
Journal of Machine Learning Research ? (????) ?? Submitted 09/06; Published ??

Estimating High-Dimensional Directed Acyclic Graphs

With the PC-Algorithm

Markus Kalisch kalisch@stat.math.ethz.ch

Seminar für Statistik
ETH Zürich
8092 Zürich, Switzerland

Peter Bühlmann buehlmann@stat.math.ethz.ch

Seminar für Statistik

ETH Zürich

8092 Zürich, Switzerland

Editor: ???

Abstract

We consider the PC-algorithm (Spirtes et al., 2000) for estimating the skeleton and equiv-
alence class of a very high-dimensional directed acyclic graph (DAG) with corresponding
Gaussian distribution. The PC-algorithm is computationally feasible for sparse problems
with many nodes, i.e. variables, and it has the attractive property to automatically achieve
high computational efficiency as a function of sparseness of the true underlying DAG.
We prove consistency of the algorithm for very high-dimensional, sparse DAGs where the
number of nodes is allowed to quickly grow with sample size n, as fast as O(na) for any
0 < a < ∞. The sparseness assumption is rather minimal requiring only that the neigh-
borhoods in the DAG are of lower order than sample size n. We also demonstrate the
PC-algorithm for simulated data and compare it with other methods.
Keywords: Asymptotic Consistency, DAG, Graphical Model, PC-Algorithm, Skeleton

1. Introduction

Graphical models are a popular probabilistic tool to analyze and visualize conditional in-
dependence relationships between random variables (see Edwards, 2000; Lauritzen, 1996).
Major building blocks of the models are nodes, which represent random variables and edges,
which encode conditional dependence relations of the enclosing vertices. The structure of
conditional independence among the random variables can be explored using the Markov
properties.

Of particular current interest are directed acyclic graphs (DAGs), containing directed
rather than undirected edges, which restrict in a sense the conditional dependence relations.
These graphs can be interpreted by applying the directed Markov property (see Lauritzen,
1996). When ignoring the directions of a DAG, we get the skeleton of a DAG. In general,

c©???? M. Kalisch, P. Bühlmann.



Kalisch and Bühlmann

it is different from the conditional independence graph (CIG), see Section 2.1. (Thus,
estimation methods for directed graphs cannot be easily borrowed from approaches for
undirected CIGs.) As we will see in Section 2.1, the skeleton can be interpreted easily and
thus yields interesting insights into the dependence structure of the data.

Estimation of a DAG from data is difficult and computationally non-trivial due to the
enormous size of the space of DAGs: the number of possible DAGs is super-exponential
in the number of nodes (see Robinson, 1973). Nevertheless, there are quite successful
search-and-score methods for problems where the number of nodes is small or moderate.
For example, the search space may be restricted to trees as in MWST (Maximum Weight
Spanning Trees; see Chow and Liu, 1968; Heckerman et al., 1995), or a greedy search is
employed. The greedy DAG search can be improved by exploiting probabilistic equivalence
relations, and the search space can be reduced from individual DAGs to equivalence classes,
as proposed in GES (Greedy Equivalent Search, see Chickering, 2002a). Although this
method seems quite promising when having few or a moderate number of nodes, it is limited
by the fact that the space of equivalence classes is conjectured to grow super-exponentially
in the nodes as well (Gillispie and Perlman, 2001). Bayesian approaches for DAGs, which
are computationally very intensive, include Spiegelhalter et al. (1993) and Heckerman et al.
(1995).

An interesting alternative to greedy or structurally restricted approaches is the PC-
algorithm (after its authors, Peter and Clark) from Spirtes et al. (2000). It starts from a
complete, undirected graph and deletes recursively edges based on conditional independence
decisions. This yields an undirected graph which can then be partially directed and further
extended to represent the underlying DAG (see later). The PC-algorithm runs in the worst
case in exponential time (as a function of the number of nodes), but if the true underlying
DAG is sparse, which is often a reasonable assumption, this reduces to a polynomial runtime.

We focus in this paper on estimating the equivalence class and the skeleton of DAGs
(corresponding to multivariate Gaussian distributions) in the high-dimensional context, i.e.
the number of nodes p may be much larger than sample size n. We prove that the PC-
algorithm consistently estimates the equivalence class and the skeleton of an underlying
sparse DAG, as sample size n → ∞, even if p = pn = O(na) (0 ≤ a < ∞) is allowed to
grow very quickly as a function of n. Our implementation of the PC-algorithm allows to
estimate those aspects of a sparse DAG even if p is in the hundreds or thousands. For the
high-dimensional setting with p > n, sparsity of the underlying DAG is crucial for statistical
consistency and computational feasibility. The PC-algorithm seems to be the only method
for high-dimensional settings which is computationally feasible and, due to the new results
in this paper, provably correct in an asymptotic sense.

We argue empirically that the PC-algorithm is rather insensitive to the choice of its
single tuning parameter, a significance level for testing, and we compare the PC-algorithm
with other methods, at least for low- or mid-dimensional problems.

2



High-dimensional DAGs and the PC-algorithm

2. Finding the Equivalence Class of a DAG

2.1 Definitions and Preliminaries

A graph G = (V,E) consists of a set of nodes or vertices V = {1, . . . , p} and a set of edges
E ⊆ V × V , i.e. the edge set is a subset of ordered pairs of distinct nodes. In our setting,
the set of nodes corresponds to the components of a random vector X ∈ Rp. An edge
(i, j) ∈ E is called directed if (i, j) ∈ E but (j, i) /∈ E; we then use the notation i → j.
If both (i, j) ∈ E and (j, i) ∈ E, the edge is called undirected; we then use the notation
i− j. An directed acyclic graph (DAG) is a graph G where all edges are directed and not
containing any cycle.

If there is a directed edge i → j, node i is said to be a parent of node j. The set of
parents of node j is denoted by pa(j). The adjacency set of a node j in graph G, denoted
by adj(G, j), are all nodes i which are directly connected to j by an edge (directed or
undirected). The elements of adj(G, j) are also called neighbors of or adjacent to j.

A probability distribution P on Rp is said to be faithful with respect to a graph G if
conditional independencies of the distribution can be inferred from so-called d-separation in
the graph G and vice-versa. More precisely: consider a random vector X ∼ P . Faithfulness
of P with respect to G means: for any i, j ∈ V with i 6= j and any set s ⊆ V ,

X(i) and X(j) are conditionally independent given {X(r); r ∈ s}
⇔ node i and node j are d-separated by the set s.

The notion of d-separation can be defined via moral graphs; details are described in Lau-
ritzen (1996, Prop. 3.25). We remark here that faithfulness is ruling out some classes of
probability distributions. An example of a non-faithful distribution is given in Spirtes et al.
(2000, Chapter 3.5.2). On the other hand, non-faithful distributions of the multivariate
normal family (which we will limit ourselves to) form a Lebesgue null-set in the space of
distributions associated with a DAG G, see Spirtes et al. (2000, Th. 3.2).

The skeleton of a DAG G is the undirected graph obtained from G by substituting
undirected edges for directed edges. A v-structure in a DAG G is an ordered triple of nodes
(i, j, k) such that G contains the directed edges i → j and k → j, and i and k are not
adjacent in G.

It is well known that for a probability distribution P which is generated from a DAG G,
there is a whole equivalence class of DAGs with corresponding distribution P (see Chicker-
ing, 2002a, Section 2.2 ), and we can only identify an equivalence class of DAGs, even when
having infinitely many observations. Using a result from Verma and Pearl (1991), we can
characterize equivalent classes more precisely: Two DAGs are equivalent if and only if they
have the same skeleton and the same v-structures.

A common tool for visualizing equivalence classes of DAGs are completed partially di-
rected acyclic graphs (CPDAG). A partially directed acyclic graph (PDAG) is a DAG where

3



Kalisch and Bühlmann

some edges are directed and some are undirected and one cannot trace a cycle by following
the direction of directed edges and any direction for undirected edges. Equivalence among
PDAGs or of PDAGs and DAGs can be decided as for DAGs by inspecting the skeletons
and v-structures. A PDAG is completed, if (1) every directed edge exists also in every DAG
belonging to the equivalence class of the PDAG and (2) for every undirected edge i−j there
exists a DAG with i → j and a DAG with i ← j in the equivalence class. While several
PDAGs might represent the same equivalence class, it was shown in Chickering (2002b)
that two CPDAGs are identical if and only if they represent the same equivalence class.
Therefore, we prefer CPDAGs over PDAGs for representing equivalence classes.

Although the main goal is to identify the CPDAG, the skeleton itself already contains
interesting information. In particular, if P is faithful with respect to a DAG G,

there is an edge between nodes i and j in the skeleton of DAG G

⇔ for all s ⊆ V \ {i, j}, X(i) and X(j) are conditionally dependent

given {X(r); r ∈ s}, (1)

(Spirtes et al., 2000, Th. 3.4). This implies that if P is faithful with respect to a DAG G,
the skeleton of the DAG G is a subset (or equal) to the conditional independence graph
(CIG) corresponding to P . (The reason is that an edge in a CIG requires only conditional
dependence given the set V \{i, j}). More importantly, every edge in the skeleton indicates
some strong dependence which cannot be explained away by accounting for other variables.
We think, that this property is of value for exploratory analysis.

As we will see later in more detail, estimating the CPDAG consists of two main parts
(which will naturally structure our analysis): (1) Estimation of the skeleton and (2) partial
orientation of edges. All statistical inference is done in the first part, while the second is
just application of deterministic rules on the results of the first part. Therefore, we will
put much more emphasis on the analysis of the first part. If the first part is done correctly,
the second will never fail. If, however, there occur errors in the first part, the second part
will be more sensitive to it, since it depends on the inferential results of part (1) in greater
detail. I.e., when dealing with a high-dimensional setting (large p, small n), the CPDAG is
harder to recover than the skeleton. Moreover, the interpretation of the CPDAG depends
much more on the global correctness of the graph. The interpretation of the skeleton, on
the other hand, depends only on a local region and is thus more reliable.

We conclude that, if the true underlying probability mechanisms are generated from a
DAG, finding the CPDAG is the main goal. The skeleton itself oftentimes already pro-
vides interesting insights, and in a high-dimensional setting it is quite sensible to use the
undirected skeleton as a target rather than the CPDAG.

As mentioned before, we will in the following describe two main steps. First, we will
discuss the part of the PC-algorithm that leads to the skeleton. Afterwards we will complete

4



High-dimensional DAGs and the PC-algorithm

the algorithm by discussing the extensions for finding the CPDAG. We will use the same
format when discussing theoretical properties or numerical simulations of the PC-algorithm.

2.2 The PC-algorithm for Finding the Skeleton

A naive strategy for finding the skeleton would be to check conditional independencies
given all subsets s ⊆ V \ {i, j} (see formula (1)), i.e. all partial correlations in the case
of multivariate normal distributions as first suggested by Verma and J.Pearl. This would
become computationally infeasible and statistically ill-posed for p larger than sample size.
A much better approach is used by the PC-algorithm which is able to exploit sparseness
of the graph. More precisely, we apply the part of the PC-algorithm that identifies the
undirected edges of the DAG.

2.2.1 Population Version

In the population version of the PC-algorithm, we assume that perfect knowledge about all
necessary conditional independence relations is available. We refer here to the PC-algorithm
what others call the first part of the PC-algorithm; the other part is described in Algorithm
2 in Section 2.3.

The (first part of the) PC-algorithm is given in Algorithm 1. The maximal value of ` in
Algorithm 1 is denoted by

mreach = maximal reached value of `. (2)

The value of mreach depends on the underlying distribution.
A proof that this algorithm produces the correct skeleton can be easily deduced from

Theorem 5.1 in Spirtes et al. (2000). We summarize the result as follows.

Proposition 1 Consider a DAG G and assume that the distribution P is faithful to G.
Denote the maximal number of neighbors by q = max1≤j≤p |adj(G, j)|. Then, the PCpop-
algorithm constructs the true skeleton of the DAG. Moreover, for the reached level: mreach ∈
{q − 1, q}.

A proof is given in Section 7.

2.2.2 Sample Version for the Skeleton

For finite samples, we need to estimate conditional independencies. We limit ourselves to the
Gaussian case, where all nodes correspond to random variables with a multivariate normal
distribution. Furthermore, we assume faithful models, i.e. the conditional independence
relations can be read off the graph and vice versa; see Section 2.1.

In the Gaussian case, conditional independencies can be inferred from partial correla-
tions.

5



Kalisch and Bühlmann

Algorithm 1 The PCpop-algorithm
1: INPUT: Vertex Set V , Conditional Independence Information
2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the

skeleton afterwards)
3: Form the complete undirected graph C̃ on the vertex set V.
4: ` = −1; C = C̃

5: repeat
6: ` = ` + 1
7: repeat
8: Select a (new) ordered pair of nodes i,j that are adjacent in C such that |adj(C, i)\

{j}| ≥ `

9: repeat
10: Choose (new) k ⊆ adj(C, i) \ {j} with |k| = `.
11: if i and j are conditionally independent given k then
12: Delete edge i, j

13: Denote this new graph by C.
14: Save k in S(i, j) and S(j, i)
15: end if
16: until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ` have been chosen
17: until all ordered pairs of adjacent variables i and j such that |adj(C, i)\{j}| ≥ ` and

k ⊆ adj(C, i) \ {j} with |k| = ` have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i,j: |adj(C, i) \ {j}| < `.

6



High-dimensional DAGs and the PC-algorithm

Proposition 2 Assume that the distribution P of the random vector X is multivariate
normal. For i 6= j ∈ {1, . . . , p}, k ⊆ {1, . . . , p}\{i, j}, denote by ρi,j|k the partial correlation
between X(i) and X(j) given {X(r); r ∈ k}. Then, ρi,j|k = 0 if and only if X(i) and X(j)

are conditionally independent given {X(r); r ∈ k}.

Proof: The claim is an elementary property of the multivariate normal distribution, cf.
Lauritzen (1996, Prop. 5.2.). �

We can thus estimate partial correlations to obtain estimates of conditional indepen-
dencies. The sample partial correlation ρ̂i,j|k can be calculated via regression, inversion of
parts of the covariance matrix or recursively by using the following identity: for some h ∈ k,

ρi,j|k =
ρi,j|k\h − ρi,h|k\hρj,h|k\h√
(1− ρ2

i,h|k\h)(1− ρ2
j,h|k\h)

.

In the following, we will concentrate on the recursive approach. For testing whether a
partial correlation is zero or not, we apply Fisher’s z-transform

Z(i, j|k) =
1
2

log
(

1 + ρ̂i,j|k

1− ρ̂i,j|k

)
. (3)

Classical decision theory yields then the following rule when using the significance level
α. Reject the null-hypothesis H0(i, j|k) : ρi,j|k = 0 against the two-sided alternative
HA(i, j|k) : ρi,j|k 6= 0 if

√
n− |k| − 3|Z(i, j|k)| > Φ−1(1 − α/2), where Φ(·) denotes the

cdf of N (0, 1).
The sample version of the PC-algorithm is almost identical to the population version in

Section 2.2.1.

The PC-algorithm

Run the PCpop(m)-algorithm as described in Section 2.2.1 but replace in line 11 of
Algorithm 1 the if-statement by
if

√
n− |k| − 3|Z(i, j|k)| ≤ Φ−1(1− α/2) then.

The algorithm yields a data-dependent value m̂reach,n which is the sample version of (2).
The only tuning parameter of the PC-algorithm is α, i.e. the significance level for testing

partial correlations. The algorithm seems to be rather insensitive to the choice of α, see
Section 4.

As we will see below in Section 3, the algorithm is asymptotically consistent even if p is
much larger than n but the DAG is sparse.

7



Kalisch and Bühlmann

2.3 Extending the Skeleton to the Equivalence Class

While finding the skeleton as in Algorithm 1, we recorded the separation sets that made
edges drop out in the variable denoted by S. This was not necessary for finding the skeleton
itself, but will be essential for extending the skeleton to the equivalence class. In Algorithm
2 we describe the work of Pearl (2000, p.50f) to extend the skeleton to a PDAG belonging
to the equivalence class of the underlying DAG. (Spirtes et al. (2000) provide an alternative,
which we think is harder to implement.).

Algorithm 2 Extending the skeleton to a PDAG
INPUT: Skeleton Gskel, separation sets S

OUTPUT: PDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do
if k /∈ S(i, j) then

Replace i− k − j in Gskel by i→ k ← j

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated
application of the following three rules:
R1 Orient j − k into j → k whenever there is an arrow i → j such that i and k are
nonadjacent.
R2 Orient i− j into i→ j whenever there is a chain i→ k → j.
R3 Orient i− j into i → j whenever there are two chains i− k → j and i− l → j such
that k and l are nonadjacent.

The output of Algorithm 2 is a PDAG. To transform it into a CPDAG, we first transform
it to a DAG (see Dor and Tarsi, 1992) and then to a CPDAG (see Chickering, 2002b). Com-
paring with the task of finding the skeleton in Algorithm 1, the computational complexity
of these steps is negligible.

Our theoretical framework in Section 3 will allow for large values of p. The computa-
tional complexity of the PC-algorithm is difficult to evaluate exactly, but the worst case is
bounded by

O(pm̂reach,n) which is with high probability bounded by O(pqn) (4)

as a function of dimensionality p; here, qn is the maximal size of the neighborhoods as
described in assumption (A3) in Section 3. We note that the bound may be very loose
for many distributions. Thus, for the worst case where the complexity bound is achieved,
the algorithm is computationally feasible if qn is small, say qn ≤ 3, even if p is large. For
non-worst cases, however, we can still do the computations for much larger values of qn and
fairly dense graphs, e.g. some nodes j have neighborhoods of size up to |adj(G, j)| = 30.

8



High-dimensional DAGs and the PC-algorithm

3. Consistency for High-Dimensional Data

As in Section 2, we will first deal with the problem of finding the skeleton. Consecutively,
we will extend the result to finding the CPDAG.

3.1 Finding the Skeleton

We will show that the PC-algorithm from Section 2.2.2 is asymptotically consistent for the
skeleton of a DAG, even if p is much larger than n but the DAG is sparse. We assume that
the data are realizations of i.i.d. random vectors X1, . . . ,Xn with Xi ∈ Rp from a DAG G

with corresponding distribution P . To capture high-dimensional behavior, we will let the
dimension grow as a function of sample size: thus, p = pn and also the DAG G = Gn and
the distribution P = Pn. Our assumptions are as follows.

(A1) The distribution Pn is multivariate Gaussian and faithful to the DAG Gn for all n.

(A2) The dimension pn = O(na) for some 0 ≤ a <∞.

(A3) The maximal number of neighbors in the DAG Gn is denoted by
qn = max1≤j≤pn |adj(G, j)|, with qn = O(n1−b) for some 0 < b ≤ 1.

(A4) The partial correlations between X(i) and X(j) given {X(r); r ∈ k} for some set k ⊆
{1, . . . , pn} \ {i, j} are denoted by ρn;i,j|k. Their absolute values are bounded from
below and above:

inf{|ρi,j|k|; i, j,k with ρi,j|k 6= 0} ≥ cn, c−1
n = O(nd),

for some 0 < d < b/2,

sup
n;i,j,k

|ρi,j|k| ≤M < 1,

where 0 < b ≤ 1 is as in (A3).

Assumption (A1) is an often used assumption in graphical modeling, although it does
restrict the class of possible probability distributions (see also third paragraph of Section
2.1); (A2) allows for an arbitrary polynomial growth of dimension as a function of sample
size, i.e. high-dimensionality; (A3) is a sparseness assumption and (A4) is a regularity
condition. Assumptions (A3) and (A4) are rather minimal: note that with b = 1 in (A3),
e.g. fixed qn = q <∞ the partial correlations can decay as n−1/2+ε for any 0 < ε ≤ 1/2. If
the dimension p is fixed (with fixed DAG G and fixed distribution P ), (A2) and (A3) hold
and (A1) and the second part of (A4) remain as the only conditions. Recently, the Lasso
has been proposed as a computationally efficient algorithm for estimating high-dimensional
undirected conditional independence graphs where the growth in dimensionality is as in (A2)
(see Meinshausen and Bühlmann, 2006). However, the Lasso approach can be inconsistent,
even with fixed dimension p, as discussed in detail in Zhao and Yu (2006).

9



Kalisch and Bühlmann

Theorem 1 Assume (A1)-(A4). Denote by Ĝskel,n(αn) the estimate from the (first part
of the) PC-algorithm in Section 2.2.2 and by Gskel,n the true skeleton from the DAG Gn.
Then, there exists αn → 0 (n→∞), see below, such that

IP[Ĝskel,n(αn) = Gskel,n]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞,

where d > 0 is as in (A4).

A proof is given in the Section 7. A choice for the value of the significance level is
αn = 2(1−Φ(n1/2cn/2)) which depends on the unknown lower bound of partial correlations
in (A4).

3.2 Extending the Skeleton to the Equivalence Class

As mentioned before, all inference is done while finding the skeleton. If this part is completed
perfectly, the second part will never fail (see Pearl, 2000). Furthermore, the extension of a
PDAG to a DAG and from a DAG to a CPDAG were shown to be correct in Dor and Tarsi
(1992) and Chickering (2002b), respectively. Therefore, we easily obtain:

Theorem 2 Assume (A1)-(A4). Denote by ĜCPDAG(αn) the estimate from the entire
PC-algorithm and by GCPDAG the true CPDAG from the DAG G. Then, there exists
αn → 0 (n→∞), see below, such that

IP[ĜCPDAG(αn) = GCPDAG]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞,

where d > 0 is as in (A4).

A proof, consisting of one short argument, is given in the Section 7. As for Theorem 2, we
can choose αn = 2(1− Φ(n1/2cn/2)).

4. Numerical Examples

We analyze the PC-algorithm and alternative methods for finding the skeleton and the
CPDAG using various simulated data sets. Again, we will first deal with the skeleton and
then with the CPDAG. The numerical results have been obtained using the R-package pcalg
and the Bayes Net Toolbox of Kevin Murphy in MATLAB.

4.1 Simulating Data

In this section, we analyze the PC-algorithm for the skeleton using simulated data. In order
to simulate data, we first construct an adjacency matrix A as follows:

10



High-dimensional DAGs and the PC-algorithm

1. Fix an ordering of the variables.

2. Fill the adjacency matrix A with zeros.

3. Replace every matrix entry in the lower triangle (below the diagonal) by independent
realizations of Bernoulli(s) random variables with success probability s where 0 < s <

1. We will call s the sparseness of the model.

4. Replace each entry with a 1 in the adjacency matrix by independent realizations of a
Uniform([0.1, 1]) random variable.

This then yields a matrix A whose entries are zero or in the range [0.1, 1]. The corresponding
DAG draws a directed edge from node i to node j if i < j and Aji 6= 0. The DAGs (and
skeletons thereof) that are created in this way have the following property: IE[Ni] = s(p−1),
where Ni is the number of neighbors of a node i.

Thus, a low sparseness parameter s implies few neighbors and vice-versa. The matrix
A will be used to generate the data as follows. The value of the random variable X(1),
corresponding to the first node, is given by

ε(1) ∼ N(0, 1)

X(1) = ε(1)

and the values of the next random variables (corresponding to the next nodes) can be
computed recursively as

ε(i) ∼ N(0, 1)

X(i) =
i−1∑
k=1

AikX
(k) + ε(i) (i = 2, . . . , p),

where all ε(1), . . . , ε(p) are independent.

4.2 Skeleton

4.2.1 Comparison with Alternative Methods

In this section, we will compare the PC-algorithm with two alternative methods, Greedy
Equivalent Search (GES, see Chickering, 2002a) and Maximum Weight Spanning Trees
(MWST, see Heckerman et al., 1995) which both try to find DAGs that maximize the BIC
criterion. We report here the accuracy for finding the true skeleton: The rate of correctly
identified edges, True Positive Rate (TPR), the rate of estimated edges which are false,
False Positive Rate (FPR), and as a measure of reliability the ratio of correctly found edges
and the total number of all found edges, the True Discovery Rate (TDR).

11



Kalisch and Bühlmann

We found, that the BIC based methods find DAGs with high TPR but also rather high
FPR. If only a small amount of observations is available (as is often the case in a very high-
dimensional setting), we cannot hope to recover the complete underlying model. Therefore,
instead of large TPR, we would rather prefer a high TDR. A measure for high reliability is
the True Discovery Rate (TDR), which is the ratio of correctly found edges and the total
number of all edges found.

Method ave[TPR] ave[FPR] ave[TDR]
PC 0.57 (0.06) 0.02 (0.01) 0.91 (0.05)

GES 0.85 (0.05) 0.13 (0.04) 0.71 (0.07)
MWST 0.66 (0.07) 0.06 (0.01) 0.78 (0.06)

Table 1: p = 10 nodes, sample size n = 50, sparseness s = 0.1, 50 replicates. Standard
errors are given in parentheses. The PC-algorithm achieves a substantially higher
True Discovery Rate than GES or MWST.

As can be seen in Table 1, the PC-algorithm achieves in our simulations by far higher
True Discovery Rates than GES or MWST: of all found edges, 91% were correct. Thus, al-
though a smaller total of edges was found, the estimated edges were correct more frequently.
We think, that this is a substantial advantage for real world applications.

4.2.2 Different Parameter Settings

As introduced in Section 2.2.2, the PC-algorithm has only one tuning parameter α. In this
section, we analyze the dependence of the algorithm on this parameter for different settings.

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.065 (0.002) 0.0057 (0.0005) 0.80 (0.02) 2.56 (0.07)
0.01 0.089 (0.003) 0.0082 (0.0007) 0.78 (0.02) 2.92 (0.06)
0.05 0.116 (0.003) 0.0133 (0.0009) 0.75 (0.02) 3.26 (0.06)
0.1 0.128 (0.003) 0.0161 (0.0010) 0.73 (0.02) 3.46 (0.08)
0.3 0.151 (0.005) 0.0238 (0.0011) 0.68 (0.02) 4.28 (0.08)

Table 2: p = 30, n = 20, s = 0.1, 50 replicates; s.e. in parentheses.

Tables 2 to 7 show the average over 50 replicates of TPR, FPR, TDR and m̂reach for
the DAG model in Section 4.1 with p = 30 nodes and varying sample size n and sparseness
s.

In the wide range of αs, no choice can be identified as being the best or worst. Especially
in the case of very few observations we see that small α leads to the discovery of very few

12



High-dimensional DAGs and the PC-algorithm

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.069 (0.002) 0.0056 (0.0005) 0.80 (0.02) 2.30 (0.07)
0.01 0.092 (0.002) 0.0097 (0.0007) 0.77 (0.02) 2.92 (0.06)
0.05 0.116 (0.003) 0.0141 (0.0008) 0.73 (0.01) 3.28 (0.07)
0.1 0.131 (0.003) 0.0165 (0.0008) 0.73 (0.01) 3.50 (0.08)
0.3 0.159 (0.004) 0.0233 (0.0010) 0.70 (0.01) 4.34 (0.07)

Table 3: p = 30, n = 20, s = 0.4, 50 replicates; s.e. in parentheses.

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.153 (0.004) 0.015 (0.001) 0.77 (0.01) 4.02 (0.07)
0.01 0.175 (0.005) 0.017 (0.001) 0.77 (0.01) 4.38 (0.09)
0.05 0.193 (0.005) 0.020 (0.001) 0.76 (0.01) 4.82 (0.08)
0.1 0.200 (0.005) 0.021 (0.001) 0.76 (0.01) 5.00 (0.09)
0.3 0.221 (0.006) 0.025 (0.001) 0.74 (0.01) 5.66 (0.09)

Table 4: p = 30, n = 100, s = 0.1, 50 replicates; s.e. in parentheses.

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.155 (0.004) 0.015 (0.001) 0.78 (0.01) 4.12 (0.08)
0.01 0.174 (0.004) 0.016 (0.001) 0.78 (0.01) 4.54 (0.08)
0.05 0.188 (0.005) 0.020 (0.001) 0.76 (0.01) 4.78 (0.09)
0.1 0.196 (0.005) 0.021 (0.001) 0.76 (0.01) 4.92 (0.09)
0.3 0.217 (0.006) 0.028 (0.001) 0.71 (0.01) 5.58 (0.10)

Table 5: p = 30, n = 100, s = 0.4, 50 replicates; s.e. in parentheses.

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.250 (0.007) 0.033 (0.001) 0.71 (0.01) 6.5 (0.1)
0.01 0.258 (0.007) 0.036 (0.001) 0.70 (0.01) 6.7 (0.1)
0.05 0.264 (0.007) 0.038 (0.001) 0.69 (0.01) 7.0 (0.1)
0.1 0.268 (0.007) 0.041 (0.001) 0.68 (0.01) 7.3 (0.1)
0.3 0.283 (0.007) 0.047 (0.001) 0.67 (0.01) 7.6 (0.1)

Table 6: p = 30, n = 5000, s = 0.1, 50 replicates; s.e. in parentheses.

α ave[TPR] ave[FPR] ave[TDR] ave[m̂reach]
0.001 0.260 (0.007) 0.031 (0.001) 0.73 (0.01) 6.40 (0.09)
0.01 0.268 (0.007) 0.035 (0.001) 0.72 (0.01) 6.80 (0.09)
0.05 0.277 (0.006) 0.036 (0.001) 0.72 (0.01) 7.04 (0.09)
0.1 0.281 (0.007) 0.038 (0.001) 0.71 (0.01) 7.22 (0.10)
0.3 0.294 (0.006) 0.045 (0.001) 0.68 (0.01) 7.70 (0.11)

Table 7: p = 30, n = 5000, s = 0.4, 50 replicates; s.e. in parentheses.

13



Kalisch and Bühlmann

edges with high reliability (high TDR), whereas higher values of α lead to the discovery of
more edges but with less reliability. Therefore, α can be used for fine tuning in finding a
good compromise between amount of edges found and their reliability.

Note, however, that especially for larger sample sizes, the rates vary only little, some-
times only by a few percent. Comparing this with the large change in α (over two orders
of magnitude), we feel that the PC-algorithm is rather insensitive to the choice of its single
tuning parameter.

4.3 Equivalence Class

In this section, we will compare the abilities of the PC-algorithm and GES to find CPDAGs.
To this end, we simulated 100 different DAGs consisting of p = 8 nodes and a sparseness of
s = 0.2. Then, a sample of size n was drawn from each DAG and both the PC-algorithm
and GES were used to recover the underlying CPDAG. Then, the percentage of correctly
found entire CPDAGs out of 100 was recorded. This is a rather stringent criterion, since
only entirely correctly identified CPDAGs are positively scored. In Figure 1 the percentages
together with point-wise 95% confidence intervals are shown for several values of n. The
performance of both algorithms improves as n increases and one can see that GES is a bit
better for finding the true CPDAG.

Drawing a conclusion, we see that GES and the PC-algorithm complement each other
very well: GES performs fine at the task of identifying the CPDAG in a low-dimensional
setting with an abundance of data. On the other hand, if the dimension is medium or
high (or the amount of available samples is small), there is not much hope of finding the
true underlying CPDAG. The next best goal would be to identify parts of the underlying
skeleton. Although the PC-algorithm finds fewer edges in the skeleton, the edges found are
correct more frequently. Therefore, the PC-algorithm seems to be more suitable for this
task.

4.4 Computational Costs

In the implementation we used for GES (Bayes Net Toolbox of Kevin Murphy in MATLAB),
it has been computationally feasible to consider problems where the dimensionality p is
about ten or less (see Table 1 and Figure 2). The PC-algorithm had in these problems
a computational cost which was by a factor of up to several thousands smaller than that
for GES. For larger dimensions in the range of dozens or hundreds, GES would not output
an estimate within reasonable amount of time (e.g. within one day for a single data set),
whereas the PC-algorithm needs a few seconds of CPU time only.

14



High-dimensional DAGs and the PC-algorithm

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

P
er

ce
nt

ag
e 

of
 c

or
re

ct
ly

 fo
un

d 
C

P
D

A
G

s 
ou

t o
f 1

00

GES
PC

Figure 1: The percentage of correctly found CPDAGs for different sample sizes using the
PC-algorithm and GES. The lines with circles show the mean values over 100
replications; the corresponding lines without circles describe point-wise 95% con-
fidence intervals. While the performance increases for both algorithms, GES finds
the true CPDAG more frequently (p = 8 nodes, sparseness s = 0.2)

15



Kalisch and Bühlmann

5. R-Package pcalg

The R-package pcalg can be used to estimate from data the underlying skeleton or equiv-
alence class of a DAG. To use this package, the statistics software R needs to be installed.
Both R and the R-package pcalg are available free of charge at
http://www.r-project.org.

In the following, we show an example of how to generate a random DAG, draw samples
and infer from data the skeleton and the equivalence class of the original DAG. The line
width of the edges in the resulting skeleton and CPDAG can be adjusted to correspond
to the reliability of the estimated dependencies. (The line width is proportional to the
smallest value of

√
n− |k| − 3 Z(i, j,k) causing an edge, see also 3. Therefore, thick lines

are reliable).

library(pcalg)

## define parameters

p <- 10 # number of random variables

n <- 10000 # number of samples

s <- 0.4 # sparsness of the graph

For simulating data as described in Section 4.1:

## generate random data

set.seed(42)

g <- randomDAG(p,s) # generate a random DAG

d <- rmvDAG(n,g) # generate random samples

Then we estimate the underlying skeleton by using the function pcAlgo and extend the
skeleton to the CPDAG by using the function udag2cpdag.

gSkel <-

pcAlgo(d,alpha=0.05) # estimate of the skeleton

gCPDAG <-

udag2cpdag(gSkel)

The results can be easily plotted using the following commands:

plot(g)

plot(gSkel,zvalue.lwd=TRUE)

plot(gCPDAG,zvalue.lwd=TRUE)

The original DAG is shown in Figure 2(a). The estimated skeleton and the estimated
CPDAG are shown in Figure 2(b) and Figure 2(c), respectively. Note the differing line
width, which indicates the reliability (z-values as in (3)) of the involved statistical tests
(thick lines are reliable).

16



High-dimensional DAGs and the PC-algorithm

1

2

3

45

6

78

9

10

(a) True DAG

pcAlgo(dm = d, alpha = 0.05)

1

2

3

4

5

6

7

8 9

10

(b) Estimated Skeleton

pcAlgo(dm = d, alpha = 0.05)

1

2

3

45

6

7

8 9

10

(c) Estimated CPDAG

Figure 2: These plots were generated using the R-package pcalg as described in section
5. (a) The true DAG. (b) The estimated skeleton using the R-function pcAlgo

with α = 0.05. Line width encodes the reliability (z-values) of the dependence
estimates (thick lines are reliable). (c) The estimated CPDAG using the R-
function udag2cpdag. Double-headed arrows indicate undirected edges.

6. Conclusions

We show that the PC-algorithm is asymptotically consistent for the equivalence class of the
DAG (i.e. the CPDAG) and its skeleton with corresponding very high-dimensional, sparse
Gaussian distribution. Moreover, the PC-algorithm is computationally feasible for such
high-dimensional, sparse problems. Putting these two facts together, the PC-algorithm is
established as a method (so far the only one) which is computationally feasible and provably
correct for high-dimensional DAGs.

Sparsity, in terms of the maximal size of the neighborhoods of the true underlying
DAG, is crucial for statistical consistency (assumption (A3) and Theorems 1 and 2) and for
computational feasibility with at most a polynomial complexity (see (4)) as a function of
dimensionality.

The PC-algorithm compares well with alternative approaches like MWST and GES for
low- or mid-dimensional problems (where the alternative methods are computationally fea-
sible). We found that the PC-algorithm has higher reliability (higher true discovery rate) for
the skeleton than MWST and GES while the latter has slightly better rates for discovering
the entire CPDAG. We emphasize that the skeleton of a DAG oftentimes provides inter-
esting insights, and in a high-dimensional setting it is quite sensible to use the undirected
skeleton as a simpler but more realistic target rather than the entire CPDAG.

For high-dimensional settings, MWST and GES (with the implementations we used)
become extremely slow while the PC-algorithm is still computationally feasible with a factor

17



Kalisch and Bühlmann

of thousands faster than MWST or GES. Software for the PC-algorithm is available as
explained in Section 5

7. Proofs

7.1 Proof of Proposition 1

Consider X with distribution P . Since P is faithful to the DAG G, conditional independence
of X(i) and X(j) given {X(r); r ∈ k} (k ⊆ V \ {i, j}) is equivalent to d-separation of nodes
i and j given the set k (see Spirtes et al., 2000, Th. 3.3). Thus, the population PCpop-
algorithm as formulated in Section 2.2.1 coincides with the one from Spirtes et al. (2000)
which is using the concept of d-separation, and the first claim about correctness of the
skeleton follows from Spirtes et al. (2000, Th. 5.1., Ch. 13).

The second claim about the value of mreach can be proved as follows. First, due to
the definition of the PCpop-algorithm and the fact that it constructs the correct skeleton,
mreach ≤ q. We now argue that mreach ≥ q−1. Suppose the contrary. Then, mreach ≤ q−2:
we could then continue with a further iteration in the algorithm since mreach + 1 ≤ q − 1
and there is at least one node j with neighborhood-size |adj(G, j)| = q: that is, the reached
stopping level would be at least q − 1 which is a contradiction to mreach ≤ q − 2. �

7.2 Analysis of the PC-Algorithm

7.2.1 Analysis of Partial Correlations

We first establish uniform consistency of estimated partial correlations. Denote by ρ̂i,j

and ρi,j the sample and population correlation between X(i) and X(j). Likewise, ρ̂i,j|k and
ρi,j|k denote the sample and population partial correlation between X(i) and X(j) given
{X(r); r ∈ k}, where k ⊆ {1, . . . , pn} \ {i, j}.

Many partial correlations (and non-partial correlations) are tested for being zero during
the run of the PC(mn)-algorithm. For a fixed ordered pair of nodes i, j, the conditioning
sets are elements of

Kmn
i,j = {k ⊆ {1, . . . , pn} \ {i, j} : |k| ≤ mn}

whose cardinality is bounded by

|Kmn
i,j | ≤ Bpmn

n for some 0 < B <∞. (5)

Lemma 1 Assume (A1) (without requiring faithfulness) and supn,i6=j |ρn;i,j | ≤ M < 1
(compare with (A4)). Then, for any 0 < γ ≤ 2,

sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j − ρn;i,j | > γ] ≤ C1(n− 2) exp
(

(n− 4) log(
4− γ2

4 + γ2
)
)

,

for some constant 0 < C1 <∞ depending on M only.

18



High-dimensional DAGs and the PC-algorithm

Proof: We make substantial use of Hotelling (1953)’s work. Denote by fn(r, ρ) the proba-
bility density function of the sample correlation ρ̂ = ρ̂n+1;i,j based on n+1 observations and
by ρ = ρn+1;i,j the population correlation. (It is notationally easier to work with sample
size n + 1; and we just use the abbreviated notations with ρ̂ and ρ). For 0 < γ ≤ 2,

IP[|ρ̂− ρ| > γ] = IP[ρ̂ < ρ− γ] + IP[ρ̂ > ρ + γ].

It can be shown, that fn(r, ρ) = fn(−r,−ρ), see Hotelling (1953, p.201). This symmetry
implies,

IPρ[ρ̂ < ρ− γ] = IPρ̃[ρ̂ > ρ̃ + γ] with ρ̃ = −ρ. (6)

Thus, it suffices to show that IP[ρ̂ > ρ + γ] = IPρ[ρ̂ > ρ + γ] decays exponentially in n,
uniformly for all ρ.

It has been shown (Hotelling, 1953, p.201, formula (29)), that for −1 < ρ < 1,

IP[ρ̂ > ρ + γ] ≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)
M0(ρ + γ)(1 +

2
1− |ρ|

) (7)

with

M0(ρ + γ) =
∫ 1

ρ+γ
(1− ρ2)

n
2 (1− x2)

n−3
2 (1− ρx)−n+ 1

2 dx

=
∫ 1

ρ+γ
(1− ρ2)

ñ+3
2 (1− x2)

ñ
2 (1− ρx)−ñ− 5

2 dx (using ñ = n− 3)

≤ (1− ρ2)
3
2

(1− |ρ|)
5
2

∫ 1

ρ+γ
(

√
1− ρ2

√
1− x2

1− ρx
)ñdx

≤ (1− ρ2)
3
2

(1− |ρ|)
5
2

2 max
ρ+γ≤x≤1

(

√
1− ρ2

√
1− x2

1− ρx
)ñ. (8)

We will show now that gρ(x) =
√

1−ρ2
√

1−x2

1−ρx < 1 for all ρ + γ ≤ x ≤ 1 and −1 < ρ < 1 (in
fact, ρ ≤ 1− γ due to the first restriction). Consider

sup
−1<ρ<1;ρ+γ≤x≤1

gρ(x) = sup
−1<ρ≤1−γ

√
1− ρ2

√
1− (ρ + γ)2

1− ρ(ρ + γ)

=

√
1− γ2

4

√
1− γ2

4

1− (−γ
2 )(γ

2 )
=

4− γ2

4 + γ2
< 1 for all 0 < γ ≤ 2. (9)

Therefore, for −1 < −M ≤ ρ ≤M < 1 (see assumption (A4)) and using (7)-(9) together
with the fact that Γ(n)

Γ(n+ 1
2
)
≤ const. with respect to n, we have

IP[ρ̂ > ρ + γ]

19



Kalisch and Bühlmann

≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)
(1− ρ2)

3
2

(1− |ρ|)
5
2

2(
4− γ2

4 + γ2
)ñ(1 +

2
1− |ρ|

)

≤ (n− 1)Γ(n)√
2πΓ(n + 1

2)
1

(1−M)
5
2

2(
4− γ2

4 + γ2
)ñ(1 +

2
1−M

) ≤

≤ C1(n− 1)(
4− γ2

4 + γ2
)ñ = C1(n− 1) exp((n− 3) log(

4− γ2

4 + γ2
)),

where 0 < C1 < ∞ depends on M only, but not on ρ or γ. By invoking (6), the proof is
complete (note that the proof assumed sample size n + 1). �

Lemma 1 can be easily extended to partial correlations, as shown by Fisher (1924), using
projections for Gaussian distributions.

Lemma 2 (Fisher, 1924)
Assume (A1) (without requiring faithfulness). If the cumulative distribution function of
ρ̂n;i,j is denoted by F (·|n, ρn;i,j), then the cdf of the sample partial correlation ρ̂n;i,j|k with
|k| = m < n− 1 is F [·|n−m, ρn;i,j|k]. That is, the effective sample size is reduced by m.

A proof can be found in Fisher (1924); see also Anderson (1984). �

Lemma 1 and 2 yield then the following.

Corollary 1 Assume (the first part of) (A1) and (the upper bound in) (A4). Then, for
any γ > 0,

sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j|k − ρn;i,j|k| > γ]

≤ C1(n− 2−mn) exp
(

(n− 4−mn) log(
4− γ2

4 + γ2
)
)

,

for some constant 0 < C1 <∞ depending on M from (A4) only.

The PC-algorithm is testing partial correlations after the z-transform g(ρ) = 0.5 log((1+
ρ)/(1− ρ)). Denote by Zn;i,j|k = g(ρ̂n;i,j|k) and by zn;i,j|k = g(ρn;i,j|k).

Lemma 3 Assume the conditions from Corollary 1. Then, for any γ > 0,

sup
i,j,k∈Kmn

i,j

IP[|Zn;i,j|k − zn;i,j|k| > γ]

≤ O(n−mn)
(

exp((n− 4−mn) log(
4− (γ/L)2

4 + (γ/L)2
)) + exp(−C2(n−mn))

)
for some constant 0 < C2 <∞ and L = 1/(1− (1 + M)2/4).

20



High-dimensional DAGs and the PC-algorithm

Proof: A Taylor expansion of the z-transform g(ρ) = 0.5 log((1 + ρ)/(1− ρ)) yields:

Zn;i,j|k − zn;i,j|k = g′(ρ̃n;i,j|k)(ρ̂n;i,j|k − ρn;i,j|k), (10)

where |ρ̃n;i,j|k − ρn;i,j|k| ≤ |ρ̂n;i,j|k − ρn;i,j|k|. Moreover, g′(ρ) = 1/(1 − ρ2). By applying
Corollary 1 with γ = κ = (1−M)/2 we have

sup
i,j,k∈Kmn

i,j

IP[|ρ̃n;i,j|k − ρn;i,j|k| ≤ κ]

> 1− C1(n− 2−mn) exp(−C2(n−mn)). (11)

Since

g′(ρ̃n;i,j|k) =
1

1− ρ̃2
n;i,j|k

=
1

1− (ρn;i,j|k + (ρ̃n;i,j|k − ρn;i,j|k))2

≤ 1
1− (M + κ)2

if |ρ̃n;i,j|k − ρn;i,j|k| ≤ κ,

where we also invoke (the second part of) assumption (A4) for the last inequality. Therefore,
since κ = (1−M)/2 yielding 1/(1− (M + κ)2) = L, and using (11), we get

sup
i,j,k∈Kmn

i,j

IP[|g′(ρ̃n;i,j|k)| ≤ L]

≥ 1− C1(n− 2−mn) exp(−C2(n−mn)). (12)

Since |g′(ρ)| ≥ 1 for all ρ, we obtain with (10):

sup
i,j,k∈Kmn

i,j

IP[|Zn;i,j|k − zn;i,j|k| > γ] (13)

≤ sup
i,j,k∈Kmn

i,j

IP[|g′(ρ̃n;i,j|k)| > L] + sup
i,j,k∈Kmn

i,j

IP[|ρ̂n;i,j|k − ρn;i,j|k| > γ/L].

Formula (13) follows from elementary probability calculations: for two random variables
U, V with |U | ≥ 1 (|U | corresponding to |g′(ρ̃)| and |V | to the difference |ρ̂− ρ|),

IP[|UV | > γ] = IP[|UV | > γ, |U | > L] + IP[|UV | > γ, 1 ≤ |U | ≤ L]

≤ IP[|U | > L] + IP[|V | > γ/L].

The statement then follows from (13), (12) and Corollary 1. �

7.2.2 Proof of Theorem 1

For the analysis of the PC-algorithm, it is useful to consider a more general version as shown
in Algorithm 3.

21



Kalisch and Bühlmann

Algorithm 3 The PCpop(m)-algorithm
INPUT: Stopping level m, Vertex Set V , Conditional Independence Information
OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the
skeleton afterwards)
Form the complete undirected graph C̃ on the vertex set V.
` = −1; C = C̃

repeat
` = ` + 1
repeat

Select a (new) ordered pair of nodes i,j that are adjacent in C such that |adj(C, i) \
{j}| ≥ `

repeat
Choose (new) k ⊆ adj(C, i) \ {j} with |k| = `.
if i and j are conditionally independent given k then

Delete edge i, j

Denote this new graph by C.
Save k in S(i, j) and S(j, i)

end if
until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ` have been chosen

until all ordered pairs of adjacent variables i and j such that |adj(C, i) \ {j}| ≥ ` and
k ⊆ adj(C, i) \ {j} with |k| = ` have been tested for conditional independence

until ` = m or for each ordered pair of adjacent nodes i,j: |adj(C, i) \ {j}| < `.

22



High-dimensional DAGs and the PC-algorithm

The PC-algorithm in Section 2.2.1 equals the PCpop(mreach)-algorithm . There is the
obvious sample version, the PC(m)-algorithm, and the PC-algorithm in Section 2.2.2 is
then same as the PC(m̂reach)-algorithm, where m̂reach is the sample version of (2).

The population version PCpop(mn)-algorithm when stopped at level mn = mreach,n

constructs the true skeleton according to Proposition 1. Moreover, the PCpop(m)-algorithm
remains to be correct when using m ≥ mreach,n. The following Lemma extends this result
to the sample PC(m)-algorithm.

Lemma 4 Assume (A1), (A2), (A3) where 0 < b ≤ 1 and (A4) where 0 < d < b/2. Denote
by Ĝskel,n(αn,mn) the estimate from the PC(mn)-algorithm in Section 2.2.2 and by Gskel,n

the true skeleton from the DAG Gn. Moreover, denote by mreach,n the value described in
(2). Then, for mn ≥ mreach,n, mn = O(n1−b) (n→∞), there exists αn → 0 (n→∞) such
that

IP[Ĝskel,n(αn,mn) = Gskel,n]

= 1−O(exp(−Cn1−2d))→ 1 (n→∞) for some 0 < C <∞.

Proof: An error occurs in the sample PC-algorithm if there is a pair of nodes i, j and a
conditioning set k ∈ Kmn

i,j (although the algorithm is typically only going through a random
subset of Kmn

i,j ) where an error event Ei,j|k occurs; Ei,j,k denotes that “an error occurred
when testing partial correlation for zero at nodes i, j with conditioning set k”. Thus,

IP[an error occurs in the PC(mn)-algorithm]

≤ P [
⋃

i,j,k∈Kmn
ij

Ei,j|k] ≤ O(pmn+2
n ) sup

i,j,k∈Kmn
ij

IP[Ei,j|k], (14)

using that the cardinality of the set |{i, j,k ∈ Kmn
ij }| = O(pmn+2

n ), see also formula (5).
Now

Ei,j|k = EI
i,j|k ∪ EII

i,j|k, (15)

where

type I error EI
i,j|k :

√
n− |k| − 3|Zi,j|k| > Φ−1(1− α/2) and zi,j|k = 0,

type II error EII
i,j|k :

√
n− |k| − 3|Zi,j|k| ≤ Φ−1(1− α/2) and zi,j|k 6= 0.

Choose α = αn = 2(1− Φ(n1/2cn/2)), where cn is from (A4). Then,

sup
i,j,k∈Kmn

i,j

IP[EI
i,j|k] = sup

i,j,k∈Kmn
i,j

IP[|Zi,j|k − zi,j|k| > (n/(n− |k| − 3))1/2cn/2]

≤ O(n−mn) exp(−C3(n−mn)c2
n), (16)

23



Kalisch and Bühlmann

for some 0 < C3 < ∞ using Lemma 3 and the fact that log(4−δ2

4+δ2 ) ∼ −δ2/2 as δ → 0.
Furthermore, with the choice of α = αn above,

sup
i,j,k∈Kmn

i,j

IP[EII
i,j|k] = sup

i,j,k∈Kmn
i,j

IP[|Zi,j|k| ≤
√

n/(n− |k| − 3)cn/2]

≤ sup
i,j,k∈Kmn

i,j

IP[|Zi,j|k − zi,j|k| > cn(1−
√

n/(n− |k| − 3)/2)],

because infi,j;k∈Kmn
i,j
|zi,j|k| ≥ cn since |g(ρ)| ≥ |ρ| for all ρ and using assumption (A4). By

invoking Lemma 3 we then obtain:

sup
i,j,k∈Kmn

i,j

IP[EII
i,j|k] ≤ O(n−mn) exp(−C4(n−mn)c2

n) (17)

for some 0 < C4 <∞. Now, by (14)-(17) we get

IP[an error occurs in the PC(mn)-algorithm]

≤ O(pmn+2
n (n−mm) exp(−C5(n−mn)c2

n))

≤ O(na(mn+2)+1 exp(−C5(n−mn)n−2d))

= O
(
exp

(
a(mn + 2) log(n) + log(n)− C5(n1−2d −mnn−2d)

))
= o(1),

because n1−2d dominates all other terms in the argument of the exp-function due to the
assumption in (A4) that d < b/2. This completes the proof. �

Lemma 4 leaves some flexibility for choosing mn. The PC-algorithm yields a data-
dependent reached stopping level m̂reach,n, i.e. the sample version of (2).

Lemma 5 Assume (A1)-(A4). Then,

IP[m̂reach,n = mreach,n] = 1−O(exp(−Cn1−2d))→ 1 (n→∞)

for some 0 < C <∞,

where d > 0 is as in (A4).

Proof: Consider the population algorithm PCpop(m): the reached stopping level satisfies
mreach ∈ {qn−1, qn}, see Proposition 1. The sample PC(mn)-algorithm with stopping level
in the range of mreach ≤ mn = O(n1−b), coincides with the population version on a set
A having probability P [A] = 1 − O(exp(−Cn1−2d)), see the last formula in the proof of
Lemma 4. Hence, on the set A, m̂reach,n = mreach ∈ {qn − 1, qn}. The claim then follows
from Lemma 4. �

Lemma 4 and 5 together complete the proof of Theorem 1.
Because there are faithful distributions which require mn = mreach,n ∈ {qn − 1, qn} for

consistent estimation with the PC(m)-algorithm, Lemma 5 indicates that the PC-algorithm,
stopping at m̂reach,n, yields with high probability the smallest m = mn which is universally
consistent for all faithful distributions.

24



High-dimensional DAGs and the PC-algorithm

7.2.3 Proof of Theorem 2

The proof of Theorem 1 also covers the issue of choosing the correct separation sets S, i.e.,
the probability of having the correct set S goes to one as n → ∞. Hence, the proof of
Theorem 2 is completed.

References

T.W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, 2nd edition
edition, 1984.

D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002a.

D.M. Chickering. Learning equivalence classes of bayesian-network structures. Journal of
Machine Learning Research, 2:445–498, 2002b.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

D. Dor and M. Tarsi. A simple algorithm to construct a consistent extension of a partially
oriented graph. Technical report r-185, UCLA Computer Science Department, 1992.

D. Edwards. Introduction to Graphical Modelling. Springer Verlag, 2nd edition edition,
2000.

R.A. Fisher. The distribution of the partial correlation coefficient. Metron, 3:329–332, 1924.

S.B. Gillispie and M.D. Perlman. Enumerating markov equivalence classes of acyclic digraph
models. In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
pages 171–177, 2001.

D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian networks: The combi-
nation of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

H. Hotelling. New light on the correlation coefficient and its transforms. Journal of the
Royal Statistical Society Series B, 15(2):193–232, 1953.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34:1436–1462, 2006.

J. Pearl. Causality. Cambridge University Press, 2000.

25



Kalisch and Bühlmann

R.W. Robinson. Counting labeled acyclic digraphs. In F. Haray, editor, New Directions
in the Theory of Graphs: Proc. of the Third Ann Arbor Conf. on Graph Theory (1971),
pages 239–273. Academic Press, NY, 1973.

D.J. Spiegelhalter, A.P. Dawid, S.L. Lauritzen, and R.G. Cowell. Bayesian analysis in
expert-systems (with discussion). Statistical Science, 8:219–283, 1993.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, 2nd edition edition, 2000.

T. Verma and J.Pearl. Equivalence and synthesis of causal models. In P. Bonissone, M. Hen-
rion, L.N. Kanal, and J.F. Lemmer, editors, Proceedings of the 6th Conference on Uncer-
tainty in Artificial Intelligence, volume 6 of Uncertainty in Artificial Intelligence, pages
255–68. Amserdam:Elsevier.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In M. Henrion,
M. Shachter, R. Kanal, and J. Lemmer, editors, Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, pages 220–227, 1991.

P. Zhao and B. Yu. On model selection consistency of lasso. To appear in Journal of
Machine Learning Research, 2006.

26


