
Variable selection based on multiple,
high-dimensional genomic data: from the
Lasso to the smoothed adaptive Lasso

Peter Bühlmann

Seminar für Statistik, ETH Zürich
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High-dimensional data

(X1, Y1), . . . , (Xn, Yn) i.i.d. or stationary
Xi p-dimensional predictor variable
Yi response variable, e.g. Yi ∈ R or Yi ∈ {0, 1}

high-dimensional: p � n

areas of application: biology, astronomy, imaging, marketing
research, text classification,...
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Some examples from biology

1. Classification of cancer sub-types based on microarray gene
expression data
X = gene expression profile
Y ∈ {0, 1, . . . , J − 1} the class-label of cancer sub-type
n ≈ 10− 100, p ≈ 3′000− 25′000

2. Motif regression:
search for transcription factor binding site on DNA sequence
using gene expressions and DNA sequence data

motif = (overrepresented) pattern on DNA sequence
(transcription factor binding site)

data:
X = motif scores for motifs up-stream of single genes
based on sequence data only (e.g. MDscan from Liu et al.)
Y = gene expression for single genes, over multiple time points
p ≈ 4′000, n ≈ 20× 4′000 = 80′000



Some examples from biology

1. Classification of cancer sub-types based on microarray gene
expression data
X = gene expression profile
Y ∈ {0, 1, . . . , J − 1} the class-label of cancer sub-type
n ≈ 10− 100, p ≈ 3′000− 25′000

2. Motif regression:
search for transcription factor binding site on DNA sequence
using gene expressions and DNA sequence data

motif = (overrepresented) pattern on DNA sequence
(transcription factor binding site)

data:
X = motif scores for motifs up-stream of single genes
based on sequence data only (e.g. MDscan from Liu et al.)
Y = gene expression for single genes, over multiple time points
p ≈ 4′000, n ≈ 20× 4′000 = 80′000



High-dimensional linear models

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

p � n
in short: Y = Xβ + ε

goals:
I prediction, e.g. squared prediction error
I variable selection

i.e. estimating the effective variables
(having corresponding coefficient 6= 0)
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Approaches include:

Ridge regression (Tikhonov regularization) for prediction

variable selection via AIC, BIC, (g)MDL (in a forward manner)

Bayesian methods for regularization, ...

computational feasibility for high-dimensional problems
(2p sub-models) 

(quasi-) convex optimization
⇔ (adaptive) Lasso︸ ︷︷ ︸

Tibshirani (1996)



Lasso for linear models

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ︸︷︷︸
≥0

‖β‖1︸ ︷︷ ︸Pp
j=1 |βj |

)

 convex optimization problem

I Lasso does variable selection
some of the β̂j(λ) = 0
(because of “`1-geometry”)

I β̂(λ) is (typically) a shrunken LS-estimate



The prediction problem

Theorem (Greenshtein & Ritov, 2004)
I linear model with p = pn = O(nα) for some α < ∞

(high-dimensional)
I ‖β‖1 = ‖βn‖1 =

∑pn
j=1 |βj,n| = o((n/ log(n))1/4) (sparse)

I other minor conditions
Then, for suitable λ = λn,

EX [( f̂ (X )︸︷︷︸
β̂(λ)T X

− f (X )︸︷︷︸
βT X

)2] −→ 0 in probability (n →∞)



and Lasso performs “quite well” for prediction

binary lymph node classification using gene expressions:
a high noise problem

n = 49 samples, p = 7130 gene expressions

cross-validated misclassification error (2/3 training; 1/3 test)

Lasso L2Boosting FPLR Pelora 1-NN DLDA SVM
21.1% 17.7% 35.25% 27.8% 43.25% 36.12% 36.88%

multivariate gene selection best 200 genes (Wilcoxon test)
no additional gene selection

Lasso selected on CV-average 13.12 out of p = 7130 genes



The variable selection problem

Yi = (β0+)

p∑
j=1

βjX
(j)
i + εi , i = 1, . . . , n

goal: find the effective predictor variables
i.e. the set Etrue = {j ; βj 6= 0}

`0-penalty methods, e.g. BIC, AIC,...

β̂(λ) = argminβ(n−1‖Y − Xβ‖2 + λ ‖β‖0︸ ︷︷ ︸Pp
j=1 I(βj 6=0)

)

I computationally infeasible: 2p sub-models
ad-hoc heuristic optimization such as forward-backward

I often “instable” (Breiman (1996, 1998))



convexization of computationally hard problem 

use the Lasso for variable selection : Ê(λ) = {j ; β̂j(λ) 6= 0}

 can be computed efficiently for all λ’s using the LARS
algorithm (Efron, Hastie, Johnstone, Tibshirani, 2004)

O(np min(n, p)) operation counts
linear in p if p � n



CPU time
lymph node classification example: p = 7130, n = 49

computing Lasso solutions for all λ’s

2.603 seconds using lars in R (with use.gram=F)



Properties of Lasso for variable selection

Theorem (Meinshausen & PB, 2004 (publ: 2006))

I Y , X (j)’s Gaussian (not crucial)
I sufficient and almost necessary LfV condition

(LfV = Lasso for Variable selection); see also Zhao & Yu
(2006)

I if p = p(n) is growing with n
I p(n) = O(nα) for some 0 < α < ∞ (high-dimensionality)
I |Etrue,n| = O(nκ) for some 0 < κ < 1 (sparsity)
I the non-zero βj ’s are outside the n−1/2-range

Then: if λ = λn ∼ const .n−1/2−δ/2 (0 < δ < 1/2),

P[Ê(λ) = Etrue] = 1−O(exp(−Cn1−δ))

statistical (asymptotic) justification of convexization of
computationally hard problem for variable selection
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LfV condition is restrictive
sufficient and necessary for consistent model selection with Lasso

it fails to hold if design matrix is “too correlated”
⇒ Lasso is not consistent anymore for selecting the true model



The “reason”

too much bias – shrinkage even for large values

for orthogonal design:
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Bias in soft-thresholding
is disturbing (at least sometimes)

better:
Nonnegative Garrote (Breiman, 1995)
and similar proposals



The LfV condition: a condition on the covariance of X

LfV condition︸ ︷︷ ︸
Meinshausen & PB (2004)

⇔ Irrepresentable condition︸ ︷︷ ︸
Zhao & Yu (2006)

′′ ⇔′′ Lasso is consistent for variable selection

Irrepresentable condition ⇔ |Σ̂noise;eff Σ̂
−1
eff ;eff sign(βeff )| ≤ 1− η

it holds for
I Σ̂ij ≤ ρ|i−j| (0 ≤ ρ < 1) power decay correlations
I dictionaries with coherence︸ ︷︷ ︸

max. correlation

< (2peff − 1)−1

(notion of coherence: Donoho, Elad & Temlyakov (2004))
I easy to construct examples where condition fails to hold



Choice of λ

first (not so good) idea: choose λ to optimize prediction
e.g. via some cross-validation scheme

but: for prediction oracle solution

λ∗ = argminλE[(Y −
p∑

j=1

β̂
(
j λ)X (j))2]

P[Ê(λ∗) = Etrue] < 1 (n →∞) (or = 0 if pn →∞ (n →∞))

asymptotically: prediction optimality yields too large models
(Meinshausen & PB, 2004; related example by Leng et al., 2006)



If LfV condition fails to hold:

Meinshausen & Yu (2006): for suitable λ = λn

‖β̂ − β‖2
2 =

p∑
j=1

(β̂j − βj)
2 = oP(1)

under much weaker conditions than LfV
I maximal and minimal sparse eigenvalues of empirical covariance matrix
I number of effective variables in relation to sparse eigenvalues of

empirical covariance matrix

implication: Lasso yields too large models
(for fixed coefficients βj , j = 1, 2, . . .)



in summary: asymptotically,
I prediction optimal solution yields too large models
I if LfV condition fails to hold

Lasso yields too large models

 Lasso as a
“filter for variable selection”

i.e. true model is contained in selected models from Lasso
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Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuned Lasso selects 23 genes (on whole data set)

note (in practice): identifiability problem among highly
correlated predictor variables

 an ad-hoc approach:
keep the 23 plus all its highly correlated genes for further
modeling, interpretation etc...
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Adaptive Lasso

recap: under “weak” assumptions,

Etrue ⊆ Ê( λ̂︸︷︷︸
pred. optim.

)

quite many non-zero, “small” β̂j ’s from the Lasso

 various possibilities to improve:
I hard-thresholding of coefficients

(using prediction optimality)
I thresholding of coefficients and re-estimation of non-zero coefficients

with least squares (using prediction optimality)



Adaptive Lasso (Zou, 2006): re-weighting the penalty function

β̂ = argminβ

n∑
i=1

(Yi − (Xβ)i)
2 + λ

p∑
j=1

|βj |
|β̂init ,j |

,

β̂init ,j from Lasso in first stage (or OLS if p < n)︸ ︷︷ ︸
Zou (2006)

for orthogonal design,
if β̂init = OLS:
Adaptive Lasso = NN-garrote
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furthermore:

I Zou (2006): adaptive Lasso is consistent for variable
selection “in general”
(proof for low-dimensional problems only)

I Huang, Ma & Zhang (2006): as above but for sparse,
high-dimensional problems



n = 300, p = 20, . . . 650, peff = 20
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additional pure noise variables are much less damaging with
the adaptive Lasso than for Lasso



Binary lymph node classification in breast cancer: n = 49 p = 7130

5-fold CV tuning for each method

cross-validated quantities (2/3 training; 1/3 test)

misclassif. error number of selected genes
Lasso 21.1% 13.12

Adaptive Lasso 20.1% 7.3
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Bacillus Subtilis for vitamin production (project with
DSM)

data: response Y , p = 4088 gene expressions, n = 115

goal: find important genes for Y

statistically:
regression problem Y versus p = 4088 gene expressions
find the variables (genes) which are important for regression

identifiability problem due to high correlation (collinearity)
among genes
 elastic net (Zou & Hastie, 2005) which encourages to select
non or all among highly correlated predictor variables



Adaptive elastic net (builds on the idea of the adaptive Lasso)
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we did not insist on sparsity

but aimed for all relevant and their highly correlated
variables/genes

 more “false positives”, but sometimes desirable in
exploratory stage



Can we improve?
adaptive Lasso yields pretty good solutions for variable
selection and prediction

but note the limitation: p � n ...

“strategy”:

make “sample size” larger by
integrating other suitable data-sets

a simple model:

data-sets D(t), t = 1, 2, . . . , N
each measuring Y (t), X (t) with sample size n(t)
Y (t) = X (t)β(t) + ε(t),
β(t) smoothly changing over t︸ ︷︷ ︸

topology for indexing data-sets
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Time course experiments

t = 1, 2, . . . , N represents time
Y (t) and X (t) measurements for the same variables
 use usual metric on R+

use smoothed Lasso (Meier & PB (in progress))

β̂(τ) = argminβ

T∑
t=1

K (
t − τ

h
)︸ ︷︷ ︸

weight w(t ,τ)

(n−1‖Y (t)− X (t)β‖2
2 + λ‖β‖1)

(if n(t) ≡ n)



Time course experiments

t = 1, 2, . . . , N represents time
Y (t) and X (t) measurements for the same variables
 use usual metric on R+

use smoothed Lasso (Meier & PB (in progress))

β̂(τ) = argminβ

T∑
t=1

K (
t − τ

h
)︸ ︷︷ ︸

weight w(t ,τ)

(n−1‖Y (t)− X (t)β‖2
2 + λ‖β‖1)

(if n(t) ≡ n)



results for the smoothed (adaptive) Lasso (Meier & PB):
if h = hN → 0 suitably slowly and β(·) is smooth: for suitable
λ = λ(n, N, h):

I improved convergence rate for ‖β̂ − β‖2
2 by a factor (Nh)−a

(for smoothed Lasso and smoothed adaptive Lasso)

a = 1 and (Nhopt)
−1 = N−4/5n1/5 for low-dimensional case

i.e. improvement if N not too small w.r.t. n (N/n1/4 →∞)
e.g: n1/4 ≈ 2.7 if n = 50 and n1/4 ≈ 8 if n = 4′000

I for the smoothed adaptive Lasso:
asymptotic consistency for variable selection (as for
non-smoothed case), but better empirical performance



E[N−1 ∑N
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E[|p̂eff − peff |]
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Motif regression for time-course experiments

goal: find transcription factor binding sites
(for a set of co-regulated genes)

fact: a transcription factor tends to recognize
a conserved pattern (a “motif”) in DNA sequence

 search for “overrepresented patterns” such as TCTATTGTTT
occurring in up-stream region of gene(s)



MotifRegressor which integrates sequence and gene
expression data (Conlon, Liu, Lieb & Liu, 2003):

I for highly expressed genes:
up-stream of each gene, search for p candidate motifs
with MDscan, based on DNA sequence data only

I compute motif-score for all n genes and all p candidate
motifs
(score ≈ occurrences of candidate motif in gene’s
up-stream region)
based on DNA sequence data only

I n ≈ 4′000− 25′000 genes and their expression Y ,
p ≈ 4′000 candidate motif-scores for each gene
gene expression and DNA sequence data

I do regression and determine the significant variables (i.e.
candidate motifs which are significant):

Yi = gene-expression of genei =

p∑
j=1

βj Xi,j︸︷︷︸
motif score

+ errori

this approach is very competitive in comparison to other
algorithms (e.g. AlignAce, MEME)



“always”: very noisy data
after variable selection: R2 ≈ 0.05− 0.15

nevertheless:
MotifRegressor seems often better than competitive algorithms

further improvement with adaptive Lasso over forward variable
selection in MotifRegressor
and it yields meaningful or even true findings (work in progress
with Liu and collaborators)
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Time-course experiments (e.g. from cell-cycle)

for every time point t :
I gene-expression vector/profile Y (t)
I motif-scores for every gene and every motif-candidate:

always the same, i.e. X (t) ≡ X
multivariate regression:

Y (t) = Xβ(t) + error(t)

and reasonable assumption that β(·) changes smoothly w.r.t.
time

 use the smoothed adaptive Lasso



Spellman et al.’s cell-cycle experiment for yeast

N = 9 time points
n = 4443, p = 2155

cross-validated mean squared prediction error:

time point adaptive Lasso smoothed adaptive Lasso
1 40.5 41.7
2 95.2 95.5
3 60.0 61.4
4 59.3 59.0
5 32.3 32.4
6 36.5 36.5
7 37.3 37.3
8 27.1 27.1
9 29.9 29.9

 essentially the same predictive performance
but note: high noise ⇒ similar prediction performance



number of selected variables (motifs):

time point adaptive Lasso smoothed adaptive Lasso
1 500 438
2 73 73
3 43 20
4 77 46
5 53 41
6 0 0
7 0 0
8 45 16
9 0 0

 smoothed adaptive Lasso often substantially sparser
fewer false positives expected



interpretation of significant motifs (via TRANSFAC):
e.g.

GACGCG TRANSFAC−→ MCB︸ ︷︷ ︸
trans. factor

some well known cell-cycle regulators:
STE12, SCB, MCB, PH04, SW15, MCM1

and in addition: ROX1, M3B, XBP1

I substantial overlap of findings with Conlon, Liu, Lieb & Liu
(2003)

I our method is much more stable than (non-smoothed)
forward variable selection used in Conlon, Liu, Lieb & Liu
(2003)
 fewer false positives expected with smoothed adaptive
Lasso



currently working on motif finding in Arabidopsis Thaliana
(much less explored organism then yeast)

with Gruissem lab at ETH Zürich



Conclusions

1. Lasso is computationally attractive for variable selection in
high-dimensional generalized linear models
(including e.g. Cox’s partial likelihood for survival data)
but: it yields too large models

2. Adaptive Lasso is an elegant, effective way to correct
Lasso’s overestimation behavior

3. Smoothed adaptive Lasso is potentially powerful for
time-course experiments
(or multivariate structures, i.e. “multiple data-sets”)

software packages are available in R:
lars, glmppath, grplasso
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