2)).

By closely inspecting the proofs, one can derive the following upper bound for the error

probability of the PC-algorithm:

IP[Ĝ 6= G] ≤ pq+2C1(n− 1− q)(exp (−C2(n− q)) + exp ((n− 4− q)f(L,
c

2
)))

where L = 1
1−(1+M)2/4

, C1 = 1+2/(1−M)

(1−M)5/2 , C2 = − log( 16−(1−M)2

16+(1−M)2
) and f(x, y) = log( 4−(y/x)2

4+(y/x)2
).
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